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Abstract

To be practical, observers have to function not only in the
ideal situation of having a perfect assumed model struc-
ture, but also in the presence of some degrees of model un-
certainties. The adaptive observer designs in the literature
have a major drawback in that they may destabilize in the
presence of uncertain nonlinearities which could occur in
real systems. In this paper, based on the recently proposed
adaptive robust control (ARC), robust filter structures and
controlled parameter adaptation are effectively integrated
to deal with some typical model uncertainties in a physical
system to improve the state estimation properties of an ob-
server. Theoretically, the proposed adaptive robust observer
(ARO) is shown to possess the Input-to-State-Practically
Stable (ISpS) property. Practically, explicit on-line moni-
toring of certain persistence of excitation conditions is used
as well to obtain better and robust parameter estimates to
further improve the state estimation accuracy in implemen-
tation. Experimental results are obtained to verify the effec-
tiveness of the proposed ARO design.

1 Introduction

Observers are dynamical systems that act as state estima-
tors and are used in a wide range of applications such as
in the implementation of advanced controllers which do not
have the entire state vector for feedback, model based fault
detection and isolation [1,2] and virtual sensing [3].

Some of the major difficulties in the design ofpractical
observers for most physical systems include:(i) the inher-
ent nonlinear dynamics, and(ii) model uncertainties. The
model uncertainties can be due to either constant or slow-
ing changing unknown quantities such as unknown physi-
cal parameters or fast changing unknown quantities such as
external disturbances and un-modelled nonlinearities.

The extensive research work in the field of linear systems
has led to the development of extensive tools for the design
of observers for linear systems. The difficulty posed by the
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lack of knowledge of systems parameters was addressed by
the design of adaptive observers which estimate both the
states and parameters of a system. An extensive survey of
the design of adaptive observers was done in [4]. Unfortu-
nately, these observers can become unstable in the presence
of unmodeled dynamics and uncertain nonlinearities.

In the presence of hard nonlinearities such as coulomb fric-
tion and saturation which cannot be linearized, observer de-
signs based on the linearized model do not perform ade-
quately and have a limited range of operation. Hence, the
design of observers for the state estimation of uncertain non-
linear systems remains an active area of research. An ex-
tensive survey of the various observer designs for nonlinear
systems was done in [5–8].

It should be noted that most of the observer designs in the
literature deal with certain specific classes of nonlinear sys-
tems for which co-ordinate transformations can be found to
transform the system into an equivalent observable form.
The complexity in the nature of nonlinear systems forces
us to come up with designs based on performance require-
ments. Most methods deal with observer designs for sys-
tems linear in the unmeasured state. In the case of adap-
tive observers for uncertain nonlinear systems, as with other
adaptive designs, the parameter convergence can occur only
when certain persistence of excitation conditions are satis-
fied.

This paper presents a novel nonlinear adaptive robust ob-
server (ARO) that estimates both the unmeasurable states
and unknown but constant parameters for a class of systems
which can be characterized as being in the parametric semi-
strict feedback form. A co-ordinate transformation is first
used to convert the given nonlinear system into an equiv-
alent observable canonical form. A novel observer design
philosophy that is based on the recently developed adap-
tive robust control (ARC) theory [9] is employed to handle
typical model uncertainties in a physical system effectively.
Theoretically, it is shown that the proposed ARO is Input-
State-Practically-Stable (ISpS), and the state and parameter
estimates are guaranteed to be bounded even in the presence

0-7803-7896-2/03/$17.00 ©2003 IEEE 4391
Proceedings of the American Control Conference

Denver, Colorado June 4-6, 2003



of uncertain nonlinearities such as bounded disturbances.
Practically, explicit on-line monitoring of certain persistent
excitation conditions is used to improve the parameter and
state estimation process as well. Experimental results ob-
tained on the velocity estimation of hydraulic cylinders us-
ing pressure measurement only verify the practicality and
effectiveness of the proposed ARO framework.

