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Abstract !

Many approaches to Bayesian image segmentation have used maximum a posteriori (MAP)
estimation in conjunction with Markov random fields (MRF). While this approach performs well,
it has a number of disadvantages. In particular, exact MAP estimates cannot be computed, ap-
proximate MAP estimates are computationally expensive to compute, and unsupervised parameter
estimation of the MRF is difficult.

In this paper, we propose a new approach to Bayesian image segmentation which directly
addresses these problems. The new method replaces the MRF model with a novel multiscale
random field (MSRF), and replaces the MAP estimator with a sequential MAP (SMAP) estimator
derived from a novel estimation criteria. Together, the proposed estimator and model result in a
segmentation algorithm which is not iterative and can be computed in time proportional to M N
where M is the number of classes and N is the number of pixels. We also develop a computationally
efficient method for unsupervised estimation of model parameters.

Simulations on synthetic images indicate that the new algorithm performs better and requires
much less computation than MAP estimation using simulated annealing. The algorithm is also
found to improve classification accuracy when applied to the segmentation of multispectral remotely
sensed images with ground truth data.
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1 Introduction

Haralick and Shapiro have suggested that a good segmentation of a image should separate the
image into simple regions with homogeneous behavior [1]. In recent years, many authors have used
Bayesian estimation techniques as a framework for computing segmentations which best compromise
between these two opposing objectives [2, 3, 4]. These methods model the shape of segmented
regions in addition to the behavior of pixels in each homogeneous region. The segmentation is then
computed by estimating the best label for each pixel.

A number of estimation techniques and region models have been used for the Bayesian seg-
mentation problem. Typically, the labels of image pixels are modeled as a Markov random field
(MRF) or equivalently Gibbs distributions [5]. These models are used because they only require
the specification of spatially local interactions using a set of local parameters. This is important
since spatially local interactions result in segmentation algorithms which only require local com-
putations. Most often, the image is then segmented by approximately computing the maximum q
posteriori (MAP) estimate of the pixel labels.

These statistical approaches to segmentation provide an important framework, and have im-
proved results in the application of segmentation to natural scenes [6], tomographic cross sections
[7], texture images [2], and multispectral remotely sensed images[8, 9, 10, 11]. However, the ap-
proach has a number of important disadvantages.

Computing the MAP estimate requires the minimization of a discrete functional with many local
minima. Exact minimization is intractable, so methods for approximately minimizing the true MAP
estimate must be used. These methods include simulated annealing [12], greedy minimization [3],
dynamic programming [4], and multiresolution minimization [13, 14, 15, 16]. However, all of these
approaches require approximations in the two dimensional case, and are either iterative or very
computationally expensive.

The MRF model has a limited ability to describe large scale behaviors. For example, we may
know that segmented regions are likely to be at least 50 pixels wide. However, it is difficult

to accurately incorporate this information by specifying the interactions of adjacent pixels. The



model can be improved by using a larger neighborhood for each pixel, but this rapidly increases
the number of parameters of interaction, and the complexity of the segmentation algorithms. The
fundamental limitation of local models is that they do not allow behavior to be directly controlled
at different spatial scales. This is of critical importance since scale variation occurs naturally in
images, and is important in quantifying image behavior [17, 18].

The MAP estimate does not have desirable properties for the segmentation problem [19, 20].
The MAP estimate minimizes the probability that any pixel in the image will be misclassified.
This is an excessively conservative criteria since any segmentation algorithm is likely to result in
some misclassified pixels. In practice, it has been noted that MAP estimation has some undesirable
global properties which may actually make an approximate minimization more desirable [3, 20].
For example, in multiresolution segmentation, MRF correlations parameters were found to increase
at coarser scales [14, 15]. This is counter to the physical intuition that coarser sampling should
produce less correlation.

The maximizer of the posterior marginals (MPM) estimator has been suggested [19] as an al-
ternative to MAP estimation, since it minimizes the probability of classification error. However,
it may only be approximately computed in a computationally expensive procedure similar to sim-
ulated annealing. Also, the MPM criteria does not consider the spatial placement of errors when
distinguishing among the quality of segmentations.

Finally, parameter estimation of MRF’s is difficult. When parameters are above the “critical
temperature” there may be no consistent estimator as the image size grows to infinity[21]. Methods
have been developed to estimate MRF parameters from images being segmented [22], but they are
computationally expensive.

In this paper, we attempt to address these difficulties by introducing a new approach to Bayesian
image segmentation. This method replaces the MRF model with a novel multiscale random field
(MSRF), and replaces the MAP estimator with a sequential MAP (SMAP) estimator derived from
a new estimation criteria. Together, the proposed estimator and model result in a segmentation

algorithm which is not iterative and can be computed in time proportional to M N where M is



the number of classes and N is the number of pixels. We also develop a method for estimating
the parameters of the MSRF model directly from the image during the segmentation process. This
allows images with differing region sizes to be segmented accurately without specific prior knowledge
of their behavior.

The MSRF model we propose is composed of a series of random fields progressing from coarse
to fine scale. Each field is assumed to only depend on the previous coarser field. Therefore, the
series of fields form a Markov chain in scale or resolution. Further, we assume that points in each
field are conditionally independent given their coarser scale neighbors. This leads to a rich model
with computationally tractable properties. In fact, Luettgen, Karl, Willsky and Tenney have shown
in independent work that models similar to the MSRF actually include MRF’s as a subclass [23].

In earlier work, Chou, Willsky, Benveniste, Basseville, Golden, and Nikoukhah [24, 25, 26, 27, 28]
have shown that Markov Chains in scale can be used to model continuously valued Gaussian
processes in one and two dimensions. This work has resulted in fast algorithms for problems such
as optical flow estimation [29]. Estimation for these models is performed using a generalizations of
Kalman filtering [26, 27, 28]. This approach is ideal for Gaussian models since the MAP, conditional
mean, and minimum mean squared estimates coincide, and may be computed using only recursively
computed first and second order statistics. However, since our model requires discrete values to
represent pixel classes, these methods are not applicable.

The MSRF model has a number of advantages over fixed scale MRF’s. The Markov chain
structure facilitates straight forward methods for parameter estimation since it eliminates difficulties
with intractable normalizing constants (partition functions) found in MRF’s. Yet the model does
not impose an unnatural spatial ordering to the pixels since the Markov chain is in scale. Also,
since explicit parameters are available to control both coarse and fine scale behavior, the MSRF
model can more accurately describe image behavior.

The SMAP estimation method results from minimizing the expected size of the largest misclas-
sified region. This is accomplished by assigning progressively larger cost to errors at coarser scale.

Intuitively, the criteria accounts for the fact that an error at coarse scale is more grievous since it



causes the misclassification of many pixels. The SMAP criteria results in a series of optimization
steps going from coarse to fine scale. At each scale, the best segmentation is computed given the
previous coarser segmentation and the observed data. Each maximization step is computationally
simple and noniterative if the region parameters are known. The complete procedure is reminiscent
of pyramidal pixel linking procedures [30, 31], but requires local computations much like those used
in Bayesian networks [32].

