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Abstract

The paper focuses on the synthesis of adaptive robust con-
trollers that achieve not only excellent output tracking per-
formance but also accurate parameter estimations for sec-
ondary purposes such as machine health monitoring and
prognostics. Such an objective is accomplished through an
intelligent integration of the output tracking performance
oriented direct adaptive robust control (DARC) design with
the recently proposed accurate parameter estimation based
indirect adaptive robust control (IARC) design. SISO non-
linear systems transformable to semi-strict feedback forms
are considered. Theoretically, regardless of the specific es-
timation algorithm to be used, certain guaranteed transient
performance and final tracking accuracy are achieved even
in the presence of uncertain nonlinearities–a desirable fea-
ture in applications. In addition, the theoretical performance
of adaptive designs–asymptotic output tracking in the pres-
ence of parametric uncertainties only–is preserved. The
construction of physical parameter estimation law is based
on the actual system dynamics and totally independent from
the design of underline robust control law, which allows
various estimation algorithms having better parameter con-
vergence properties and practical modifications such as the
on-line explicit monitoring of signal excitation levels to be
used to significantly improve the accuracy of the resulting
parameter estimates in implementation.

1 Introduction

In [1, 2], an adaptive robust control (ARC) approach is
presented to systematically construct performance oriented
control laws for nonlinear systems transformable to semi-
strict feedback forms. The approach has been applied to
several applications and comparative experimental results
have demonstrated the substantially improved performance
of the ARC approach in implementation [3, 4, 5, 6].

The underline parameter adaptation law in ARC controllers
in [1, 2] are based on the direct adaptive control designs [7]
including the tuning function based adaptive backstepping

1The work is supported in part by the National Science Foundation un-
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[8], in which the adaptive control law and parameter adapta-
tion law are synthesized simultaneously to meet the sole ob-
jective of reducing the output tracking error. Although ex-
cellent output tracking performance is achieved, the param-
eter estimates of such a direct ARC design hardly converge
to their true values in implementation [3, 4, 5, 6], even when
the desired trajectory might be persistently exciting and of
large signal. The problem is mainly caused by the use of the
gradient type parameter adaptation law with certain actual
tracking errors as driving signals; the actual tracking errors
of a well designed direct ARC law in implementation are
normally extremely small and near the measurement reso-
lution, and, thus, are more prone to be corrupted by other
factors such as the sampling delay and noise that have been
neglected when synthesizing the parameter adaptation law.

To overcome the poor parameter estimates of the direct
ARC designs [2], an indirect adaptive robust control design
has recently been developed [9], in which the construction
of parameter estimation law is totally separated from the
design of underline robust control law. As a result, vari-
ous estimation algorithms having better parameter conver-
gence properties (e.g., the least squares type method) can
be used. Furthermore, on-line explicit monitoring of sig-
nal excitation level can be employed in implementation to
significantly improve the accuracy of parameter estimates.
Because of these algorithm improvements, the resulting pa-
rameter estimates are normally accurate enough to be used
for secondary purposes such as machine health monitoring
and prognostics, which are becoming ever-increasingly im-
portant for practical industrial applications.

In [10], the IARC in [9] is applied to the precision control
of an epoxy core linear motor with an improved estimation
model, and is experimentally compared with the direct ARC
(DARC) designs in [5]. The comparative experimental re-
sults show that, although the proposed IARC design has a
much better accuracy of parameter estimates than the direct
ARC [5], the output tracking performances of IARC are not
as good as those of DARC [5], especially during the tran-
sient periods. A more detailed thorough analysis reveals
that the poorer tracking performance of IARC is caused by
the loss of dynamic compensation type fast adaptation that
is inherited in the DARC designs. To overcome this loss
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of tracking performance problem of IARC, in this paper, an
integrated direct/indirect ARC (DIARC) design framework
will be developed for SISO nonlinear systems transformable
to semi-strict feedback forms. The design not only uses
the same adaptation process as in the IARC design [9] for
accurate estimation of physical parameters, but also intro-
duces dynamic compensation type fast adaptation to achieve
a better transient performance. Consequently, the resulting
DIARC controller is able to achieve better tracking perfor-
mances than either IARC or DARC while having the same
level of accurate physical parameter estimates as in IARC.