2 Problem Statement and Issues to be Addressed

A goal in many practical applications is to combinea priori
knowledge of the physical system with experimental data
to estimate the states and parameters of the system. In this
paper an adaptive robust observer is designed that estimates
the states and parameters of a class of nonlinear systems.
Specifically system dynamics in the following form are con-
sidered in this paper:

η̇ = Fη(x,u)θ+Gη(x)η+∆η

ẋi = θTFxi (x,u)+φT
i (x,u,θ)η+∆xi (1)

y = x

wherex = [x1, . . . ,xn]T ∈ R n is a vector of states that can
be measured,η ∈ R η is a vector of states that are unmea-
surable andθ ∈ R p is a vector of constant but unknown
parameters that also need to be estimated.Fη(x,u) ∈ R η×p,
Gη ∈ R η×η, Fxi (x,u) ∈ R p andφi(x,u,θ) ∈ R η are matri-
ces or vectors of known smooth functions which are used
to describe the nominal model of the system.∆η and∆xi

represent the lumped unknown nonlinear functions such as
disturbances and modelling errors. The following practical
assumptions are made:

Assumption 1 The extent of the parametric uncertainties
and uncertain nonlinearities are known. Specifically,

θ ∈ Ωθ = θ : θmin < θ < θmax

∆η ∈ Ω∆η = ∆η : |∆η| ≤ δη (2)

∆xi ∈ Ω∆xi
= ∆xi : |∆xi | ≤ δxi

whereθmin, θmax, δη and δxi are known. (| · |) denotes the
usual Euclidean norm.

Assumption 2 There exists a vector of functionsω(x,θω)∈
R η that can be linearly parameterized by a set of unknown
parametersθω ∈ R pω and satisfies

∂ω
∂xi

φT
i (x,u,θ) = ψi(x,u) (3)

whereψi(x,u) is a matrix of known functions ofx andu and
independent ofθ.

Assumption 3 There exists a co-ordinate transformation of
the form

ξ = η−ω(x,θω) (4)

whereω(x,θω) is a vector of design functions of the mea-
sured statesx and the set of unknown parametersθω as de-
fined in assumption 2 such that the matrix

Aξ(x,u) = Gη(x)−Σn
i=1ψi(x,u) (5)

is exponentially stable (i.e.,AT +A is a uniformly negative
definite matrix).

The objective is to design an observer such that the esti-
mated state vector̂η is as close as possible to the true state
η in spite of the parametric uncertainties and the uncertain
nonlinearities. Specifically, the observer should exhibit the
following desirable properties:

1. The observer is Input-to-State-Practically stable
(ISPS) with the plant states and inputs of the actual
system as inputs and the observer states as the states.

2. In the absence of uncertain nonlinearities i.e., when
∆η = ∆xi = 0, the observer estimates of the transformed
states converge to their true values.

3. When certain persistence of excitation conditions are
satisfied and∆η = ∆xi = 0, both the parameter esti-
matesθ̂ and the state estimatesη̂ asymptotically con-
verge to their true values.

In the following, an adaptive robust observer (ARO) frame-
work is presented to solve the above observer design prob-
lem. The framework is based on the recently developed
adaptive robust control (ARC) philosophy [9] that empha-
sizes the use of bothrobust filter structuresand em con-
trolled parameter adaptation in dealing with typical model
uncertainties in a physical system. Specifically, robust fil-
ter structures are used to reduce the effect of various model
uncertainties as much as possible while controlled parame-
ter adaptation is used to reduce the model uncertainty for an
improved state estimation accuracy.

3 Definitions and Mathematical Preliminaries

3.1 Projection Mapping and ISPS Stability
Let θ̂(t) denote the estimate of the parameterθ and θ̃ the
estimation error (i.e.,̃θ = θ̂(t)−θ). Defining the discontin-
uous projection as:

Definition 1 Let Ωθ be a convex set with the interior of the

set denoted by
◦

Ωθ and its boundary by∂Ωθ. Let nθ̂ be the
unit outward normal at̂θ ∈ ∂Ωθ. The standard projection
mapping [10] is:

Pro jθ̂(ζ) =





ζ, if θ̂ ∈
◦

Ωθ or nT
θ̂ ζ≤ 0

(I −Γ
nθ̂nT

θ̂
nT

θ̂
Γnθ̂

)ζ, θ̂ ∈ ∂Ωθ andnT
θ̂ ζ > 0

(6)
whereζ ∈ R p is any function andΓ(t) ∈ R p×p can be any
time-varying positive definite symmetric matrix.
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Lemma 1 By using the projection type adaptation law
given by

˙̂θ = Pro jθ̂(ζ), θ̂(0) ∈Ωθ (7)

it can be shown [11] that the projection mapping in equa-
tion (6) has the following desirable properties

P1. The parameter estimates are always within the known
closed set̄Ωθ, i.e., θ̂(t) ∈ Ω̄θ, ∀t.

P2. If the true parameters are within the known convex set
Ωθ, then for any adaptation functionτ andΓ(t) > 0,

θ̃T(Γ−1Pro jθ̂(Γτ)−τ)≤ 0, ∀τ,Γ(t),andθ ∈Ωθ, (8)

Definition 2 A systemẋ = f (x,u) is Input to State Practi-
cally Stable (ISpS) if there exists a classK L functionβ, a
classK functionγ, and a non-negative constantd such that,
for any initial conditionx(0) and each inputu∈L∞[0, t), the
corresponding solutionx(t) satisfies

|x(t)| ≤ β(|x(0)|, t)+ γ(‖u(t)‖)+d, ∀t ≥ 0 (9)

whereu(t) is the truncated function ofu at t and‖ ·‖ repre-
sents theL∞ supremum norm.

3.2 Mathematical Preliminaries
If A∈ R n×m, B∈ R r×s then, the Kronecker product as de-
fined in [12] is,

A
O

B =




A11B A12B . . . A1nB

A21B A22B . . .
...

...
... . . .

...
Am1B Am2B . . . AmnB




= matrix[Ai j B]

(10)
whereA

N
B∈ R nr×ms.

Lemma 2 Consider the following matrix productABCD
whereA∈ R η×pω , B∈ R pω×1, C ∈ R 1×p andD ∈ R p×1.
Then

ABCD= (A
O

DT) · (B
O

CT) (11)

Proof: The proof follows from the definition.

4 Adaptive Robust Observer

Since theη subsystem is not measurable, a nonlinear adap-
tive robust observer will be designed to provide estimates of
theη subsystem. Motivated by the research work in [13,14],
a transformation of co-ordinates is introduced. Define a vec-
tor

ξ = η−ω(x,θω) (12)

whereω(x,θω) is the vector of design functions satisfying
Assumptions 2 and 3. Its derivative is computed as

ξ̇ = η̇− ω̇(x,θω)

= (Fη(x,u)θ+Gηη+∆η)−Σn
i=1

∂ω
∂x

ẋi (13)

=
(Fη(x,u)θ−Σn

i=1
∂ω
∂xi

θTFxi )+(Gη−Σn
i=1ψi(x,u))η

+(∆η−Σn
i=1

∂ω
∂xi

∆xi )

For simplicity, let

Aξ(x,u) = (Gη(x)−Σn
i=1ψi(x,u)) (14)

and

∆ξ(x,u) = (∆η−Σn
i=1

∂ω
∂xi

∆xi ) (15)

Substituting (14) and (15) into (13), we have

ξ̇ = (Fη(x,u)θ−Σn
i=1

∂ω
∂xi

θTFxi (x,u))+Aξ(x,u)η+∆ξ

(16)
Substituting (12) into (16) and utilizing the assumption that
ω(x,θω) can be linearly parametrized in terms ofθω, i.e.,
ω(x,θω) = σ(x)θω for some matrixσ(x) ∈ Rη×pω , we have

ξ̇ = Aξ(x,u)ξ+Aξ(x,u)σ(x)θω +

Fη(x,u)θ−Σn
i=1

∂σ
∂xi

θωθTFxi (x,u)+∆ξ (17)

Using (11) we have

Σn
i=1

∂σ
∂xi

θωθTFxi (x,u) = Σn
i=1(

∂σ
∂xi

O
FT

xi
(x,u))(θω

O
θ)

= Σn
i=1ϕT

i (x,u)θnew (18)

whereϕT
i (x,u) ∈ R η×ppω andθnew∈ R ppω×1. Substituting

(18) into (17) we get,

ξ̇ = Aξ(x,u)ξ+Aξ(x,u)σ(x)θω +Fη(x,u)θ

−Σn
i=1ϕT

i (x,u)θnew+∆ξ (19)

If θ andθω were known, we would design a nonlinear ob-
server

˙̂ξ = Aξ(x,u)ξ̂+Aξ(x,u)σ(x)θω +Fη(x,u)θ−Σn
i=1ϕT

i (x,u)θnew

= Aξ(x,u)ξ̂+χη(x,u)θω +Fη(x,u)θ−Σn
i=1ϕT

i (x,u)θnew (20)

whereχη(x,u) = Aξ(x,u)σ(x) ∈ R η×pω . Then, the state es-

timation errorξ̃ = ξ̂−ξ would be governed by the following
dynamic system

˙̃ξ = Aξ(x,u)ξ̃−∆ξ (21)