If the region parameters are unknown, they may be estimated using an iterative procedure at
each scale. This iterative procedure, based on the expectation maximization (EM) algorithm [33],
is implemented by subsampling the image. Therefore, parameter estimation only increases the
required computation by approximately a factor of two.

Finally, we note the multispectral SMAP segmentation algorithm is available in the Geograph-
ical Resources Analysis Support System (GRASS) Version 4.1 [34]. GRASS is a public domain
geographic information system (GIS).

Section 2 describes the general structure of our segmentation approach, while Section 3 develops
the detailed segmentation formulas. Finally, Section 4 applies the algorithm to both synthetic

images and remotely sensed multispectral images with corresponding ground truth data.

2 Multiscale Segmentation Approach

The random field Y is the image which must be segmented into regions of distinct statistical
behavior. (We use upper case letters to denote random quantities, while lower case letters denote
the corresponding deterministic realizations.) Individual pixels in Y are denoted by Y, where s is
a member of a two dimensional lattice of points S.

The basis of our segmentation approach is a hierarchical or doubly stochastic model as shown in
Fig. 1. This model assumes that the behavior of each observed pixel is dependent on a corresponding
unobserved label pixel in X. Each label specifies one of M possible classes, each with it own
statistical behavior. The dependence of observed pixels on their labels is specified through py‘x(y|x)

the conditional distribution of Y given X. Prior knowledge about the size and shapes of regions



Y - Observed image containing
four distinct textures

X - Unobserved field containing
the class of each pixel

Figure 1: Structure of a doubly stochastic random field used in segmen-
tation. The behavior of the image (e.g. texture, gray scale, color or
multi-spectral values) given the class labels is defined by the conditional
distribution py,(y|z). Prior information is contained in the distribution
of the class labels p(z).

will be modeled by the prior distribution p(x).

Since a variety of features can be used with this approach, it is a general framework for the
segmentation problem. For the texture segmentation problem, a stochastic texture model can be
used for py|,(y|z) [4, 35, 15], or texture feature vectors can be extracted at each pixel [36, 37, 38]
and modeled with a multivariate distribution. However, we will use segmentation of multispectral
remotely sensed images as the target application for our examples. In this case, each pixel, Y, will
be a vector of D spectral components.

In the following sections, we first describe the general structure of a MSRF model for p(z),
and we develop a sequential MAP estimation approach for computing the best segmentation. The

detailed models and recursion formulas resulting from this framework are then derived in Section 3.

2.1 Multiscale Random Field Model

In this section, we develop a multiscale Random Field (MSRF) model which is composed of a series
of random fields at varying scales or resolutions. Fig. 2 depicts the pyramid structure of the MSRF.
At each scale, n, the segmentation or labeling is denoted by the random field X (™, and the set of
lattice points is denoted by S (n) In particular, X(© is assumed to be the finest scale random field

with each point corresponding to a single image pixel. Each label at the next coarser scale, X @,
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Figure 2: Pyramid structure of the MSRF. The random field at each scale
is causally dependent on the coarser scale field above it.
then corresponds to a group of 4 points in the original image. Therefore, the number of points in
S is 1/4 the number of points in S©.
The fundamental assumption of the MSRF model is that the sequence of random fields from
coarse to fine scale form a Markov chain. Therefore, the distribution of X (™ given all coarser scale

(n+1)

fields is only dependent on X+ This is a reasonable assumption since X should contain

all the relevant information from previous coarser scales. Formally, this Markov chain relation may

be state as

PX™ =z x0 = 2015 p) = PXM =M xM+) = zn+1) (1)

= pz(n)‘z(n+1) (.’L‘(n)|x(n+1)) .

Correspondingly, the exclusive dependence of Y on X(©) implies that
P(Y edylX™ n>0) = PY edyXx©®) (2)
= py\x(o) (y‘x(O)) :

The joint distribution of X and Y may then be expressed as the product of these distributions

L—-1
P(Y € dy7 X = 33) = py\z‘(o) (y|3§‘(0)) { H px(")|x("+1) (m(n)|m(n+1))}pz(m (‘/I"(L))
n=0

where L is the coarsest scale in X. This Markov structure in scale has the isotropic behavior
associated with MRF’s; but in addition, the causal dependence in scale results in a noniterative

segmentation algorithm and direct methods of parameter estimation.



2.2 Sequential MAP estimation

In order to segment the image, Y, we must accurately estimate the pixel labels in X. Bayesian
estimation techniques are the natural approach since we have assumed the existence of a prior
distribution, p(z). Generally Bayesian estimators attempt to minimize the average cost of an

erroneous segmentation. This is done by solving the optimization problem
& — argmin E[C(X, )Y =y 9

where C'(X, z) is the cost of estimating the true segmentation, X, by the approximate segmentation,
z. Notice that X is a random quantity whereas x is a deterministic argument. Of course, the
choice of the functional, C'(-,-), is of critical importance since it determines the relative importance
of errors.

In order to understand the deficiencies of the MAP estimate, we will first look at the assumptions

of its derivation. The MAP estimate is the solution to (3) when the cost functional is given by
Cuap(X,z) =1—-96(X —x)

where 0(X — z) is 1 when X = z and 0 otherwise. Since Cprap(X,z) = 1 whenever any pixel is
incorrectly labeled, the MAP estimate maximizes the probability that all pixels will be correctly
labeled. Of course, a segmentation need not be completely accurate at all pixels to be useful. Even
good segmentations will normally have erroneously classified pixels along region boundaries. This
is particularly true in high resolution images where the misclassification of a single pixel is not
significant. Therefore, the MAP estimate can be excessively conservative [19, 20].

The implications of the MAP criteria appear even more inappropriate for the estimation of the
MSRF introduced in the previous sections. The cost function used for MAP estimation of a MSRF

is

Cyap(X,z) = 1-90(X —x)

L
= 1- H S(X™) — g™y

n=0



This cost function is 1 if a labeling error occurs at any scale, n, of the segmentation. Conse-
quently, this function assigns equal cost to a single mislabeled pixel at n = 0 or the mislabeling of
approximately 256 pixels at n = 4. This cost assignment is clearly undesirable.

Ideally, a desirable cost function should assign progressively greater cost to segmentations with
larger regions of misclassified pixels. To achieve this goal, we propose the following alternative cost
function

L
Csmap(X,z) = 2"10 (X, z)

[\.’)I)—l

where

Cn(X,z)=1- H o(X™ — m(l
The behavior of Csarap is solely a function of the coarsest scale, K, that contains a misclassified
pixel. More precisely, let K be the unique scale such that X&) £ z(K) but X = 2 for all
i > K. Then the functions C,, are given by

1 ifn<K
C"(X’x)_{ 0 ifn>K

and the total cost is given by Csayrap(X,z) = 2K . This error at scale K will generally lead to
the misclassification of a group of pixels at the finest scale. The width of this misclassified group
of pixels will be approximately 2% = Cgarap(X, ). Therefore, the SMAP cost function has the

following intuitive interpretation.
Csamap(X,x) ~ width of the largest grouping of misclassified pixels

We can determine the estimator which minimizes this proposed cost by evaluating (3).

