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Rotational Mechanical Systems

• Variables
• Basic Modeling Elements
• Interconnection Laws
• Derive Equation of Motion 

(EOM)
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Variables

•  : angular displacement [rad]
•  : angular velocity [rad/sec]
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•  : angular acceleration [rad/sec2]
•  : torque [Nm]
• p : power [Nm/sec]

• w : work ( energy ) [Nm] 
1 [Nm] = 1 [J] (Joule)
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Basic Rotational Modeling Elements
• Spring

– Stiffness Element

– Analogous to Translational 
Spring.

– Stores Potential Energy.
– e.g., shafts

• Damper
– Friction Element

– Analogous to Translational 
Damper.

– Dissipate Energy.
– e.g., bearings, bushings, ... 
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• Parallel Axis Theorem

Ex:

Basic Rotational Modeling Elements
• Moment of Inertia

– Inertia Element

– Analogous to Mass in 
Translational Motion.

– Stores Kinetic Energy.
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• Newton’s Second Law

• Newton’s Third Law
– Action & Reaction Torque; equal but 

have opposite signs 

• Angular Displacement Law
– Elements connecting to the same 

location have the same angular 
displacements

Interconnection Laws
d
dt
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Example
Derive a model (EOM) for the 
following system:

FBD: (Use Right-Hand Rule
to determine direction)
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• EOM of a simple Mass-Spring-Damper System

We want to look at the energy distribution of the system.  How should we start ?

• Multiply the above equation by angular velocity term  :   What have we done ?

• Integrate the second equation w.r.t. time: What are we doing now ?

Energy Distribution
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Motion Transfer Elements

Energy Conservation

• Lever
(Motion Transformer Element)

Assume massless and 
no joint friction torque



Motion Transfer Elements
• Ideal Gears
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Ideal case (negligible inertias and damping)

• Rack and Pinion
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Energy Conservation

negligible moment of inertia 
and friction torques
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Example (coupled translation-rotation)
Real world (non-negligible inertias and/or damping)
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Think about performance of lever and gear train in real life
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Example
• Rolling without slipping

FBD:

Elemental Laws:

K

B
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Example (cont.)
Q: How would you decide whether or not 

the disk will slip?
I/O Model (Input: f, Output: x): 

Q: How will the model be different if the 
disk rolls and slips ?
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General Mechanical Systems
• Example

Derive the differential equation of motions (EOMs) for the system in 
terms of the outputs x and θ, and the input u(t).

FBD:
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Example (cont.)
Elemental Equations:

Matrix Form:
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EXAMPLE - INVETED PENDULUM ON A CART
FBD:

Elemental Equations:
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INVETED PENDULUM ON A CART
• Linearization assuming small angle and 0b 

Matrix Form:
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EXAMPLE – CONTINUOUS ROLLING MILL

FBD:

 sf c T x 

b

R

m

Inputs:

Output:

Suppose that the motion of the 
adjustable roller has a damping 
coefficient    , and that the force 
exerted by the rolled material on 
the adjustable roller is proportional 
to the material’s change in 
thickness:                       . Suppose 
further that the rack-and-pinion has 
an effective radius of     and the DC 
motor can be modeled by a torque 
input source of       for this problem.
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Example (cont.)
Elemental Equations:

Input-output Form:


