
ECE 440 – Spring 2019

Stationary and Ergodicity

Summary

A random process X(t) can be understood as a sequence (possibly continuous) of scalar random variables in-
dexed by time. According to this definition, you have a random variable for each value of t, taking scalar values.
X(t1), X(t2), . . . , X(tN ) are just random variables which might be correlated. . . or not.

A random process X(t) can also be understood as a random variable which instead of taking scalar values, takes
function values. Imagine a die with a large (or infinite) number of faces, and a function xi(t) drawn on the i-th
face. An instance of the random process consists of throwing the die and getting a function (for example xi(t)).

I will use capital letters to represent random processes (e.g., X(t)) or random variables (e.g., X(3)). I will use
lower case letters to represent deterministic values or functions (e.g., x1(t)). The joint probability density function for
random variables X(t1), X(t2), . . . will be denoted by fX(t1),X(t2),...,X(tN )(x1, x2, . . . , xN ). Observe that the random
variables are capitalized, but their deterministic values x1, x2, . . . are not.

The expected value of a random variable X is defined as E[X] =
∫∞
−∞ αfX(α)dα and often denoted µX . The

distribution fX(α) will often be restricted to a specific domain, which will set the limits of the integration. The
expected value of a random process X(t) is defined as E[X(t)] =

∫∞
−∞ αfX(t)(α)dα. It will, in general, depend on

time and would be denoted as µX(t). However, see the effect of stationarity below.
The variance of a random variable X is defined as σ2

X = E[(X−µX)2] =
∫∞
−∞(α−µX)2fX(α)dα. If the variable

has zero mean, then the variance can be found as E[X2].
The covariance of two random variables X,Y is defined as µXY = E[(X − µx)(Y − µy)]. After normalizing by

σxσy, it specifies how correlated they are.
The autocorrelation of a random process X(t) at t1 and t2 is defined as E[X(t1)X(t2)].

The time average of a deterministic function x(t) is defined as < x(t) >= limT→∞
1
2T

∫ T

−T
x(t)dt.

• A random processX(t) is strict sense stationary if the joint distribution for random variablesX(t1), X(t2), . . . , X(tN )
is the same as that for X(t1 +∆), X(t2 +∆), . . . , X(tN +∆), for any value of t1, t2, . . . , tN and for any value
of ∆.

In particular, if X(t) is strict sense stationary, then fX(t1)(α) = fX(t1+∆)(α) for any ∆. This implies that
the distribution of the variable X(t1) is the same as that of the variable X(t2) for any t1 and t2. Hence, the
distribution is the same for every time instance. If the distribution is the same, then the mean, the variance,
covariance and any other moment you can think of are also the same.

In particular, the mean and the variance of a strict sense stationary process X(t) are independent of time. All
their time-indexed random variables have the same mean µX and variance σ2

X . If we compute the expected
value of the process E[X(t)], it will not depend on time, and can be denoted as µX . A similar argument can
be followed for variance. Furthermore, the covariance of X(t1) and X(t2) does not depend on the specific time
instants t1 and t2, but only on how far apart they are τ = t2 − t1. The autocorrelation of X(t) at t1 and t2
also does not depend on the time instants but only on the time difference. It is denoted RX(τ).

In this class, when we say that a process is stationary, you may assume that we mean wide sense stationary.

• A random process X(t) is wide sense stationary (WSS) if its mean and variance are time-independent and
its autocorrelation only depends on the time difference. This can be understood as follows: if you take any two
random variables from this process X(t1) and X(t2), they both have the same mean and variance, and their
covariance only depends on the time difference τ .

It is clear that strict sense stationarity implies wide sense stationarity, but not the other way. However, if the
process is Gaussian (i.e., any subset of variables from the process follows a jointly Gaussian distribution), then
strict sense is the same as wide sense.
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• A stationary random process X(t) is ergodic if all the time averages over any specific instance of the process
xi(t) give the same value as the expectations over the possible instances. That is, knowing one instance of the
process gives us all the statistical information about the whole process. Going back to the die example, we
throw the die once, get a function back, and have all we need to characterize the whole process. Time averages
over that function will behave in the same way as expectations over the instances.

In particular, we can find the mean and variance of X(t1) for any t1 by finding the time average µX =< xi(t) >
and < (xi(t)− µX)2 >, respectively. Similarly, we can find how correlated X(t1) and X(t1 + τ) are by looking
at how correlated xi(t) is with xi(t + τ). Specifically, RX(τ) =< x1(t)x1(t + τ) >. In other words, the
autocorrelation of X(t) as a process is the same as the autocorrelation of any specific instance x1(t) as a
deterministic function.

If the process is not stationary, then it cannot be ergodic.

Checking whether a given random process is strict sense stationary or ergodic would require making sure that all
the conditions in the definitions above hold, but this is often tedious in practice. In the exams, I will at most ask
you:

• Check whether a process is WSS: Answer YES if all the following are true: 1) the mean is time-independent,
2) the variance is time-independent, 3) the autocorrelation only depends on time differences.

• Check whether a process is Ergodic: Answer YES if all the following are true: 1) the process is WSS, 2)
E[X(t)] =< xi(t) > for any instance i, 3) E[(X(t) − µX)2] =< (xi(t) − µX)2 > for any instance i, 4)
RX(τ) =< xi(t)xi(t+ τ) > for any instance i.
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