>
Il

argm:gnE [Csmap(X,x)|Y =y

L
= argmin Z gt {1 —P(X® =204 >nly = y)}
n=0
L . .
= argmax Z P(X0) =20 > p|y =y)
n=0

Since the random fields, X (™, form a Markov Chain, we will compute this estimate recursively

in the scale parameter n. This is done by assuming that @ has been computed for ¢ > n, and



using this result to compute ("), In Appendix A, we show that this recursive approach yields the

following expression for the solution.
7(n) — arg max {log Dy(n) ‘x(nﬂ),y(x(") ‘;i-(n-i—l)’ y) + S(x(n))}
x n
where £ is a second order term which may be bounded by

0 < E(@™) < max py;-ypm , (@ VEM,y) << 1.

x(nfl)

Table 1 gives computed upper bounds for £ as a function of scale. (Details of the computation
are given in the Section 4). For our problem, the approximation that £ << 1 is very good. To
see this, notice that (™Y is an interpolation of the coarser segmentation, ON given the image,
y. Normally, there will be many pixels in the interpolation ("1 for which the correct labeling is
uncertain. This is particularly true around the boundaries of objects. Since the number of unique
labeling combinations for these pixels is enormous, the probability of any particular combination

will be small. In fact for the models we will use, this probability goes to 0 as the number of pixels,

N, increases. Therefore,

lim E(z™)=0.

N—oo
At very coarse scales, the number of labels becomes small, and often only one reasonable
interpolation will exist (i.e. £ &~ 1). However, in this case the correct labeling of pixels at the coarser
scale, n, must also be unambiguous, and any reasonable estimator should have good performance.

Ignoring the contribution of £ results in the following recursive equations.

z = arg maxlogpx(L)‘y(az(L”y)
(L)

n+1)

= argm(agdogpx(n)\x(n+1>,y(:v(”)Iﬁf( 'Y)
xTL

The recursion is initialized by determining the MAP estimate of the coarsest scale field given the
observed data. The segmentation at each finer scale is then found by computing the MAP estimate
of X given #("*1) and the image, y. Due to this structure, we refer to this estimator as a

sequential MAP (SMAP) estimator.
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Scale | Pixel Size Bound on &£

image 1 | image 2 | image 3
1x1 0 0 0
2% 9 10—1114.22 10—1642.87 10—1073.88
4% 4 10—272.98 10—501.67 10—283.79
8 x 8 10—61.82 10—136.86 10—75.61

16 x 16 10—7.96 10—19.13 10—12.04
32 x 32 10—1.16 10—3,13 10—2.53
64x64 | 1017 | 10795 | 10° 11
128 x 128 | 10901 107000 1 10704
256 x 256 | 107°%° | 10799 | 10-0%

DN DO [ WO

Table 1: Upper bound of error term £ as a function of scale for three
512 x 512 images. At moderate and fine resolutions, the correct segmen-
tation is uncertain and &£ very small.

By using Bayes rule, the Markov properties of X, and assuming that X&) is uniformly dis-

tributed, the SMAP recursion may be rewritten in a form which is more easily computed.

it = argmaxlogpy,m (y]z) (4)
xn

" = argmax {10gp o0 (y]2™) +10g pymjpeen (@[3 D) | (5)

The two terms in (5) play roles analogous to those of the likelihood function and prior distribution
in conventional Bayesian estimation. The first term of the maximization, gives the likelihood of
the observed data y given the labeling at scale n. The second term of the maximization embodies
the a priori information about the behavior of X. Therefore, this term biases the solution to favor
segmentations with large regions and smooth boundaries.

The SMAP estimator has a number of additional advantages. In the next section, we will
introduce specific models so that each optimization step of (5) may be computed with a single
noniterative pass. This is in contrast to the MAP and MPM estimators which require computa-
tionally expensive iterative optimization methods [12, 3, 19]. Further, the SMAP estimator has a
subtle advantage over MPM. The MPM method chooses each pixel individually to minimize the
probability of error. However, it does not consider the spatial placement of errors. Since the SMAP
method attempts to minimize the spatial size of errors, it will tend to generate a subjectively more

desirable segmentation.
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3 Segmentation algorithm

In this section, we define the specific models we will use for Y and X. This will be done by specifying
the conditional density Py|2(0) (y|x(0)), together with the coarse to fine scale transition densities
D) g(nt1) (x(”)\x("ﬂ)). We then develop an adaptive segmentation algorithm which estimates the
parameters of the MSRF during the segmentation process.

For the multispectral segmentation problem, we restrict ourselves to models with observed
pixels that are conditionally independent given their class labels. This implies that the spatial
texture of regions will not be used as a discriminating feature. Instead, we shall rely on the
multispectral characteristics of classes to discriminate distinct regions. This approach is supported
by the fact that spatial correlation has been found to be weak within regions of multispectral
images corresponding to a single ground cover [39, 40]. Using this assumption, the conditional
density function for the image has the form

s€S5(0)

where Py a® (+|k) is the conditional density function for an individual pixel given the class label k.
Since each pixel is composed of D multispectral components, pys|z§°)("k) is a multivariate density
function. We will use a multivariate Gaussian mixture density in numerical experiments, but other
distributions can just as well be applied.

More generally, the methods used throughout this paper are applicable to any model which can
be expressed in the form

log pyp0 Wlz®) = > L(ylal®) +c(y) -
s€5(0)

where the functions s depend on all of y, and c is an arbitrary function of y. This type of model
has been used extensively in texture segmentation applications [4, 41, 35, 15].
We will restrict our choice of models for X to have two important properties. First, the pixels in

(n)

nt+1) Second, each pixel X" will only

X () will be conditionally independent given the pixels in X

be dependent on a local neighborhood of pixels at the next coarser scale. This set of neighboring

12



locations to s will be denoted by ds. Based on these properties, the transition distribution from
coarse to fine scale must have the form

+1
px(n)\x(nﬂ)(( (n+1 H p (n+1 |x(n ))
s€S(n)

(n)

where p RO is the probability density for xs ’ given its neighbors at the coarser scale, x(n+1).

These two assumptions assure that the pixels in 2(™) will be conditionally independent given
the pixels in (™). However, we note that nearby pixels in (™ may still be highly dependent
since they will share coarser scale neighbors.

The choice of neighborhood ds for the pixel s is important since it will define the structure
of our multiscale pyramid. We will employ two types of neighborhoods. The first corresponds
to a quadtree structure and allows simple and exact calculation of the SMAP segmentation. The
second neighborhood corresponds to a more general graph structure and can account for more
complex interactions that occur across blocks of the quadtree. Therefore, this model produces
smoother, less blocky segmentations. Unfortunately, the graph structured pyramid does not allow

exact calculation of the SMAP estimator. Therefore, a hybrid model, which incorporates both the

quadtree and graph structure, is used to approximate the exact SMAP estimate.

3.1 Quadtree Model

The first pyramid structure that we consider is based on a conventional quadtree. The structure of
the quadtree is shown in Fig. 3a, and the one dimensional analog is shown in Fig. 3b. Since this is
a tree structure, each point in the pyramid is only dependent on a single point at the coarser scale.
This coarser scale neighbor of a point s is called the father of s and will be denoted by the function
d(s). In a similar vein, the n!® successive father of a point will be denoted d”(s), and d~"(s) will
be the set of all points which occur n levels down from s in the tree structure.