Sinceθ andθω are not known, the observer in equation (20)
is not implementable but it provides motivation for the de-
sign of the following nonlinear filters:

τ̇θ j = Aξ(x,u)τθ j +Fη j(x,u) (22)

τ̇θω j
= Aξ(x,u)τθω j

+χη j(x,u) (23)

τ̇ j = Aξ(x,u)τ j −Σn
i=1ϕT

i j (x,u) (24)
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whereFη j , χη j(x,u) andϕT
i j represent thejth column ofFη,

χη andϕT
i matrices. The state estimate can thus, be repre-

sented by

ξ̂ = Σp
i=1τθ j θ j +Σpω

i=1τθω j
θωi +Σppω

k=1τkθnewk

= τθθ+ τθω θω + τθnew (25)

whereτθ ∈ R η×p, τθω ∈ R η×pω and τ ∈ R η×ppω . From
(22), (23), (24) and (25), it can be verified that the observer
error dynamics are still represented by (21). Therefore, the
equivalent expression for the unmeasurable stateη is

η = τθθ+ τθω θω + τθnew+ω(x,θω)− ξ̃
= τθθ+ τθω θω + τθnew+σ(x)θω− ξ̃ (26)

But since information aboutθ andθω is not available, we
need to use the parameter estimates for the estimation of the
unmeasured statesη i.e.,

η̂ = τθθ̂+(τθω +σ(x))θ̂ω + τθ̂new

= ϒT θ̂ϒ (27)

whereϒT = [τθ,(τθω +σ(x)),τ]∈R η×(p+pω+ppω) andθ̂ϒ =
[θ̂, θ̂ω, θ̂new]T ∈ R p+pω+ppω .

Now an adaptation law needs to be designed to estimate the
system parameters so that these estimates can be used in
the implementation of the adaptive robust observer. Con-
sider the dynamics of thexi subsystem in (1), using (26),
the equation for thexi dynamics can be rewritten in the fol-
lowing form:

ẋi = θTFxi (x,u)+φT
i (x,u,θ)(ϒTθϒ− ξ̃)+∆xi (28)

Utilizing the fact thatφT
i (x,u,θ) is linear in terms ofθ, i.e.,

φT
i (x,u,θ) = θTδi(x,u), the equivalentxi dynamics can be

written as

ẋi = θTFxi (x,u)+θTδi(x,u)(ϒTθϒ− ξ̃)+∆xi

= θTFxi (x,u)+θTδi(x,u)ϒTθϒ−θTδi(x,u)ξ̃+∆xi

= θTFxi (x,u)+θTΞ(x,u)θϒ−θTδi(x,u)ξ̃+∆xi (29)

Then,

θTδi(x,u)ϒTθϒ = θTΞ(x,u)θϒ

= (θT
ϒ
O

θT)Λi(x,u)

= θT
ΛΛi(x,u) (30)

whereΛi(x,u) ∈ R p(p+pω+ppω) is a vector of the elements
of the matrixΞ(x,u) andθΛ ∈ R p(p+pω+ppω) is a vector of
the unknown parameters.

Hence, using equation (30), the dynamics of thexi channel
can be written as,

ẋi = θTFxi (x,u)+θT
ΛΛi(x,u)−θTδi(x,u)ξ̃+∆xi

= Θ(x,u)θ0−θTδi(x,u)ξ̃+∆xi (31)

whereθT
0 = [θT ,θT

Λ] ∈ R 1×(p+p(p+pω+ppω)) andΘT(x,u) =
[Fxi (x,u),Λi(x,u)] ∈ R (p+p(p+pω+ppω)).

The dynamics (31) is linear in terms of unknown parame-
ter vectorθ0, from which parameter estimation can be con-
structed. To by-pass the need for the derivatives of the mea-
sured states, the following filters are proposed:

Ω̇T = AΩT +Θ(x,u) (32)

Ω̇0 = A(Ω0 +xi) (33)

whereA is any exponentially stable matrix to be specified
later,Ω ∈ R 1×(p+p(p+pω+ppω)) andΩ0 ∈ R 1. Now define

z= xi +Ω0 (34)

which is calculable. By substituting equations (31) and (33)
into the derivative of (34),

ż= Az+Θ(x,u)θ0−θTδi(x,u)ξ̃+∆xi (35)

