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Abstract

The paper focuses on the synthesis of adaptive robust con-
trollers that achieve not only excellent output tracking per-
formance but also accurate parameter estimations for sec-
ondary purposes such as machine health monitoring and
prognostics. Such an objective is accomplished through an
intelligent integration of the output tracking performance
oriented direct adaptive robust control (DARC) design with
the recently proposed accurate parameter estimation based
indirect adaptive robust control (IARC) design. SISO non-
linear systems transformable to semi-strict feedback forms
are considered. Theoretically, regardless of the specific es-
timation algorithm to be used, certain guaranteed transient
performance and final tracking accuracy are achieved even
in the presence of uncertain nonlinearities—a desirable fea-
turein applications. In addition, the theoretical performance
of adaptive designs—asymptotic output tracking in the pres-
ence of parametric uncertainties only—is preserved. The
construction of physical parameter estimation law is based
onthe actual system dynamicsand totally independent from
the design of underline robust control law, which alows
various estimation algorithms having better parameter con-
vergence properties and practical modifications such as the
on-line explicit monitoring of signal excitation levelsto be
used to significantly improve the accuracy of the resulting
parameter estimates in implementation.

1 Introduction

In [1, 2], an adaptive robust control (ARC) approach is
presented to systematically construct performance oriented
control laws for nonlinear systems transformable to semi-
strict feedback forms. The approach has been applied to
several applications and comparative experimental results
have demonstrated the substantially improved performance
of the ARC approach in implementation [3, 4, 5, 6].

The underline parameter adaptation law in ARC controllers
in[1, 2] are based on the direct adaptive control designs|[7]
including the tuning function based adaptive backstepping
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[8], inwhich the adaptive control law and parameter adapta-
tion law are synthesized simultaneously to meet the sole ob-
jective of reducing the output tracking error. Although ex-
cellent output tracking performanceis achieved, the param-
eter estimates of such adirect ARC design hardly converge
to their truevaluesinimplementation[3, 4, 5, 6], even when
the desired trajectory might be persistently exciting and of
large signal. The problemis mainly caused by the use of the
gradient type parameter adaptation law with certain actual
tracking errors as driving signals; the actual tracking errors
of awell designed direct ARC law in implementation are
normally extremely small and near the measurement reso-
lution, and, thus, are more prone to be corrupted by other
factors such as the sampling delay and noise that have been
neglected when synthesizing the parameter adaptation law.

To overcome the poor parameter estimates of the direct
ARC designs[2], anindirect adaptive robust control design
has recently been developed [9], in which the construction
of parameter estimation law is totally separated from the
design of underline robust control law. As a result, vari-
ous estimation agorithms having better parameter conver-
gence properties (e.g., the least squares type method) can
be used. Furthermore, on-line explicit monitoring of sig-
nal excitation level can be employed in implementation to
significantly improve the accuracy of parameter estimates.
Because of these algorithm improvements, the resulting pa-
rameter estimates are normally accurate enough to be used
for secondary purposes such as machine health monitoring
and prognostics, which are becoming ever-increasingly im-
portant for practical industrial applications.

In[10], the IARC in [9] is applied to the precision control
of an epoxy core linear motor with an improved estimation
model, and is experimentally compared with thedirect ARC
(DARC) designsin [5]. The comparative experimental re-
sults show that, although the proposed IARC design has a
much better accuracy of parameter estimates than the direct
ARC [5], the output tracking performances of IARC are not
as good as those of DARC [5], especialy during the tran-
sient periods. A more detailed thorough analysis reveals
that the poorer tracking performance of IARC is caused by
the loss of dynamic compensation type fast adaptation that
is inherited in the DARC designs. To overcome this loss
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of tracking performance problem of IARC, in this paper, an
integrated direct/indirect ARC (DIARC) design framework
will be devel oped for SISO nonlinear systemstransformable
to semi-strict feedback forms. The design not only uses
the same adaptation process as in the IARC design [9] for
accurate estimation of physical parameters, but aso intro-
duces dynamic compensation type fast adaptation to achieve
a better transient performance. Consequently, the resulting
DIARC controller is able to achieve better tracking perfor-
mances than either IARC or DARC while having the same
level of accurate physical parameter estimates asin IARC.