(n)

We choose the following transition function to model the probability that Xs’ has class m

given that its father is of class k.

1—-06,0
Py g0 (MIK) = O 00m e + ——=
s ds

13



(a) (b)

Figure 3: a) Quadtree structure used for MSRF model. b) One dimen-

sional analog to quadtree structure.
where 6,y is the unit sample function and M is the number of possible classes. The parameter
0 € [0, 1] is the probability that the labeling will remain the same from scale n+1 to n. If a class
change does occur, it is equally likely to be any one of the remaining class types. At fine resolutions,
the neighboring pixels are more likely to have the same class. Therefore, 6,, o will generally be an
increasing function of resolution (decreasing function of n). Notice that this distribution only
depends on the the scale n through 6, ¢ but does not depend on the particular pixel s.

An important property of the quadtree structure is that the conditional distribution of Y given

X (™) has a product form that may be computed using a simple fine-to-coarse recursion. Let yén)
to be the set of leaves of the quadtree which are on the branch starting at s € S, Specifically,

" — {y, : d"(r) = s}. In appendix B, we show that the conditional density for ¥ given X(™ has

the product form

Pz Wle™) = ] » a0 (Y yMa) (7)
s€S(n)

) may be computed using the following recursion where

|z

Furthermore, the density functions p,m

M is the number of class labels.

Py i (V| R) = H Zp<n>| o (G [m M) Py oot (1K) (8)

Y
red—1(

In practice, dynamic range considerations mandate that the logarithm of these functions be com-

14



puted and stored. Therefore, we define the log likelihood function

n A n
1§ (k) = logp, ), (™ |k).

where the dependence on y is suppressed for clarity. Substituting the transition distribution of (6)

into (8) and converting to log likelihood functions yields the new recursion

1Ok) = logp, o (yslk)

M
TR 1og{0n,oeXp{lf~")(k)}+1_—]\?’() 3 exp{lfnn)(m)}} : 9)
m=1

red=1(s)

To perform the SMAP segmentation, we must compute these log likelihood functions at every
point in the quadtree. The number of points in the pyramid is approximately given by % where N
is the number of pixels at the finest scale. Since each of the log likelihood functions may be stored in
the form of M numbers, the total required storage is approximately (4M N)/3. Because the second
sum of (9) is not a function of k, each log likelihood function can be computed in time proportional
to M. Therefore, the total computation time for evaluating the log likelihood functions is O(MN).

We note that in the limiting case of 6, o(k) = 1 the recursion reduces to simple averaging.

k) = Y 1 (k)
red=1(s)

This is equivalent to assuming that all the pixels in the block of pixels, yﬁ"“), must have the same
label. Of course, this is often not the case since some of pixel blocks are likely to fall on region
boundaries. These blocks then have a mixture of pixels from the two regions. Therefore, simple
averaging can cause pixels on region boundaries to be misclassified. This is particularly true if
the statistical average of the two regions appears to have characteristics of a third class. Another
advantage of the more accurate recursion, (9), is that a small group of anomalous pixels will not
adversely effect the classification of a large region. Simple linear averaging of the log likelihood
function tends to be easily biased by a few pixels that are statistical outliers, whereas the more
accurate recursion is robust to such errors.

Once the likelihood functions are computed, the SMAP segmentation may be efficiently com-

15



puted using (5).
. A(n+1
(™ = arg max {lgn) (™) + logngn)li(anﬂ) (z(™ xé’? ))}
This expression is easily evaluated by minimizing with respect to each pixel individually

» . ~(n+1
2 — arg max_ {zg ) (k) +logp:0gsn>@g+1>(k|xés ))} : (10)

This coarse-to-fine segmentation operation requires order O(MN) computation time. Therefore,
the complete segmentation process consists of a fine-to-coarse and a coarse-to-fine operation, each
of which require O(M N) computation.

While the quadtree model results in an exact expression for computing the SMAP segmenta-
tion, it does not completely capture some aspects of image behavior. In the following section, we

introduce an augmented model which improves on the quadtree.

3.2 Pyramidal Graph Model

An important disadvantage of the quadtree model is that pixels which are spatially adjacent may
not have common neighbors at the next coarser scale. Therefore, the model does not enforce
continuity of region boundaries when they pass across branches of the quadtree. For example, if
the image is broken into four quadrants at the second level of the quadtree, then a region boundary
will not be constrained to be smooth as it passes from one of these quadrants to the next.

This weakness may be corrected by increasing the number of coarse scale neighbors for each
pixel. Such a pyramidal graph structure is shown in Fig. 4a, and an analogous one dimensional
graph is shown in Fig. 4b. Notice that each point has three neighbors at the next coarser scale.

In order to express the positions of these neighbors, we explicitly denote a pixel at scale n as
s = (i,7) where i and j are the row and column indices starting at 0 and ranging through the width
minus one, and the height minus one respectively. The three neighbors at scale n + 1 may then be
computed using the function odd(i) = 1 if 7 is odd and —1 if ¢ is even, and the greatest smaller

integer function |[-].



Figure 4: a) Augmented pyramidal graph structure used for MSRF model.
b) One dimensional analog of pyramidal graph structure.

([4/2],13/2]) + (odd(i), 0)

s3 = ([i/2],15/2]) + (0, 0dd(j))

52

The transition function which we choose for this pyramid graph is a natural extension of the

transition function used for the quadtree based model.

ﬁxgn)\xg:"l) (m|l,], k) (11)

= PX{ =m| X[ =i, X(H = X0 = k)

o Hn,l 1-— Hn,l
= = (30m,i + 20m,j + 20m k) + 7

Notice that we use the notation p to distinguish from the transition distribution used for the
quadtree model. As with the quadtree model, the parameter 6,, 1 € [0, 1] determines the probability
that the label of the fine scale point will be the same as one of the coarser scale points. Conversely,
1 — 6,1 is the probability that a new label will be randomly chosen from the available labels.

The disadvantage of the pyramid graph structure is that the likelihood function for the labels
does not have a product form as was the case for the quadtree in (7). Therefore, there is no simple
fine-to-coarse recursion with the form of (8) for computing the likelihood of the image, y, given the
labels, (™).

For computations at a single scale, n, this problem may be circumvented by assuming that the

17



A T

“ &)

4

n=2 &

4,

gquadtree ¢ ® @ &

“ ) “ » “ Q)

Figure 5: One dimensional analog to hybrid graph structure. Scales n > 2
use a pyramidal graph structure, and scales n < 2 use a quadtree structure.

pyramid has a quadtree structure for scales finer than n, and a graph structure for coarser scales.
A one dimensional analog to this hybrid pyramid structure is shown in Fig. 5 for n = 2. Notice
that for levels above n the pyramid is a graph, but below n the pyramid has a simple tree structure.
Using this hybrid pyramid, the conditional likelihood of (5) then has the computable form
10g pyy . (m) znt1) (Y 2™+ Z 1 )+ logp "0 n+1)( (n |a:(n+1))
ses(n)

which results in the following formula for the SMAP estimate of X (%)

H(L) — (L)
Ty arglg}ﬁa%wl (k) (12)
M = arg |max {lg")(k) + log p 20 D) (k\x (1) )} . (13)

where p is the transition function of (11), and lén)(k) are computed using the recursion of (9).