2 Problem Formulation

The paper considers the class of uncertain nonlinear sys-
tems transformable to the semi-strict feedback form with
unknown input gains described by

ẋ1 � b1x2 �ϕ1�x1�t�
T θ�∆1�x̄n�t�

... (1)

ẋn � bnu�ϕn�x̄n�t�
T θ�∆n�x̄n�t�

where x1 is the system output, x̄i � �x1� ����xi�
T is the vector

of the first i states, bi is the unknown input gain of the i-th
channel, θ� �θ1� ����θpθ�

T represents the vector of other un-
known parameters, ∆i�x̄n� t� is the uncertain nonlinearity in
the ith channel, and u is the control input. For notation sim-
plicity, let θb � Rp be the vector of all unknown parameters,
i.e., θb � �θT �b1� � � � �bn�

T . The following nomenclature is
used throughout this paper: �̂ is used to denote the estimate
of �, �̃ is used to denote the parameter estimation error of
�, e.g., θ̃ � θ̂� θ, �i is the ith component of the vector �,
�̄i is a column vector of the first i components of �, e.g.,
b̄i � �b1�b2� ����bi�

T , �max and �min are the maximum and
minimum value of ��t� for all t respectively. The following
practical assumptions are made:

Assumption 1 The unknown parameter vector θb is within
a known bounded convex set Ωθb . Furthermore, within
Ωθb , the input gains bi� i � 1� � � � �n� are of known signs
and nonzero. Without loss of generality, it is assumed that
�θb �Ωθb , θimin � θi � θimax and 0� bimin � bi � bimax� i �
1� � � � �n, where θimin, θimax, bimin, and bimax are some known
constants.

Assumption 2 The uncertain nonlinearity ∆i�x̄n� t� can be
bounded by

�∆i�x̄n�t�� � δi�x̄i�di�t�� �i (2)

where δi�x̄i� is a known positive function, and di�t� is an
unknown but bounded positive time-varying function.

The integrated ARC problem is stated as that of, under As-
sumptions 1 and 2, synthesizing a control law for the input u
and a parameter estimation law for the unknown parameter
vector θb so that: (i) all the signals of the resulting closed
system are bounded, (ii) the output x1 tracks the desired
output trajectory x1d�t� with a guaranteed transient perfor-
mance and final tracking accuracy, (iii) in the presence of

parametric uncertainties only (i.e., ∆i � 0� �i), the output
tracking error z1 � x1 � x1d�t� converges to zero asymp-
totically, and (iv) effective parameter estimation algorithms
such as the least square method and practical modifications
are sought to have accurate on-line estimates of physical
parameters θb.

3 Integrated Direct/Indirect Adaptive Robust Control

In this section, an integrated DIARC scheme will be devel-
oped for the system (1). As in the IARC in [9], the first step
is to use a rate-limited projection type adaptation law struc-
ture to achieve a controlled learning or adaptation process
as detailed in the following.

3.1 Rated Limited Projection Type Adaptation Law
Structure
One of the key elements of the ARC design [1, 2] is to use
the practical available prior process information to construct
projection type adaptation law for a controlled learning pro-
cess even in the presence of disturbances. As in [1, 11],
the widely used projection mapping Pro j θ̂b

��� will be used
to keep the parameter estimates within the known bounded
set Ω̄θb , the closure of the set Ωθb . The standard projection
mapping is [12, 8]:

Pro jθ̂b
�ζ��

���
��

ζ� if θ̂b �
Æ
Ωθb

or nT
θ̂b

ζ � 0�
I�Γ

nθ̂b
nT

θ̂b
nT

θ̂b
Γnθ̂b

�
ζ θ̂b � ∂Ωθb

and nT
θ̂b

ζ � 0

(3)
where ζ � Rp is any function and Γ�t� � R p�p can be any

time-varying positive definite symmetric matrix. In (3),
Æ

Ωθb

and ∂Ωθb denote the interior and the boundary of Ωθb re-
spectively, and nθ̂b

represents the outward unit normal vec-

tor at θ̂b � ∂Ωθb .

To achieve a complete separation of estimator design and
adaptive robust control law design, in addition to the use of
projection type parameter adaption law as in the direct ARC
[11], it is also necessary to preset a limit on the adaptation
rate for a controlled estimation process. For this purpose,
for any ζ � Rp, define a saturation function as:

satθ̇M
�ζ� � s0ζ� s0 �

�
1� �ζ� � θ̇M
θ̇M
�ζ� � �ζ�� θ̇M

(4)

where θ̇M is a pre-set rate limit.