2 Problem Formulation

The paper considers the class of uncertain nonlinear sys-
tems transformable to the semi-strict feedback form with
unknown input gains described by

X1 baxo + 01(x1,t) 7O+ A (Xn,t)

@

Xn an-|-¢n(X_n,t)T9+An(X_n,t)
where x; isthe system output, X; = [Xq,...,%]" isthe vector
of thefirst i states, b; is the unknown input gain of the i-th
channel, 8 =[64, ..., epe]T represents the vector of other un-
known parameters, Aj(Xn,t) is the uncertain nonlinearity in
theit" channel, and u is the control input. For notation sim-
plicity, let 8y € RP be the vector of all unknown parameters,
i.e, B, =[08",by,...,by)". The following nomenclature is
used throughout this paper: ¢ isused to denote the estimate
of e, @ is used to denote the parameter estimation error of
e, eg0, 8=0-20, o istheith component of the vector e,
e; is a column vector of the first i components of e, e.g.,
bi = [b1,bp,...,b]]T, emax and epn are the maximum and
minimum value of e(t) for all t respectively. The following
practical assumptions are made:

Assumption 1 The unknown parameter vector By, iswithin
a known bounded convex set Qg,. Furthermore, within
Qg,, the input gains bj,i = 1,...,n, are of known signs
and nonzero. Without loss of generality, it is assumed that
VBp € Qg Bimin < 6i < Bimax and 0 < bimin < bj < Bjmax, i =
1,...,n, where Bimin, Bimax, bimin, and bimax are some known
constants.

Assumption 2 The uncertain nonlinearity A;j(xn,t) can be
bounded by

10 (X0, )] < Bi(x)di(t), Vi )
where &i(X;) is a known positive function, and d;(t) is an
unknown but bounded positive time-varying function.

The integrated ARC problem is stated as that of, under As-
sumptions 1 and 2, synthesizing a control law for theinput u
and a parameter estimation law for the unknown parameter
vector 6y, so that: (i) all the signals of the resulting closed
system are bounded, (ii) the output x; tracks the desired
output trajectory x14(t) with a guaranteed transient perfor-
mance and final tracking accuracy, (iii) in the presence of
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parametric uncertainties only (i.e., Aj = 0, Vi), the output
tracking error z3 = X3 — X14(t) converges to zero asymp-
totically, and (iv) effective parameter estimation algorithms
such asthe least square method and practical modifications
are sought to have accurate on-line estimates of physical
parameters 6y,.

3 Integrated Direct/Indirect Adaptive Robust Control

In this section, an integrated DIARC scheme will be devel-
oped for the system (1). Asinthe IARC in[9], thefirst step
isto use arate-limited projection type adaptation law struc-
ture to achieve a controlled learning or adaptation process
as detailed in the following.

3.1 Rated Limited Projection Type Adaptation Law
Structure

One of the key elements of the ARC design [1, 2] isto use
the practical available prior processinformationto construct
projection type adaptation law for acontrolled learning pro-
cess even in the presence of disturbances. Asin [1, 11],
the widely used projection mapping Proj éb(.) will be used
to keep the parameter estimates within the known bounded
set Qg, , the closure of the set Qg,. The standard projection

mapping is[12, 8]:
(I M- )Z Bp € 0Qq, and N, {>0
b
©)
where { € RP isany function and I'(t) € RP*P can be any

time-varying positive definite symmetric matrix. In (3), gozeb
and 0Qg, denote the interior and the boundary of Qg, re-
spectively, and N, represents the outward unit normal vec-

tor at By, € 0Q, .

8

Moy, " eb
Fn

it BpeQq, or ngbl <0
Projg, (¢) =

To achieve a complete separation of estimator design and
adaptive robust control law design, in addition to the use of
proj ection type parameter adaption law asinthedirect ARC
[11], it is also necessary to preset a limit on the adaptation
rate for a controlled estimation process. For this purpose,
for any { € RP, define a saturation function as:

B 17| > by @

saty, (¢) = sod, 50{ [

where Oy is apre-set rate limit.