Of course, the application of the above formula at all scales is an approximation to the true
SMAP segmentation since we may not legitimately change our model during the segmentation
process. However, we believe that this approximation is reasonable since the likelihood functions
are primarily dependent on the image data and have only a secondary dependence on the pyramid
structure. Intuitively, if the pixels in ygn) appear to be principally from class k, then the likelihood
function l§”) (k) should be relatively large regardless of the pyramid structure used.

All the following analysis and experimentation will assume the use of this hybrid quadtree-graph

structure. As in the case of the quadtree, segmentation using the hybrid structure is performed
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in two steps each of which only requires order M N computation. The first step is a fine-to-coarse
computation given by (9). The second step is a coarse-to-fine computation given by (13). Together

the total computation is of order O(MN).

3.3 Parameter Estimation

In typical applications, one does not have prior information about the exact behavior of the seg-
mentation X. However, it is possible to determine this information directly from the image as
it is being segmented. To do this, we must estimate the parameters 6, = [0,0,6,1] during the
segmentation process.

The parameters 6, ¢ are required for fine-to-coarse operations used in computing the log likeli-
hood functions, and the parameters 6,, ; are required for coarse-to-fine operations used in the SMAP
segmentation. However, we will estimate both of these parameter vectors during the coarse-to-fine
operations. This means that the segmentation process will require two full passes composed of the

following steps.
1. Perform fine-to-coarse operations using initial parameter values 60, o = 1.
2. Estimate parameters 0, ¢ and 0,, 1 during coarse-to-fine operations.
3. Perform fine-to-coarse operations using estimated parameters.
4. Reestimate parameters 0, 1 during final coarse-to-fine segmentation.

The estimation procedure of 2 and 4 above is performed sequentially at each scale. Each transi-
tion parameter vector, #,, is estimated concurrently with the computation of the segmentation ),
The computational overhead of this estimation procedure is greatly reduced by subsampling the
image at high resolutions. Since the number of pixels at high resolutions is great, this subsampling
does not substantially impact on the accuracy of the estimated parameters.

The two pass process implies that parameter estimation will increase computation by at least a
factor of 2. However, the additional computation required within each iteration is minimal due to

subsampling. So the total increase in computation for parameter estimation is generally close to 2.
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We begin by deriving the sequential parameter estimation procedure. The transition parameter
0,1 is estimated by finding the maximum likelihood value given the image, y, and the previous

coarse scale segmentation, g t1), Formally, we compute the solution to the optimization criteria
2 ~(n+1)
On,1 € arg erfixgpy|x<n+1>(ylm s 0n1)

where () is the set of valid parameter values. Using the hybrid pyramid structure of section 3.2,

the log likelihood function, L, has the specific form

L(On1) = log py | n+1)(y|§3(n+1) On,1)
- Z log (Z exp(l n )b (()n)|zg’5+1)(k|3§<(92+1)’071,1))
seS(m)

where the dependence of p on n is through the parameter 6, ;. Notice that p uses the subscript

|33gé+1) to emphasize that the conditional distribution assumed in (11) does not depend on s.
This likelihood, L(#,,1), may be maximized as a function of 6,1 by using the expectation-

maximization (EM) algorithm [33, 42]. From the form of the function p, we know that L(6, 1) is

a convex function of 6, 1. We will use this fact to show that the EM algorithm is guaranteed to

converge to a value of ¢, 1 which maximizes L.

To apply the EM algorithm, we must first compute the function

Q(‘gn,la 0;171) =F {IOg (py\a:(n) (y|X(n))pw(n)\x(n+1) (X(n)|jj(n+l)v 9n,1)> |Y =Y, X(n+1) = i‘(n—‘rl)’ 0;17l:|

where we remind the reader that X (™) is a random object. The EM algorithm is then the following

iterative procedure for finding a sequence of parameters which converge to én,l.

Gp € arg max, Q(0n,1,05 1) -

To further simplify this expression we must formulate a sufficient statistic for the transition dis-

tribution ﬁz(n)‘z(n-‘—l) (mli, j, k,6p1) of (11). This statistic counts the number of distinct transitions
0 a0

(n+1) (n)

that occur from a particular set of coarse scale neighbors, z,," "/, to a point x5 . Specifically, we
may define the sufficient statistic, 7', so that
12
Log B, ori) (mlis .k, On1) = 3 D Tun(mlis 5 k) Vi (0n,1) (14)

=0 h=0
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where T and V have the functional forms

1 if 6 =1and 0+ i =h
0 otherwise

,Tl,h(mﬁ?ja k) = {

and

0, 1-6,
Vin(61) = log (T’l(gz Lom)+ Tl) |

By substituting (14) into the expression for for ), we obtain the simpler expression

1 2
c9p € arg Jnax Z Z Th(08 1) Vin(On1) (15)
1€ 120 ho 7

where

Tip(0n1) = Z E [Tl h(X(” |$(n+1 Y = y,X("H) = j;(n+1)’9n,1} (16)
se8n)

Sy Tkl ) exp(8”) () B0 o (K25, 601)

scstn Sy x5 (k) B0 oo (Rl 00)

Evaluation of Tah is computationally expensive since it requires a summation over all the points
in S, However, accurate estimation of 6, only requires a representative sampling of the image
data. This is particularly true at high resolutions where the number of pixels far exceeds the number
required to accurately estimate these parameters. Therefore, we subsample the points in S at
period P(™ in both the horizontal and vertical directions, and we choose P V2" so that we
will still have an increasing number of samples at finer scales. Experimental results given in the
following section will show that subsampling substantially reduces computation without adversely
effecting the performance of parameter estimation.

The two steps of each iteration in the EM algorithm are then

E - Compute T using the parameter 67 ;, sampling period P™ and (16).

n,1’
M - Compute 02751 € argmaxy, ,cq Q(0n,1,0; ;) using (15).
The M step can be efficiently computed since it requires the maximization of a convex function Q

over an interval. This may be done with, for example, the golden section search method [43]. The

question remains as to whether the algorithm converges to the global maximum of L. To answer
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this question, we adapt the convergence results of Wu [44], and Redner and Walker [45] to prove

the following theorem in Appendix C.

Theorem 1 Ifi) Q) is a compact, convez set, ii) L(0) and Q(0,6’) are continuous and differentiable
on an open set containing 2, i) L(0) is convex, then any limit point, 0, of the sequence {6P}5° has
the property that

0 € arg max L(0)

Notice that assumption ii) does not strictly hold since ) becomes infinite at the points 0 and
1. In practice, this problem can be resolved by estimating 6, 1 over some smaller interval Q =
[0+ €1,1 — €1]. In any case, the introduction of €; is required for numerical stability.
Finally, the parameters 6, o are estimated using the statistics 7' resulting from convergence of
the EM algorithm.
5 oo Tin

O = —2=h=0"Lh (17)
Ym0 Xh—oTin

These values are then used in the second pass of fine-to-coarse computations.