Lemma 1 [9] Suppose that the parameter estimate θ̂b is
updated using the following rate-limited projection type
adaptation law with a pre-set rate limit θ̇M:

˙̂θb � satθ̇M

�
Pro jθ̂b

�Γτ�
�
� θ̂b�0� �Ωθb

(5)

where τ is any estimation function and Γ�t�� 0 is any con-
tinuously differentiable positive symmetric adaptation rate
matrix. With this adaptation law structure, the following
desirable properties hold:
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P1. The parameter estimates are always within the known
bounded set Ω̄θb , i.e., θ̂b�t� � Ω̄θb � �t. Thus, from Assump-
tion 1, �t, θimin � θ̂i�t� � θimax and 0 � bimin � b̂i�t� �
bimax� i � 1� � � � �n.

P2.
θ̃T

b

�
Γ�1Pro jθ̂b

�Γτ��� τ
�
� 0� �τ (6)

P3. The parameter adaptation rate is uniformly bounded by

� ˙̂θb�t�� � θ̇M� �t �

3.2 Integrated Direct/Indirect ARC Law
With the use of the rate limited projection type adaptation
law structure (5), the parameter estimates and their deriva-
tives are bounded with known bounds, regardless of the es-
timation function τ to be used. In the following, this prop-
erty will be used to synthesize an integrated DIARC law for
the system (1) that achieves a guaranteed transient and fi-
nal tracking accuracy in general, independent of the specific
identifier to be used later. As the system (1) has unmatched
model uncertainties, backstepping design [8] is used as in
[2]:

Step 1:
Let us rewrite the first equation of (1) as

ẋ1 � b1x2 �φ1�x1�t�
T θ� ∆̆1�x̄n�t� (7)

where φ1�x1� t� � ϕ1�x1� t� and ∆̆1�x̄n� t� � ∆1�x̄n� t�. Let
δ̆1�x1� � δ1�x1� and d̆1�t� � d1�t�. Then

��∆̆1�x̄n� t�
�� �

δ̆1�x1�d̆1�t�. The step 1 is to synthesize a virtual DIARC
control function α1 for x2 so that the output tracking error
z1 � x1 � x1d converges to zero or some small values with
a guaranteed transient and final tracking accuracy when the
input mismatch z2 � x2�α1 is zero. The following virtual
DIARC function is suggested:

α1�x1� θ̂� b̂1� d̂c1�t� � α1a �α1s

α1a � α1a1 �α1a2� α1a1 � 1
b̂1

	
�φT

1 θ̂� ẋ1d�t�


� α1a2 �� 1

b̂1
d̂c1

α1s � α1s1 �α1s2� α1s1 ��k1s1�x1�t�z1� α1s2 ��k1s2�x1�t�z1
(8)

In (8), α1a1 represents the usual model compensation with
the physical parameter estimates θ̂b�t� updated later using
an indirect parameter estimator as in the IARC design [9],
α1a2 is a model compensation term similar to the fast dy-
namic compensation type model compensation used in the
DARC designs [2, 11], in which d̂c1 can be thought as the
estimate of the low frequency component of the lumped
model uncertainties defined later, α 1s represents the robust
control term with the nonlinear feedback gains k 1s1 and k1s2

specified in the following.

From (7) and (8), noting z2 � x2�α1, the first error equation
is obtained as

ż1 � b1z2 �b1α1s �b1α1a2� b̃1α1a1�φT
1 θ̃� ∆̆1 (9)

Define a constant dc1 and time varying ∆�1�t� such that

dc1 �∆�
1�t� ��b̃1α1a1�φT

1 θ̃� ∆̆1 (10)

Conceptually, (10) lumps the disturbances and the model
uncertainties due to physical parameter estimation error to-
gether and divides it into the static component (or low fre-
quency component in reality) dc1 and the high frequency
components ∆�1�t�, so that the low frequency component dc1

can be compensated through fast adaptation similar to those
in the direct ARC designs [2, 11] as follows.

Let dc1M be any pre-set bound and use this bound to con-
struct the following projection type adaptation law for d̂c1�t�

˙̂dc1 � Pro jd̂c1
�γd1z1�

∆
�

�
0 if �d̂c1�t��� dc1M and d̂c1�t�z1 � 0
γd1z1 else

(11)
with γd1 � 0 and �d̂c1�0�� � dc1M . Such an adaptation law

guarantees that �d̂c1�t�� � dc1M��t.