Let ε = xi +Ω0−ΩTθ0, thenzcan be written as

z= ΩTθ0 + ε (36)

whereε is governed by

ε̇ = Aε−θTδi(x,u)ξ̃+∆xi (37)

As the last two terms in (37) can be bounded by known non-
linear functions, a nonlinear filter matrixA can then be con-
structed to guarantee that the error dynamics (37) are stable.
Now define the estimate ofzas

ẑ= ΩT θ̂0 (38)

and define the prediction error ase= ẑ−z. By doing so,

e= ΩT θ̃0− ε (39)

which is linearly parameterized in terms of the parameter
estimation error̃θ0 with an additional term that exponen-
tially converges to zero in the absence of disturbances (i.e.,
∆η = ∆xi = 0). Because the prediction error is in the static
form, various standard estimation algorithms can be used.
With the least squares estimation algorithm, the resulting
adaptation law is given by,

˙̂θ0 = Pro jθ̂0
(−Γ

Ωe
1+νTrace(ΩTΓΩ)

) (40)

whereΓ(t) is the adaptation rate matrix updated by,

Γ̇ =
αΓ−ΓΩΩTΓ

1+νTrace(ΩTΓΩ)
,Γ(0) = ΓT(0) > 0 (41)

in which the normalization factorν and the forgetting fac-
tor α are non-negative constants, withν = 0 leading to un-
normalized algorithm.

With the above ARO design, the observer estimation error
of η is given by

η̃ = η̂−η = ϒT θ̃ϒ + ξ̃ (42)
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5 Performance Results

The following qualitative results hold for the ARO defined
by the equations (27) and (40).

1. In the presence of uncertain nonlinearities, the signals
from the parameter estimator of the ARO given by
equation (40) and the state estimator given by equation
(27) are bounded, and the ARO given by equations (27)
and (40) is ISpS.

2. In the absence of uncertain nonlinearities, i.e.,∆xi =
∆η = 0, if the parameters are updated only when cer-
tain persistence of excitation conditions are satisfied,
then the parameter and state estimates converge to their
true values.

These results are formally summarized in the following
lemmas:

Lemma 3 With the observer in (27) and the projection
type adaptation law in (6), the parameter estimation er-
ror and the estimation error̃ξ are always bounded, i.e.,
θ̃0 ∈ L∞[0,∞), andξ̃ ∈ L∞[0,∞).

Proof: From the properties of the projection mapping in (6),
it is seen that̂θ0 ∈ L∞[0,∞). Hence, the parameter estima-
tion error alsõθ0 ∈ L∞[0,∞).

Since,Aξ(x,u) is assumed to be stable, there exist two pos-
itive definite matricesP > 0 and Q > 0 such thatAT

ξ P+
PAξ =−Q.

Consider the following Lyapunov functionVξ̃ = ξ̃TPξ̃, then

λmin(P)|ξ̃|2 ≤ Vξ̃(ξ̃) ≤ λmax(P)|ξ̃|2. Looking at equation
(21), we have

V̇ξ̃ = ˙̃ξ
T
Pξ̃+ ξ̃TP˙̃ξ

= ˙̃ξ
T
(AT

ξ (x,u)P+PAξ(x,u))ξ̃−∆T
ξ Pξ̃− ˙̃ξ

T
P∆ξ

≤ −λmin(Q)|ξ̃|2−2∆T
ξ Pξ̃ (43)

≤ −λmin(Q)|ξ̃|2 +2λmax(P)(δη +Σn
i=1|L|δxi )|ξ̃|

≤ −cξ̃λmax(P)|ξ̃|2 +
λ2

max(P)(δη +Σn
i=1|L|δxi )

2

λmin(Q)−cξ̃λmax(P)

wherecξ̃ > 0 is any positive constant satisfyingcξ̃ ≤ λmin(Q)
λmax(P) .

Since(δη +Σn
i=1|L|δxi ) is a function of the measured states

andt only and is bounded with respect tot, there exists a
classK∞ function γ(x) and a positive constantd such that

γ(x)+d≥ (λ2
max(P))(δη+Σn

i=1|L|δxi )
2

λmin(Q)−cξ̃λmax(P) . Thus, we have that,

V̇ξ̃ ≤−cξ̃Vξ̃(ξ̃)+ γ(x)+d (44)

Hence, the system with̃ξ as the state andx as the input is
ISpS.2

Lemma 4 The systems of filters in (32) and (33) is ISpS
with the inputs being the measured statesx and the control
inputu and the states being the filter outputsΩ0 andΩ.