The complete SMAP segmentation algorithm with parameter estimation is summarized below.

1. Set the initial parameter values for all n, én,O =1, and 6’AL_171 =0.5.

[\]

. Compute the likelihood functions using (9) and the parameters 9,1,0.

w

. Compute ) using (12).
4. Forscalesn=L—-1ton=0

(a) Use the EM algorithm to iteratively compute éml and T. Subsample by P(™ when

p+1
n,1

computing T', and stop when |6 0271| < €.
(b) Compute 6, using (17).
(c) Compute z(™ using (13).

(d) Set én—l,l = én,l(l — 1062)

5. Repeat steps 2 through 4.
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Since global convergence of the EM algorithm is guaranteed, the choice of €¢; and ez only
impacts on the accuracy of convergence. We have used the values € = 1076 and e; = 107 in all
our experimentation, and have never found them to be problematic. Generally, smaller values of
ea = 107* will lead to better estimates but slower convergence, and we have found that €; << es.
We also note that step 4d is used to accelerate convergence of the EM algorithm by starting the

new parameter values near the previous parameter values.

4 Experimental Results

In this section, we compare the performance of the SMAP algorithm with MAP segmentation using
a MRF prior model for the pixel classes. This is done using a variety of synthetic images.

All results of the SMAP algorithm used unsupervised estimation of the MSRF parameters.
Unless otherwise stated, subsampling was used in all experiments, and the subsampling period was

always chosen using the formula
P(n) = max{[2(F-"=3)/2| 1} .

This generally resulted in sufficient sampling to accurately estimate parameters while keeping the
computational overhead of parameter estimation to a minimum.
For our comparison to MAP estimation, we choose a conventional 8pt neighborhood MRF

model [15] for the class labels X. Specifically, the probability distribution has the form
1
pz(x) = ~exXp {—A (\/5 - 1) (tl(x) + tg(x)/\/i)}

where A = 1.5, t1 is the number of horizontal and vertical neighbors of different class, and t5 is the
number of diagonal neighbors of different class. This appeared to yield the best overall results.
Since the MAP estimate can not be exactly computed, an optimization method must also be
chosen. We used simulated annealing (SA) [12], ICM [3]|, and multiple resolution segmentation
(MRS) [15]. The ICM and SA methods were started with the maximum likelihood estimate of the

segmentation. SA used a temperature schedule of the form

1 1
= — +A.
Tn+1 Tn
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Class designation

0 1 2 3 4 )

image 1 | p | 127.0 | 145.0 | 101.6 | 163.0 | 76.1 | 199.0
o| 32 32 32 32 32 32

image 2 | p | 127.0 | 137.1 | 112.7 | 147.2 | 98.4 | 167.5
o| 32 32 32 32 32 32

image 3 | p | 127 127 127 127 127 127
o | 800 | 10.55 | 13.93 | 18.37 | 24.25 32

Table 2: Mean and standard deviation of each texture for three different

images.
where Ty = 1, Tfipna = .2666 and A was chosen to achieve the desired number of iterations.
We used both 100 and 500 iterations to compare the performance. After the desired number of
iterations, ICM was used (equivalently 7' = 0) to assure convergence to a local minima. These
annealing parameters were chosen since they seemed to give the best performance over the range
of test images used. In practice, the choice of annealing parameters must be a compromise since
the optimal parameters depend on the specific image being process.

The MRS algorithm differs from ICM and SA since it effectly uses different values of A at each
scale. The scale dependent X is used because the MAP estimate would otherwise have unreasonable
behavior at coarse scales[15]. Intuitively, the MRS algorithm attempts to approximately correct
the undesirable properties of the MAP estimator by varying the prior model.

Three 512 x 512 synthetic images shown in Fig. 6 were used to test the SMAP and MAP
algorithms. Each contained 6 white Gaussian textures with distinct means and variances as shown
in Table 2. In each case, the background is class 0, and the circles are numbered in order starting
from the top. The radius of each subsequent row of circles was chosen to decrease by a factor of 2.

Fig. 7, 8, and 9 show the result of segmenting the three test images using the SMAP and MAP
algorithms. The percentage of misclassified pixels is tabulated for each class in Table 3, and the
computational requirements are shown in Table 4. For comparison, each table also lists the results
of SMAP segmentation without pixel subsampling, and the results of the MRS algorithm. For
these test images the performance of SMAP with and without subsampling was not significantly

different. However, subsampling reduced computation by approximately a factor of 3. Table 5 gives
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the specific values of the estimated parameters at each scale. It also supports the conclusion that
subsampling does not significantly degrade the accuracy of the estimates.

Inspection of the segmented test images indicates that the SMAP segmentation performed com-
parably to or substantially better than 500 iterations of SA. The SMAP algorithm appears to make
fewer large misclassification errors. This may be due to the improved objective of minimizing the
largest misclassification. We also note that the less smooth boundaries of the SMAP segmentation
sometimes resulted in slightly higher misclassification rates for the smooth shapes in these synthetic
images. However, the less smooth boundaries may actually be more desirable for segmenting the
natural shapes of real images. Generally, the SMAP segmentation required less computation than
even the worst performing algorithm, ICM, and much less computation than SA.

Inspection of Fig 7 indicates that, for the parameter value of A = 1.5, the MAP segmentations
tend to produce smoother boundaries than the SMAP algorithm. Since the circular regions of this
synthetic image have very smooth boundaries, this results in slightly better classification accuracy
for the 500 iteration MAP segmentation. However, the 100 iteration MAP segmentation has still
not completely converged. Notice that along boundaries groupings of pixels form which are mis-
classified into a third class representing the average behavior of the two classes. Also, scattered
misclassification of individual pixels in the MAP segmentations result from the inability to control
small scale behavior independently of large scale behavior. The ICM algorithm performed very
poorly.

Fig 8 shows that for image 2 the overall performance of the SMAP algorithm is substantially
better than 500 iterations of SA for all classes but 4. As before, false average classes formed at
region boundaries for the MAP segmentation. For this image, both the 100 iterations of SA, and
ICM failed to properly segment the image.

Fig 9 is distinct because the mean of each region is equal, and classes are only distinguished
by their variance or texture. In this example, the SMAP algorithm produces better results than
the alternative methods. The largest regions are completely absent in the 500 iterations of SA.

This may be due to the suboptimal solution of SA, or the nature of MAP criteria. Also, the 100

25



Class label Class Average
0 1 2 3 4 5
image 1 | SMAP (subsampling) | 100% | 95% | 96% | 94% | 93% | 78% 92.6%
SMAP (no subsampling) | 100% | 95% | 96% | 94% | 93% | 78% 92.6%
SA 500 100% | 97% | 97% | 96% | 95% | 96% 96.8%
SA 100 99% | 93% | 96% | 95% | 95% | 96% 95.7%
ICM 60% | 31% | 62% | 74% | 94% | 96% 69.5%
MRS 100% | 96% | 96% | 95% | 92% | 95% 95.7%
image 2 | SMAP (subsampling) 99% | 94% | 93% | 86% | 53% | 70% 82.5%
SMAP (no subsampling) | 99% | 94% | 93% | 87% | 60% | 67% 83.3%
SA 500 100% | 81% | 44% | 59% | 69% | 74% 71.2%
SA 100 4% | 57% | 10% | 32% | 74% | 7% 54.0%
ICM 23% | 12% | 6% | 14% | 97% | 96% 41.3%
MRS 99% | 93% | 92% | 74% | 63% | 72% 82.2%
image 3 SMAP (subsampling) 100% | 95% | 95% | 92% | 61% | 58% 83.5%
SMAP (no subsampling) | 100% | 94% | 95% | 91% | 60% | 60% 83.3%
SA 500 100% | 0% | 94% | 92% | 18% | 75% 63.1%
SA 100 100% | 0% | 40% | 49% | 52% | 62% 50.5%
ICM 100% | 0% 1% | 14% | 14% | 62% 31.8%
MRS 100% | 95% | 96% | 80% | 52% | 57% 80.0%

Table 3: Percentage of each class label which was correctly classified, and
class averages of classification accuracy.

iterations of SA have not converged.

Table 4 shows the number of replacement operations required per image pixel for each method.
For the SMAP algorithm, replacement operations include either of the following two basic opera-
tions: evaluation of a pixel’s class using (13), or evaluation of the expectation term in (16) at a

single pixel. All of these replacement operations are comparable since they each require order M

operations.
Replacements per pixel
SMAP (sub-
SMAP = (no | o pled estic | SMAP (101 54 500 | SA 100 | ICM | MRS
estimation) . subsampling)
mation)
imagel 1.33 3.13 9.12 504 105 28 | 10.81
image2 1.33 3.55 10.47 506 108 28 | 10.81
image3 1.33 3.14 8.15 505 104 10 8.89

Table 4: Number of replacement operations required per image pixel for
the three synthetic test images. The SMAP algorithm is listed with and

without parameter estimation.
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Estimated Parameters 0-3
(60,0, 60,1) (01,0,01,1) (02,0,62,1) (65,0,03,1)
image 1 | Subsampling | ( 0.9872,0.9981) | ( 0.9815,0.9990) | ( 0.9718,0.9953) | { 0.9607,1.0000)
No Subsampling | ( 0.9876,0.9980) | ( 0.9833,0.9989) | ( 0.9723,0.9974) | ( 0.9533,0.9952)
image 2 Subsampling ( 0.9835,0.9945) | ( 0.9749,0.9954) | ( 0.9677,0.9932) | ( 0.9523,1.0000)
No Subsampling | ( 0.9851,0.9961) | ( 0.9784,0.9971) | ( 0.9688,0.9963) | ( 0.9531,0.9936)
image 3 Subsampling ( 0.9866,0.9989) | ( 0.9769,0.9998) | ( 0.9629,0.9963) | ( 0.9175,1.0000)
No Subsampling | ( 0.9860,0.9989) | ( 0.9773,0.9998) | ( 0.9594,0.9979) | ( 0.9197,0.9947)
Estimated Parameters 4-7
(01,0,04,1) (05,0,05,1) (06,0, 06,1) (07,0,07.1)
image 1 Subsampling (10.9124,0.9899) | ( 0.9132,0.9714) | ( 0.9444,0.9326) | ( 1.0000,1.0000
No Subsampling | ( 0.0124,0.9900) | ( 0.9132,0.9712) | ( 0.9444,0.9325) | ( 1.0000,1.0000
image 2 | Subsampling | ( 0.9126,0.9852) | ( 0.9004,0.9745) | ( 0.9444,0.9328) | ( 1.0000,1.0000
No Subsampling | ( 0.9126,0.9852) | ( 0.9004,0.9745) | ( 0.9444,0.9329) | ( 1.0000,1.0000
image 3 Subsampling (10.7728,0.9823) | ( 0.7214,0.9804) | ( 0.6401,0.9329) | ( 0.2500,1.0000
No Subsampling | ( 0.7728,0.0823) | ( 0.7214,0.9804) | ( 0.6401,0.9329) | ( 0.2500,1.0000

Table 5: Effect of subsampling on parameter estimation.

For each test image, the SMAP algorithm with parameter estimation (and subsampling) re-
quired considerably less computation than ICM and much less than SA. The addition of parameter
estimation to the SMAP algorithm increased the computation by approximately a factor of 2. Im-
age 3 is the worst case with an increase of 2.66. We note that this measure of computation does
not include the calculation of likelihood functions.

In order to test accuracy with real data, a multispectral remotely sensed image was segmented
and the results were compared to measured ground truth to determine classification accuracy.
Fig. 10 shows a typical 430 x 400 subregion of a 927 x 1097 three band SPOT image with a spatial
resolution of 20m. The SPOT image is displayed in color with the infrared band as red, the visible
red band as green, and the green band as blue. Ground truth information was collected along
90 positions (transects) placed randomly throughout the full image [46] (only a subset of these
transects are contained in the displayed subregion). Each transect is 100m long (approximately 5
pixels) with a random orientation. Along each transect, detailed measurements of ground cover
where made, but for this experiment we only consider five classes based on the aggregate measure of
percent bare ground for each transect. 60 of the transects were randomly chosen to use for training

the class models, and the remaining 30 were used to test the segmentation algorithms performance.

27




Each of the five classes was modeled as a multivariate Gaussian mixture. The parameters of
the mixture model were estimated using the EM algorithm [45] and the model order was chosen
for each class using the Rissanen criteria [47]. The mixture model is important because it captures
the multimodal spectral behavior that is typical of most classes.

Subregions of the SMAP, SA, ICM and maximum likelihood segmentations are shown in Fig. 11.
Only 100 iterations of SA were used due to the excessive computation time required to process the
large image. The percent misclassification was also computed using the 30 testing transects for
each class. The results are tabulated in Table 6. For each class and algorithm, the average region
size was also computed.

The classification accuracy of the SMAP segmentation was substantially better than the maxi-
mum likelihood algorithm and slightly better than ICM. The SMAP and SA algorithms had approx-
imately comparable accuracy with SMAP performing 5.3% better for class 2 and SA performing
2.5% better for class 5. Inspection of the segmented images in Fig. 11, indicates that the SA al-
gorithm produced smoother boundaries than the SMAP result. This extra smoothing of the SA
algorithm tends to remove the smaller regions which are more common in class 2.

It is also interesting that the SMAP segmentation produces the largest average region sizes.
This is because the SMAP segmentation produces fewer regions containing very few (e.g. 1 or 2)

pixels.

5 Conclusion

We have presented a new criteria and model for statistical image segmentation. The SMAP esti-
mator is proposed because it minimizes the expected size of the largest misclassified region, and
it results in a segmentation algorithm which is computationally simple. The MSRF model uses a
pyramid structure to capture the characteristics of image behavior at various scales. Because the
MSRF has a Markov Chain structure, its parameters can be estimated efficiently from the image
during segmentation.