Substituting (10) into (9) and noting (8),

ż1 � b1z2 �b1α1s �b1α1a2 �dc1 �∆�
1�t�

� b1z2 �b1α1s1 �
	
b1α1s2 � b̃1α1a2� d̃c1 �∆�

1�t�

 (12)

In the above, due to the use of projection type adaptation
law, all estimation errors are bounded within known bounds.
As such, the same as in the DARC in [2, 11], it can be shown
that, as long as the nonlinear feedback gain k1s2 is chosen
large enough, the following robust performance condition
can be satisfied

z1
	
b1α1s2� b̃1α1a2� d̃c1 �∆�

1


� εc1 � εd1d̆2

1 (13)

where εc1 and εd1 are constant design parameters that can
be thought as the theoretical indexes for the attenuation level
of model uncertainties as seen later. The theoretical lower
bounds for k1s2 for (13) to be satisfied can be worked out in
the same way as in [2, 11]. It can be easily verified that the
derivative of V1 � 1�2z2

1 is

V̇1 � b1z1z2 � z1b1α1s1 � z1�b1α1s2� b̃1α1a2� d̃c1 �∆�
1� (14)

��b1k1s1z2
1 �b1z1z2 � εc1 � εd1d̆2

1 (15)

It is thus obvious that if z2 is bounded, the output tracking
error z1 would be bounded. Thus, the next step is to make
sure that z2 converges to zero or some small values.

Step i
The derivation of the remaining design steps follows the
similar procedure as in the first design step. Namely, at
each step i, a virtual DIARC law α i�x̄i� θ̂� ˆ̄bi� d̂ci� t� is de-
signed in order that xi tracks its desired virtual DIARC
law αi�1�x̄i�1� θ̂� ˆ̄bi�1� d̂c�i�1�� t� that was synthesized in step
i� 1 with a desired transient performance. The virtual DI-
ARC control function, along with the error equation and an
augmented non-negative function with its derivative, are ex-
plicitly given in the following lemma.

Lemma 2 For each i � n, let zi � xi�αi�1. Using the no-
tations of α0�t� � x1d�t� and b0 � 0, one can recursively
define the following terms for step i from the previous steps:

φi�x̄i� θ̂� ˆ̄bi�1�t� � ϕi�x̄i�t��
i�1

∑
l�1

∂αi�1

∂xl
ϕl (16)
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∆̆i�x̄n� θ̂� ˆ̄bi�1�t� � ∆i�x̄n�t��
i�1

∑
l�1

∂αi�1

∂xl
∆l (17)

with ∆̆i bounded by

�∆̆i�x̄n� θ̂� ˆ̄bi�1�t�� � δ̆i�x̄i�t�d̆i�t� (18)

where δ̆i is any smooth function satisfying

δ̆i � i
�
max

�
δi�maxl�1�����i�1	�

∂αi�1
∂xl

�δl

��

and

d̆i�t� � maxl�1�����i	dl�t�
.

Define dci, the static component, and ∆�

i , the time-varying
component, of the lumped model compensation error at step
i as

dci �∆�
i �t� ��φT

i θ̃�
i�1

∑
l�1

∂αi�1

∂xl
b̃l xl�1� b̃iαia1 � ∆̆i (19)

where αia1 is the usual model compensation defined be-
low. Choose the following virtual DIARC control function
for xi�1

αi�x̄i� θ̂� ˆ̄bi� d̂ci�t� � αia �αis� αia � αia1 �αia2

αia1 � 1
b̂i

�
∑i�1

l�1
∂αi�1
∂xl

b̂l xl�1 �
∂αi�1

∂t �φT
i θ̂


� αia2 �� 1

b̂i
d̂ci

αis � αis1 �αis2� αis1 ��kis1�x̄i�t�zi� αis2 ��kis2�x̄i�t�zi
(20)

where d̂ci is the estimate of dci updated by

˙̂dci � Pro jd̂ci
�γdizi�

∆
�

�
0 if �d̂ci�t��� dciM & d̂cizi � 0
γdizi else

(21)
with γdi � 0 and �d̂ci�0�� � dciM, in which dciM is a pre-set

bound for d̂ci�t�. In (20), kis1 is a robust gain to be specified
later, and kis2 is a nonlinear gain large enough so that the
following robust performance condition is satisfied

zi

�
biαis2 � b̃iαia2� d̃ci �∆�

i �
∂αi�1

∂θ̂
˙̂θ�

i�1

∑
l�1

∂αi�1

∂b̂l

˙̂bl

�

� εci � εdid̆
2
i (22)

where εci and εdi are positive constant design parameters
that can be thought as the theoretical indexes for the atten-
uation level of model uncertainties.