Lemmal [9] Suppose that the parameter estimate By is
updated using the following rate-limited projection type
adaptation law with a pre-set rate limit Gy :

O = saty, (Projéb (Fr)) . Bp(0) € Qg )
where T isany estimation functionand ' (t) > Oisany con-
tinuously differentiable positive symmetric adaptation rate
matrix. With this adaptation law structure, the following
desirable properties hold:
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P1. The parameter estimates are always within the known
bounded set Qg, , i.€., Bp(t) € Qg,, Vt. Thus, from Assump-
tion 1, Vt, Bimin < 6i(t) < Bimax and 0 < bimin < bi(t) <
Bimax, i =1,...,n

P2.
M (FflProjéb (r1)) —r) <0, V1 (6)

P3. The parameter adaptation rate is uniformly bounded by
[166(t)|| < Bm, Vt A

3.2 Integrated Direct/Indirect ARC Law

With the use of the rate limited projection type adaptation
law structure (5), the parameter estimates and their deriva-
tives are bounded with known bounds, regardless of the es-
timation function T to be used. In the following, this prop-
erty will be used to synthesize an integrated DIARC law for
the system (1) that achieves a guaranteed transient and fi-
nal tracking accuracy in general, independent of the specific
identifier to be used later. Asthe system (1) has unmatched
model uncertainties, backstepping design [8] is used as in
[2]:

Step 1
Let us rewrite the first equation of (1) as

X1 = bixo + @1 (x1,1) "0+ A (X0, 1) (7

where @1 (x1,t) = ¢1(x1,t) and Ag (Xn,t) = Dy (Xn,t). Let

§1(Xl) = &1(x1) and di(t) = di(t). Then |A1()?n,t)| <
01(x1)d1(t). The step 1 is to synthesize a virtual DIARC
control function a1 for x» so that the output tracking error
Z1 = X1 — Xa3q converges to zero or some small values with
aguaranteed transient and final tracking accuracy when the
input mismatch z = X, — a1 is zero. The following virtua
DIARC function is suggested:

01(xq,0,b1,dc1,t) = 0(1a+011s

O1a = O1a1 + 0122, O1a1 = f [ @1 8+%q(V)],

O1s = O1s1 + 01, Q1s1 = *klsl(xlvt)zly Ui = *klsZ(XLEE);)Zl
In (8), 0141 represents the usual model compensation with
the physical parameter estimates 6y (t) updated later using
an indirect parameter estimator as in the IARC design [9],
O1a2 IS @model compensation term similar to the fast dy-
namic compensation type model compensation used in the
DARC designs [2, 11], in which de; can be thought as the
estimate of the low frequency component of the lumped
model uncertainties defined later, o 15 represents the robust
control term with the nonlinear feedback gains kg and kisp
specified in the following.

From (7) and (8), noting zo = X2 — a1, thefirst error equation
is obtained as

71 =12+ byQgs+ b1Oap — b1aan — @] B+ 4y 9
Define aconstant dc; and time varying A; (t) such that

deg +A5(t) = —D101a1 — @] B+ 4 (10)

1
O1a2 = —gldcl

Conceptualy, (10) lumps the disturbances and the model
uncertainties due to physical parameter estimation error to-
gether and divides it into the static component (or low fre-
quency component in reality) d¢; and the high frequency
componentsA; (t), so that the low frequency component dcy
can be compensated through fast adaptation similar to those
in the direct ARC designs[2, 11] asfollows.

Let deivm be any pre-set bound and use this bound to con-
struct thefollowing projection type adaptationlaw for des (t)

dey  =Projg (Ymz) i
A { 0 if  [dea(t)] = dam and dea(t)zy >0
Y121 else
X (11)
with yg1 > 0 and |dc1(0)| < deam. Such an adaptation law
guaranteesthat |dc1(t)| < deim, Vi.

Substituting (10) into (9) and noting (8),

21 = b1z + b1a1s+ b0 + dcl + A5 (t )

12
= b1z +by01e1 + [P101 — Dr0ap — deg + A5 ()] (12)

In the above, due to the use of projection type adaptation
law, all estimation errors are bounded within known bounds.
Assuch, thesameasinthe DARCin[2, 11], it can be shown
that, as long as the nonlinear feedback gain ks is chosen
large enough, the following robust performance condition
can be satisfied

21 [0 — Dy Oap — Doy + A7) < £y + €102 (13)

where €1 and €41 are constant design parameters that can
be thought as the theoretical indexesfor the attenuation level
of model uncertainties as seen later. The theoretical lower
bounds for ki for (13) to be satisfied can be worked out in
the sameway asin[2, 11]. It can be easily verified that the
derivative of vy = 1/2Z is

Vi =b1212, + 21010151 + 21 (D101 — D101ap — o1 +47]  (14)
= bikiaZ + b1z122 + £ + €917 (15)

It isthus obviousthat if z; is bounded, the output tracking
error z; would be bounded. Thus, the next step is to make
sure that z, convergesto zero or some small values.