Proof: As the filter matrix used in equations (32) and (33)
is stable, there existP > 0 andQ > 0 such thatATP+PA=
−Q.

Consider the following Lyapunov function

V = Tr(ΩPΩT) (45)

whereP is a positive definite matrix.

Then the derivative of the Lyapunov function (45) using
equations (32) and (33) is given as

V̇ = Tr((Ω̇PΩT)+(ΩPΩ̇T))
= Tr((Ω(ATP+PA)ΩT)+ΘTPΩT +ΩPΘ)(46)

Hence, the derivative of the Lyapunov equation is

V̇ = −Tr(ΩQΩT)+Tr(ΘTPΩT +ΩPΘ)

≤ −N1

λmax(P)
Tr(ΩPΩT)+kTr(

ΘTPΩT

k
+

ΩPΘ
k

−ΩPΩT)

=
−N1

λmax(P)
V +kTr(−(Ω− ΘT

k
)P(Ω− ΘT

k
)T)+Tr(

ΘPΘT

k
)

whereN, N1, k are positive scalars which satisfyλmin(Q) >
N > 0 andN = N1 +kλmax(P).

Since the regressor is bounded,

V̇ ≤ −N1

λmax(P)
V + γ(|x,u|)+d (47)

Hence, the system withx andu as the inputs andΩ as the
state is ISpS.2

Theorem 1 The Adaptive Robust Observer given by equa-
tions (27) and (40) is ISpS with the measured statesx and
the control inputu as the inputs and the observer estimation
error η̃ given (42).

Proof: The prediction error for the observer is given by the
static relation (39). From Lemma 3,θ̃0 ∈ L∞[0,∞) and the
system withξ̃ as a state is ISpS. Also, utilizing Lemma 4,
the set of filters withΩ as a state is ISpS. Hence, the ARO
is ISpS withx andu as inputs and̃η as the state.2

Theorem 2 In the absence of uncertain nonlinearities, i.e.,
∆η = ∆xi = 0, the parameter estimation error̃θ0 → 0 if the
following persistent excitation (PE) is satisfied:

∃T,α > 0,s.t.
Z t+T

t
Ω(τ)ΩT(τ)dτ≥ αI ,∀t (48)
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Proof: In the absence of uncertain nonlinearities i.e.,∆η =
∆xi = 0,

˙̃ξ = Aξ(x,u)ξ̃ (49)

ε̇ = Aε−φi(x,u,θ)ξ̃ (50)

It is thus clear that both̃ξ andε exponentially converge to
zero. Thus, using standard adaptive design techniques, we
can show that the least squares type projection adaptation
law guarantees that the prediction errorε → 0 as t → ∞.

From (40),˙̂θ0 → 0 ast → ∞.

As e= ΩT θ̃0− ε, one has thatΩT θ̃0 → 0 ast → ∞. Hence,
for anyT, Z t+T

t
θ̃T

0 ΩΩT θ̃0dτ→ 0,ast→ ∞ (51)

Using the mean value theorem,

θ̃0(τ) = θ̃0(t)+ ˙̃θ0(µ)(τ− t) (52)

Thus, noting thaṫ̃θ0 → 0 ast → ∞, (51) and (52) lead to

θ̃T
0 (t)[

Z t+T

t
ΩΩTdτ]θ̃0(t)→ 0 (53)

Thus when the PE condition (48) is satisfied,

α‖θ̃0(t)‖2 ≤ θ̃T
0 (t)[

Z t+T

t
ΩΩTdτ]θ̃0(t) (54)

From (53),θ̃0 → 0. 2

6 Conclusions

An adaptive robust observer (ARO) design has been pre-
sented for a class of parametric semi-strict feedback non-
linear systems that are linear in terms of the unmeasured
states. It has been shown that using a robust filter structure
along with controlled parameter adaptation enables us to ef-
fectively combat the effect of various model uncertainties
including both unknown but constant plant parameters and
bounded fast-changing unknown nonlinearities. Theoreti-
cally, the proposed ARO guarantees bounded estimates of
the states and parameters even in the presence of bounded
fast-changing unknown nonlinearities, and the asymptoti-
cally converging estimates of the transformed states in the
presence of parametric uncertainties only. Practically, the
experimental results obtained on the velocity estimates of
an electro-hydraulic system using pressure measurements
only [15] have demonstrated the effectiveness of the pro-
posed ARO design in industrial applications.
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