With the virtual DIARC control function (20), the ith error
equation can be written as

żi � bizi�1 �biαis1 �
	
biαis2� b̃iαia2� d̃ci �∆�

i (23)

�
∂αi�1

∂θ̂
˙̂θ�

i�1

∑
l�1

∂αi�1

∂b̂l

˙̂bl �
∂αi�1

∂d̂c�i�1�

˙̂dc�i�1�

�
(24)

and the derivative of the augmented non-negative function

Vi �Vi�1 �
1
2

z2
i (25)

is given by

V̇i �
i

∑
l�1

zlblαls1 �
i

∑
l�1

blzl zl�1 �
i

∑
l�1

zl
�

blαls2 � b̃lαla2� d̃cl

�∆�
l �

∂αl�1

∂θ̂
˙̂θ�

l�1

∑
j�1

∂αl�1

∂b̂ j

˙̂b j �
∂αl�1

∂d̂c�l�1�

˙̂dc�l�1�

�
(26)

Lemma 2 can be proved via direct verifications.

Remark 1 P1 and P3 of Lemma 1 guarantee that the

parameter estimation error θ̃b and its derivative ˙̂θb are
bounded with known bounds. Noting (19) and (21), d̃ci and
∆�i are bounded with known functions of states. Thus, as
in [2], there exists a large enough nonlinear feedback gain
kis2 that is a function of x̄i and t only such that the robust
performance condition (22) can be satisfied. Furthermore,
how to choose kis2�x̄i� t� to satisfy (22) can be worked out in
the same way as in [2]. Note also that the use of projection
type adaptation law guarantees that b̂i is non-zero, which
makes the control law (20) free of singularity. �

Step n
Letting xn�1 � u, then, the step n is exactly the same as the
previous steps but with zn�1 � 0 if we actually choose the
input u as

u � αn�x̄n� θ̂� ˆ̄bn�t� (27)

where αn is given by equations (20) with i � n. The fol-
lowing theorem states the theoretic achievable performance
of such a DIARC law:

Theorem 1 Consider the ARC law (27) with the rate lim-
ited projection type adaptation law (5), in which τ could be
any estimation function. If the gains kis1� i� 1� � � � �n are suf-
ficiently large such that the following matrix is non-negative

Ms �

�
�������

b1k1s1 �κ1 � 1
2

�
b1 �

γd1

b̂1

�
� � � 0

� 1
2

�
b1 �

γd1

b̂1

�
�

. . .
...

...
. . .

. . . �
0 � � � � bnkns1 �κn

�
�������
� 0

(28)
where κi� i � 1� � � � �n� are some positive numbers, then, in

general, all signals in the resulting closed loop system are
bounded. In addition, the tracking errors are bounded by

�z̄n�t��
2 � e�λvt�z̄n�0��

2 �
2εvmax

λv

�
1� e�λvt



(29)

where λv � 2
�
mini�1�����n�κi	

�
and εv�t� � ∑n

i�1

	
εci � εdid̆2

i �t�



Proof of Theorem 1: From (20), ∂αi
∂d̂ci

� � 1
b̂i

. Thus, from

(21),
��� ∂αi

∂d̂ci

˙̂dci



� 1

b̂i
γdi�zi�. Noting (20), the robust perfor-

mance condition (22), and the fact that zn�1 � 0, from (26),

V̇n ��
n

∑
l�1

κl z
2
l ��z̄n�

T Ms�z̄n��
n

∑
i�1

�
εci � εdid̆

2
i

�
(30)

where the matrix Ms is defined in (28). Thus, when (28) is
satisfied,

V̇n � �λvVn � εv�t� (31)

which leads to (29) by using the Comparison Lemma [13].