Step i

The derivation of the remaining design steps follows the
similar procedure as in the first design step Namely,
each step i, a virtual DIARC law a.(x.,e bi, di, t ) is de-
signed in order that x; tracks its desired virtual DIARC
law oti_1(%_1, 8, b. 1,dq (i-1),t) that was synthesized in step
i — 1 with a desired transient performance. The virtua DI-
ARC control function, along with the error equation and an
augmented non-negativefunction with its derivative, are ex-
plicitly givenin the following lemma.

Lemma2 For eachi <n, let z = X — aj_1. Using the no-
tations of ap(t) = x14(t) and bp = 0, one can recursively
define the following terms for step i from the previous steps:
_ i—1

)= 0kt —
=1
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i-1

e A _ o0a;_
Ai(%,B,bi1,t) = Ai(xn,t)—z -
I'=

6X|

I (17)

with A; bounded by

1B (%n,B,B1-1,1) < & (%, 0 (1) (18)
is any smooth function satisfying
ag;lm}}] and

where 8;
5 > [max {éi,max|=1,...,i—1{|
di(t) = maxi—1_i{di(t)}.
Define dg, the static component, and A/, the time-varying

component, of the lumped model compensation error at step
i as

de + 47 (t) = —@ Y 6+ Z bIXI+1—b|a|a_‘L‘|‘A| (19

where Qa1 is the usual model compensation defined be-
low. Choose the following virtual DIARC control function

for xi;1

ai(x_i,éabia&ci ) =dja+0is, Qia = Aja1 + Aja2

Oja1 = ’é [Z:j agglb|x|+1+a“' ! (HTB] 'aszb.d

Qs = Qjs1 + Qi2, Qis1 = —Kis1 (X, 1)z, Qi = —Ko(Xi,t)z
(20)

where dg is the estimate of dg updated by

dei = Projq, (Yaiz) A { SdiZi if ‘:Imsgﬂ deim & deiz >0
- (21)
with ygi > 0 and |dgi(0)| < deim, in which deim is a pre-set
bound for dg(t). In (20), ki1 isa robust gain to be specified
later, and ki is a nonlinear gain large enough so that the
following robust performance conditionis satisfied

0(], 1A 0(], 1

o z6b.

<egtegd?  (22)

z [bidisz — bittiaz —doi + 4 —

where g and €q; are positive constant design parameters
that can be thought as the theoretical indexes for the atten-
uation level of model uncertainties.

Wth the virtual DIARC control function (20), the it" error
equation can be written as

% = biz 11+ bidisy + [bitio — Bidtia — dg + 47 (23)
: -1 90 1 - o
BT T ST N (24)
0 S dy 0dq(i-1)

and the derivative of the augmented non-negative function
1
Vi=Vieit 5% (25)
is given by
i i i
Vi= ) abajs+ z DizZ.41+ z z{boyo b~ dg
1=1 =1

00(| 15 'Foa_gx

001
6 bj de 26
Z obj ' ady 4 }( )

+4] —

Lemma 2 can be proved via direct verifications.

Remark 1 P1 and P3 of Lemma 1 guarantee that the

parameter estimation error 8, and its derivative 8, are
bounded with known bounds. Noting (19) and (21), d.; and
Al are bounded with known functions of states. Thus, as
in[2], there exists a large enough nonlinear feedback gain
ki that is a function of x;j and t only such that the robust
performance condition (22) can be satisfied. Furthermore,
how to choose kisp(Xi, t) to satisfy (22) can be worked out in
the same way asin [2]. Note also that the use of projection
type adaptation law guarantees that b; is non-zero, which
makes the control law (20) free of singularity. A

Step n
Letting Xn+1 = U, then, the step n is exactly the same as the
previous steps but with z,.1 = 0 if we actually choose the
input u as _

U= 0n(Xn, 0, bn,t) 27)

where a, is given by equations (20) with i = n. The fol-
lowing theorem states the theoretic achievable performance
of suchaDIARC law:

Theorem 1 Consider the ARC law (27) with the rate lim-
ited projection type adaptation law (5), in which t could be
any estimation function. If thegainskis,i =1,...,naresuf-
ficiently large such that the following matrix is non-negative

bikis —K1 -3 (bl—l—%) 0
1 Yc . .
vo— | —3(b+32) 8 ' ' >0
0 X bnknsl—Kn
(28)
where Kkj,i = 1,...,n, are some positive numbers, then, in

general, all signalsin the resulting closed loop system are
bounded. In addition, the tracking errors are bounded by

_ — 2¢
IO <e M@+ T [1-e M| (@9)

where A, = 2 (mini—1,__n{ki}) and ey(t) = S, [eqi + eqid?(t)]
Proof of Theorem 1: From (20), 9% =

' 3dy
(21), |9% dc.] < a—yd.|z.| Noting (20), the robust perfor-
mance condition (22) and the fact that z,,;.1 = 0, from (26),

%. Thus, from

ady

) n _ _ n
Vo= 5 F M+ Y (e +ead) (@0
1=1 i=
where the matrix Mg is defined in (28). Thus, when (28) is
satisfied,
Vo < —AWh+e(t) (31)

which leads to (29) by using the Comparison Lemma [13].
Asthe boundednessof 6y, and 8, is guaranteed by P1 and P3
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of Lemma 1 respectively, one can follow the standard back-
stepping proofs to show that al the control functions (20)
and state X, are bounded for any bounded desired trajectory
x14(t) with bounded higher derivatives. Thusall the signals
of the closed-1oop system are bounded, which completesthe
proof of the theorem. &

3.3 Parameter Estimation Algorithm

In the above subsection, a DIARC law which can admit any
estimation function T has been constructed and a guaranteed
transient and final tracking performanceis achieved evenin
the presence of uncertain nonlinearities. Thus, the reminder
of the paper isto construct suitable estimation functionst so
that an improved final tracking accuracy—asymptotic track-
ing or zero final tracking error in the presence of paramet-
ric uncertainties only—can be obtained with an emphasis on
good parameter estimation process aswell. As such, in this
subsection, we assume the system is absence of uncertain
nonlinearities, i.e., let Aj = 0,i = 1,...,n, in (1). For the
same practical reasons asin [9], the origina system model
(2), rather than any transformed tracking error dynamics,
will be used to construct specific estimation functions for
better accuracy of parameter estimates in implementation
as detailed as follows.

Note that, when 4; = 0, the system dynamics (1) can be re-
written as

Xn = fo(%n,U) +F T (Xn, u)8 (32)
wherethe matrix F is defined as
0l X 0
Floau=1] @ (33)
ol 0 u

and the vector of known functions fo € (0" is added for gen-
erality and represents the lumped effect of al known non-
linearities, which is zero for (1). Construct the following
filters:

QT
Qo

AQT +FT
A(Qo+%n) — fo

(34)

where A is an exponentially stable matrix. Lety = X, + Qo.
From (32) and (34),

fo+ FTeb —I—A(Qo—l—)?n) — fo
FT 8, + A(Q0 + %)

y
(35)

Let€ =X, +Qo— Q6. Asin[8], it is easy to verify that
y can be written as

y=Q"6,+& (36)
where € exponentially decaysto zero and is governed by
£= A8 (37)
Now define the estimate of y as
y=0"8, (38)
and define the prediction error as
e=y-y=0QT8—%—Q (39)
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whichis calculable. The resulting prediction error model is
e=Q"8,—¢ (40)

Thus, one has a static model (40) that is linearly param-
eterized in terms of 6, with an additional term £ that ex-
ponentially decays to zero. With this static model, various
estimation a gorithms can be used to identify unknown pa-
rameters, of which the gradient estimation a gorithm and the
least squares estimation algorithm [8] are given below.

3.3.1 Gradient Estimator: With the gradient type
estimation algorithm, the resulting adaptation law is given
by (5), inwhich ' can be chosen as a constant positive di-
agonal matrix, i.e., I' = diag[y1, ..., Yp], and T is defined as

B Qe

LV
where by alowing v = 0, we encompass unnormalized
adaptation function, and ||Q||r represents the Frobenius
norm of Q, given by ||Q||2 =tr{QTQ}, inwhichtr{e} is
the trace operation.