Experiments with synthetic data indicate that the SMAP algorithm performs comparably to
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Class 1 | Class 2 | Class 3 | Class 4 | Class 5 | Class Average
Percent Bare Ground 0% 1-10% | 11-21% | 21-30% | 31-100%
Accuracy SMAP | 88.1% | 27.8% | 17.5% | 27.5% 93.5% 50.88%
SA 100 | 88.1% | 22.5% | 17.5% | 27.5% 96.0% 50.32%
ICM 87.5% | 232% | 17.5% | 27.5% 93.5% 49.84%
ML 78.5% | 26.5% | 17.5% | 20.0% 85.1% 45.52%
Average Region Area | SMAP | 131.7 18.7 10.7 21.2 57.7 48.0
SA 100 | 126.9 16.4 7.5 14.7 49.9 43.1
ICM 112.2 13.2 7.2 12.9 44.2 37.9
ML 32.1 3.9 3.9 4.7 16.1 12.1

Table 6: Tabulated results for the segmentation of multispectral SPOT

data with ground truth. Classes were formed from ranges of percentage

bare ground, and percent classification accuracy was tabulated for each

class. The average region size for each class is also listed.
or substantially better than MAP estimation using a Markov random field model and simulated
annealing. In addition, the SMAP algorithm requires less computation than ICM and much less

then simulated annealing. The SMAP algorithm was also tested on multispectral SPOT data and

found to improve segmentation accuracy over ML segmentation.
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A Appendix

Assume that 2 has been computed for i > n. We will then compute 2™ using the Markov chain

structure of the random fields X (™).

L
™ = argmax max Z *P(XD =20 > kY =)

L
= argmax max max Z 2*P(Y e dy, X =20 > k)
z(™ 2@ j<n 2D i>n =0

= argmax max
z(n) 2 j<n

{Z *P(Y edy, X =20k <i<n|XD =20 >n)PXO =30 >n)
k=0
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L
+ > 2*P(Y edy, XD =30 > k)
k=n+1
= argmax max Z 2*P(Y €dy, X =20 |k <i <X+ = g0+
z() 2 i<n =0

= arg m(a;c {P(Y c dy,X(”) — x(’ﬂ)|X(n+1) _ a?(”“))

n—1
+ max Z 2k Py edy, X =20k <i<n/X0TD) = :ﬁ("+1))}
z\t)i<n k=0

We next define a residue term, R(z(™), so that the following equality holds.
™ = arg max P(Y € dy, X = ¢ | x ) = 200+ (1 4 R(2™))

= arg m(%(pm(n) |z(nt1) y (J;(n) |3§(n+1) ) y)(]- + R(J"(n)))

Specifically, R(z(™) is given by

() Ship 2P P(Y € dy, XD = 20k <i <X+ = 3(ntD))
R(z'™) = max - .
2@ i<n P(Y € dy, X() = ()| X (n+1) = g(n+1))

Since this expression is the ratio of positive quantities, we know that R > 0. Further, we may

bound R from above as follows

n—1
R(z™) = max 3 P(XY =Wk <i<n—1X" =2y =y)
T A< ko
n—1
< k—n (n=1) _ .(n=1)y(n) _ .(n) =
< max 12)2 P(X x | X z"Y =vy)
< max (XD = 2D x ™) = 200y = y)

I(nfl)

1
= MaxX Py, (@ D[z, y)
I(nfl) ’

Finally, we have that

" = argmax {log P,z , (€&, y) + log(1 + R(2(™)) ~ 1}

= argmax {logpm(n) (1) y (;p(n) |gj~(n+1) ,Y) + E(x(n))}

where
0< &™) = log(1+ R(z™)) -1
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1
< I}laﬁpzm—l)\x(n),y(w(n 2™, y)
z\n—

B Appendix

In this appendix, we show by induction that for a quadtree based pyramid structure the distribution
of Y given X has the form of (7) and that the terms in the product may be computed using the
recursion of (8). For n = 0, these relations are true by assumption. So, assuming the result for

scale n yields

P(Y € dy| X"V = 2Dy = S"P(Y e dy|x™ = x("))Pz<n>|z<n+1)(x(")\x("+1))

1
z(m) resi) resSn)
- (n+1)
n
= II X p,e o@™a)p o e @™z ™)
Yr ‘xr Ty |I8r
TES(") (")_1

= ]I 11 Z Py i |z 5"))Px5n>‘zgn+1>(l‘$")|ﬂ?gn+1))

s€S(n+l) red=1(s) .. (") -1

- H Py(n+1) 0 <n+1)(y§n+1 |35§n+1))
s€S(n+1)

where

P (1) (D) @R = ] Z Py ( " m)p_ (et (MUK) -

Y red—1(s)ym=1
C Appendix

In this appendix, we prove theorem 1 by extending basic results on the convergence of the EM
algorithm [44, 45].

By the stated assumptions and theorem 4.1(v) of [45], any limit point, 0, of the sequence {6P}5°
has the property that § € arg maxgeq Q(6, é) Since 2 is convex and () is differentiable, this implies
that for all 6 € Q

DYQ(8,0)(6 - 6) <

where D10 computes the gradient of Q with respect to the first argument.
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Let ©, be an open set containing €2 such that () and L are continuous, differentiable on €,.

Then define the continuous, differentiable function H(6,6) = Q(0,0) — L(f) on Q,. It has been
shown [33] that H has the property 6 € arg maxgeq, H(0,6) which implies that

DL(A) = D™Q(8,0)+ D" H(,0)

= DYQ(4,0) .
Therefore, for any 6 € 2, we have
DL(6)(0 — 6) = D°Q(8,0)(0 — §) <0 .

Since L is a convex function and €2 is a convex set, this implies that 6 is a global maximum of L.
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Figure 6: a) Image depicting the classes in synthetic test images. Each
of the 6 classes is indicated by a distinct gray level. Three synthetic
test images, b) image 1, ¢) image 2, and d) image 3. Each region is
distinguished by its mean and variance.
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Figure 7: Segmentations of image 1. Each color denotes a different class.
a) SMAP, b) MAP with 500 iterations of SA, ¢) MAP with 100 iterations
of SA, and d) MAP with ICM.
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Figure 8: Segmentations of image 2. Each color denotes a different class.
a) SMAP, b) MAP with 500 iterations of SA, ¢) MAP with 100 iterations
of SA, and d) MAP with ICM.
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Figure 9: Segmentations of image 3. Each color denotes a different class.
a) SMAP, b) MAP with 500 iterations of SA, ¢) MAP with 100 iterations
of SA, and d) MAP with ICM.
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Figure 10: A 430 %400 subregion of a Multispectral remotely sensed SPOT
image. Ground truth measurements were taken at 90 positions (transects)
located throughout the full image. Each transect is approximately 5 pixels
in size.
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Figure 11: Segmentations of multispectral remotely sensed SPOT image
for subregions of size 430 x 400. a) SMAP segmentation, b) MAP with
100 iterations of SA, ¢) MAP with ICM, and d) Maximum likelihood
segmentation. For each image class 1 — black; class 2 — red; class 3 —
green; class 4 — blue; class 5 — white.
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