As the boundedness of θ̂b and ˙̂θb is guaranteed by P1 and P3
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of Lemma 1 respectively, one can follow the standard back-
stepping proofs to show that all the control functions (20)
and state x̄n are bounded for any bounded desired trajectory
x1d�t� with bounded higher derivatives. Thus all the signals
of the closed-loop system are bounded, which completes the
proof of the theorem. �

3.3 Parameter Estimation Algorithm
In the above subsection, a DIARC law which can admit any
estimation function τ has been constructed and a guaranteed
transient and final tracking performance is achieved even in
the presence of uncertain nonlinearities. Thus, the reminder
of the paper is to construct suitable estimation functions τ so
that an improved final tracking accuracy–asymptotic track-
ing or zero final tracking error in the presence of paramet-
ric uncertainties only–can be obtained with an emphasis on
good parameter estimation process as well. As such, in this
subsection, we assume the system is absence of uncertain
nonlinearities, i.e., let ∆i � 0� i � 1� ����n� in (1). For the
same practical reasons as in [9], the original system model
(1), rather than any transformed tracking error dynamics,
will be used to construct specific estimation functions for
better accuracy of parameter estimates in implementation
as detailed as follows.

Note that, when ∆i � 0, the system dynamics (1) can be re-
written as

˙̄xn � f0�x̄n�u��FT �x̄n�u�θb (32)

where the matrix F is defined as

FT �x̄n�u� �

�
��

ϕT
1 x2 � � � 0
...

...
. . .

...
ϕT

n 0 � � � u

�
�� (33)

and the vector of known functions f 0 � ℜ n is added for gen-
erality and represents the lumped effect of all known non-
linearities, which is zero for (1). Construct the following
filters:

Ω̇T � AΩT �FT

Ω̇0 � A�Ω0 � x̄n�� f0 (34)

where A is an exponentially stable matrix. Let y � x̄ n �Ω0.
From (32) and (34),

ẏ � f0 �FT θb �A�Ω0 � x̄n�� f0

� FT θb �A�Ω0 � x̄n� (35)

Let ε̃ � x̄n �Ω0�ΩT θb. As in [8], it is easy to verify that
y can be written as

y � ΩT θb � ε̃ (36)

where ε̃ exponentially decays to zero and is governed by

˙̃ε � Aε̃ (37)

Now define the estimate of y as

ŷ � ΩT θ̂b (38)

and define the prediction error as

ε � ŷ� y � ΩT θ̂b� x̄n�Ω0 (39)

which is calculable. The resulting prediction error model is

ε � ΩT θ̃b� ε̃ (40)

Thus, one has a static model (40) that is linearly param-
eterized in terms of θ̃b, with an additional term ε̃ that ex-
ponentially decays to zero. With this static model, various
estimation algorithms can be used to identify unknown pa-
rameters, of which the gradient estimation algorithm and the
least squares estimation algorithm [8] are given below.

3.3.1 Gradient Estimator: With the gradient type
estimation algorithm, the resulting adaptation law is given
by (5), in which Γ can be chosen as a constant positive di-
agonal matrix, i.e., Γ � diag�γ1� ����γp�, and τ is defined as

τ ��
Ωε

1�ν�Ω�2
F

� ν � 0 (41)

where by allowing ν � 0, we encompass unnormalized
adaptation function, and �Ω�F represents the Frobenius
norm of Ω, given by �Ω�2

F � tr	ΩT Ω
, in which tr	�
 is
the trace operation.

3.3.2 Least Squares Estimator: When the least
squares type estimation algorithm with co-variance re-
setting [14] and exponential forgetting [15] is used, the re-
sulting adaptation law is given by (5), in which Γ�t� is up-
dated by

Γ̇ � αΓ �Γ
ΩΩT

1�νtr�ΩT ΓΩ	
Γ� Γ�0�� 0� Γ�t�r � � ρ0I (42)

where ν� 0 and ν � 0 leads to the unnormalized algorithm,
and τ is defined as

τ ��
Ωε

1�νtr�ΩT ΓΩ	
(43)

In (42), α is the forgetting factor, t r is the covariance reset-
ting time, i.e., the time when λmin�Γ�t�� � ρ1 where ρ1 is a
pre-set lower limit for Γ�t� satisfying 0 � ρ1 � ρ0. In prac-
tice, the above least square estimator may lead to estimator
windup (i.e., λmax �P�t�� �� ∞) when the regressor is not
persistently exciting. To prevent this estimator windup and
take into account the effect of the rate-limited adaptation
law (5), (42) is modified to