(41)

3.3.2 Least Squares Estimator: When the least
squares type estimation algorithm with co-variance re-
setting [14] and exponential forgetting [15] is used, the re-
sulting adaptation law is given by (5), in which I'(t) is up-
dated by

.
L S
1Hvtr{QTrQ}

wherev > 0 andv = 0 leadsto the unnormalized algorithm,
and T isdefined as

F=ar r(0)>0, F(t")=pol (42)

B Qe
T T 1+wr{QTrQ}

In (42), a istheforgetting factor, t, isthe covariance reset-
ting time, i.e., the time when Apin (I (t)) = p1 wherep; isa
pre-set lower limit for " (t) satisfying 0 < p1 < po. In prac-
tice, the above least square estimator may lead to estimator
windup (i.e., Amax (P(t)) — ) when the regressor is not
persistently exciting. To prevent this estimator windup and
take into account the effect of the rate-limited adaptation
law (5), (42) is modified to

43)

_ Jotel) < Amax(P(1)) < pm and
r=¢ O Towdarart T projy, (1)l < Bu
0 otherwise
(44

where py is the pre-set upper bound for [|P(t)|] with
pm > po. With these practical modifications, p1l < T'(t) <
pml, Vt. To prove that asymptotic output tracking can be
achieved, the following lemmawhich summarizesthe prop-
erties of the estimatorsis needed [9]:

Lemma 3 Whentherate-limited projection type adaptation
law (5) with either the gradient estimator (41) or the least
squares estimator (43) is used with the prediction error cal-
culated from (39), the following results hold:
€ L[0,0)NLe[0,0)

€ L2[0,0)NLe[0,0)

€
O

(45)
(46)
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Theorem 2 In the presence of parametric uncertainties
only, i.e, A =0,i=1,...,n, by using the control law (27)
and the rate limited projection type adaptation law (5) with
either the gradient type estimation function (41) or the least
sguares type estimation function (43), if the following per-
sistent excitation condition is satisfied:

4T
/ QQTdt > kplp, for somekp>0andT >0  (47)
t

then, the physical parameter estimate éb converge to their
true values (i.e., 8, — 0 ast — ), and, in addition to
the robust performance results stated in Theorem 1, an im-
proved final tracking performance—asymptotic tracking—is
also achieved, i.e., zy — Oast — . A

Proof of Theorem 2: When A; = 0, from (17), Ai = 0,Vi.
From Theorem 1 and Lemma 3, it is easy to check that
Zn, %n, B, 0p, W, Q, Bp, Q € L[0, ). From (24) and (39), it
isclear that zn € Le[0,0) and € € L[0, ), which indicates
that z, and € are uniformly continuous. As € € L from
Lemma 3, by Barbaat's Lemma, € —+ 0 ast — . Thus,
from (37) and (40), Q76 — 0, and from (41) and (43),
T 0ast — . From (5), 6, — 0 ast — . Following
the standard technique in adaptive control [12], it is easy to
show that the PE condition (47) guarantees the exponential
convergence of parameter estimates. So 6, — 0 ast —
and 6, € L[0, ).

Noting (19), from (26), it is easy to verify that

Vo < — 51 ik + 5773 3]+ 57 a1 - 5Ty 2dh
30 A € 5Tk — fa Malzl 5T Ja

-3 1zldcl< S KB+ 2G-S zdy

(48)
where
da_ 14 00(| 17
G :*blala D y 6+ Z b] j+1— Fr Z b] (49)
Choose a positive definite function
n
1
Van=Va+ § = d3 50
an = Vn i;2\'di i (50)
From (21) and (48),
) n n R 1 IR
Van < *ZKIZ|2++chI[*ZI+%dci] (51)
1
< fzK.42+z\a|\u (52)

where the last term of (51) is less than zero due to the
property P2 (6) of the projection mapping used (or via di-
rect verification). As {; defined by (49) is linear w.r.t. to
the parameter estimation errors éb and their derivatives éb
with al coefficients being uniformly bounded by Theorem
1, thefact that 8, € L2[0, ) and 6y € L2[0, ) implies that
i € L,[0,). Therefore, from (52), z, € L. As Z, is uni-
formly continuous, by Barbalat’s lemma, z, — 0 ast — oo,
i.e., asymptotic output tracking is achieved, which leads to
Theorem 2. &
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