Γ̇ �

��
� αΓ �Γ ΩΩT

1�νtr�ΩT ΓΩ�Γ� if
λmax �P�t��� ρM and
�Pro jθ̂b

�Γτ�� � θ̇M

0 otherwise
(44)

where ρM is the pre-set upper bound for �P�t�� with
ρM � ρ0. With these practical modifications, ρ1I � Γ�t� �
ρMI� �t. To prove that asymptotic output tracking can be
achieved, the following lemma which summarizes the prop-
erties of the estimators is needed [9]:

Lemma 3 When the rate-limited projection type adaptation
law (5) with either the gradient estimator (41) or the least
squares estimator (43) is used with the prediction error cal-
culated from (39), the following results hold:

ε � L2�0�∞�
L∞�0�∞� (45)
˙̂θb � L2�0�∞�
L∞�0�∞� (46)
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Theorem 2 In the presence of parametric uncertainties
only, i.e., ∆i � 0, i � 1� ����n, by using the control law (27)
and the rate limited projection type adaptation law (5) with
either the gradient type estimation function (41) or the least
squares type estimation function (43), if the following per-
sistent excitation condition is satisfied:

� t�T

t
ΩΩT dτ � κpIp� for some κp � 0 and T � 0 (47)

then, the physical parameter estimate θ̂b converge to their
true values (i.e., θ̃b � 0 as t � ∞), and, in addition to
the robust performance results stated in Theorem 1, an im-
proved final tracking performance–asymptotic tracking–is
also achieved, i.e., z̄n � 0 as t � ∞. �

Proof of Theorem 2: When ∆i � 0, from (17), ∆̆i � 0��i.
From Theorem 1 and Lemma 3, it is easy to check that

z̄n� x̄n� θ̃b�
˙̂θb�W�Q� ˙̂θb�Ω � L∞�0�∞�. From (24) and (39), it

is clear that ˙̄zn � L∞�0�∞� and ε̇ �L∞�0�∞�, which indicates
that z̄n and ε are uniformly continuous. As ε � L2 from
Lemma 3, by Barbalat’s Lemma, ε � 0 as t � ∞. Thus,
from (37) and (40), ΩT θ̃b � 0, and from (41) and (43),
τ � 0 as t � ∞. From (5), ˙̂θb � 0 as t � ∞. Following
the standard technique in adaptive control [12], it is easy to
show that the PE condition (47) guarantees the exponential
convergence of parameter estimates. So θ̃b � 0 as t � ∞
and θ̃b � L2�0�∞�.

Noting (19), from (26), it is easy to verify that

V̇n ��∑n
l�1 blkls1z2

l �∑n�1
l�1 bl �zl ��zl�1��∑n

l�1 �zl ��ζi��∑n
l�1 zl d̂cl

�∑n
l�2 �zl �

γdl�1

b̂l�1
�zl�1� � �∑n

l�1 κl z2
l ��z̄n�

T Ms�z̄n��∑n
l�1 �zl ��ζi�

�∑n
l�1 zl d̂cl ��∑n

l�1 κl z2
l �∑n

l�1 �zl ��ζi��∑n
l�1 zl d̂cl

(48)
where

ζi ��b̃lαla�φT
l θ̃�

l�1

∑
j�1

∂αl�1

∂x j
b̃ jx j�1�

∂αl�1

∂θ̂
˙̂θ�

l�1

∑
j�1

∂αl�1

∂b̂ j

˙̂b j (49)

Choose a positive definite function

Van �Vn �
n

∑
i�1

1
2γdi

d̂2
ci (50)

From (21) and (48),

V̇an � �
n

∑
l�1

κl z
2
l ��

n

∑
l�1

d̂cl ��zl �
1

γdi

˙̂dci� (51)

� �
n

∑
l�1

κl z
2
l �

n

∑
l�1

�zl ��ζi� (52)

where the last term of (51) is less than zero due to the
property P2 (6) of the projection mapping used (or via di-
rect verification). As ζ i defined by (49) is linear w.r.t. to

the parameter estimation errors θ̃b and their derivatives ˙̂θb

with all coefficients being uniformly bounded by Theorem

1, the fact that θ̃b � L2�0�∞� and ˙̂θb � L2�0�∞� implies that
ζi � L2�0�∞�. Therefore, from (52), z̄ n � L2. As z̄n is uni-
formly continuous, by Barbalat’s lemma, z̄ n � 0 as t � ∞,
i.e., asymptotic output tracking is achieved, which leads to
Theorem 2. �
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