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Linear Color-Separable Human Visual System
Models for Vector Error Diffusion Halftoning
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Abstract—mage halftoning converts a high-resolution image to n(m)
alow-resolution image, e.g., a 24-bit colorimage to a three-bit color +~ u(m) = %
image, for printing and display. Vector error diffusion captures x(mj_+ K T(I;l)
correlation among color planes by using an error filter with ma- T _
trix-valued coefficients. In optimizing vector error filters, Damera- i e(m)dl'_

Venkata and Evans transform the error image into an opponent
color space where Euclidean distance has perceptual meaning. This o o
letter evaluates color spaces for vector error filter optimization. In ~ Fig. 1. Linearized model of vector color error diffusion. The quantizer has
order of increasing quality, the color spaces are YIQ, YUV, oppo- been replaced by a linear transformationKyplus additive noisex(m) that
nent (by Poirson and Wandell), and linearized CIELab (by Flohr, E uncorrelated witha(m). The original image i<(m), and the halftone is
Kolpatzik, Balasubramanian, Carrara, Bouman, and Allebach). (m).

Index Terms—Color image display, color quantization, image
quality, multifilters. to reduce the mse between the halftone and original. However,
the mse does not have perceptual meaning in RGB space.

A linear color human visual system (HVS) framework [5] de-
signs matrix-valued error filters by transforming the error image

MAGE halftoning converts a high-resolution image tdnto luminance and chrominance components and minimizing

a lower resolution image, e.g., for printing and display linear model of the human visual response to the quantiza-
Common examples are converting an eight-bit-per-pixébn noise. In this framework, the mse has perceptual meaning.
grayscale image to a binary image and a 24-bit color imag&sed on this framework, this letter evaluates four color spaces
(with eight bits per pixel per color) to a three-bit color imagen which to optimize matrix-valued error filters. We find that
Applying grayscale halftoning methods separably to coldihe objective and subjective rankings of color spaces agree. The
images does not take the correlation among color planesior spaces in order of increasing quality are 1) YIQ space,
into account and can lead to artifacts such as spurious ca®)rYUV space, 3) opponent color space [6], [7], and 4) linearized
impulses in the resulting halftones. CIELab color space [8]. The first two color spaces are common

In grayscale halftoning by error diffusion, each grayscale video, where Y refers to the luminance component, and the
pixel is thresholded to white or black, and the quantization errother two letters refer to the two chrominance components. The
is fed back, filtered, and added to the neighboring grayscapponent color space is a part of the pattern—color-separable vi-
pixels [1]. Although an error filter is typically lowpass, the feedsion model [6], [7] that forms the basis for the industry standard
back arrangement causes the quantization error to be highgagatial-CIELab (S-CIELab) color space [7]. We did not con-
filtered, i.e., pushed into high frequencies where the humaider the S-CIELab color space because we are restricting our
eye is least sensitive. The feedback arrangement sharpensatitention to color spaces based on a linear transformation from
original image by passing low frequencies and amplifyinBGB. However, the HVS model with the linearized CIELab
high frequencies. Traditional grayscale error diffused halftoneslor space under consideration [8] closely approximates the
appear sharper than the original and contain highpass noise 8[CIELab framework.

Vector error diffusion, first proposed in [3], represents each Section |l linearizes vector error diffusion and defines the
pixel in a color image as a vector of values. The thresholdingctor error filter optimization problem. Section 11l generalizes
step would threshold each vector component separately. The linear color HVS model [5] to compute the vector error filter
vector-valued quantization error (image) would be fed back, fioefficients. Section IV describes color space transformations
tered, and added to the neighboring (unhalftoned) color pixetsd the associated spatial filters. Sections V and VI report objec-
A matrix-valued error filter could take the correlation amongjve and subjective quality measures, respectively. Section VII
color planes into account. For an RGB image, each error filteoncludes the letter.
coefficient would be a % 3 matrix. For RGB vector error dif-
fusion, matrix-valued error filter coefficients are adapted in [4] Il. VECTOR COLOR ERROR DIFFUSION

I. INTRODUCTION

We usem to denote a two-dimensional (2-D) spatial index
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trix gain K and an additive white-noise imagém) [5]. The
matrix gain is related to the amount of sharpening, and the no
image models the quantization err#f.is chosen to minimize
the error in approximating the quantizer with a linear transfo
mation, in the linear minimum mse sense

0
Y

\: CZ v
e

K = argmin £ [||b(m) - A u(m)||2} 1)
A >

where b(m) is the quantizer output process (halftone), an

u(m) is the quantizer input process. Whbfm) and u(m) ~ Representation Spatial

are wide-sense stationary [9], the solution for (1) is inan arbitrary Color Space  filtering

K= Cbué—l () Fig. 2. Generalized linear color model for the human visual system.
uu
where Cy,, and C,,, are covariance matrices. The linearized lIl. GENERALIZED PERCEPTUAL MODEL

vector error diffusion system (Fig. 1) has two inputs (original
signal and quantization noise) and one output (the halfton?e)
Using (2), the signal and noise transfer functions are [5]

The linear color model employed in [5] is based on the pat-
fn—color-separable model in [6] and [7]. Damera-Venkata and
Evans [5] transfer device-dependent RGB values into an oppo-

N S SRR nent representation [7], [12]. The three opponent visual path-
B,(z)=K [I +H(z)(K - I)} X(2) () ways are white—black (luminance pathway) and red—green and
Bn(z) = [i _ I:I(z)} N(z). (4) blue—yellow (chrominance pat_hways). Byy, we mean that in
valuez is at one extreme, anglis at the other. R
The overall system response is given by We generalize this model as a linear transformafidio a
desired color space, which is not necessarily the opponent rep-
B(z) = Bs(z) + By(2). (5) resentation [6] but any one that satisfies pattern—color separa-

bility, followed by appropriate spatial filtering in each channel.

A complete HVS model is uniquely determined by the color
space transformation and associated spatial filters. This gener-
We form an objective functiol that measures the averagalization provides a platform for evaluation of different models

visually weighted noise energy in the halftone. The output noigeperceptual meaning and error filter quality obtained by min-

B. Error Measure

is computed by inverse transforming (4) imizing (7).
. The linear color model Fig. 2 consists of 1) a linear trans-
by (m) = [I - h(m)} *n(m). (6) formationT and 2) separable spatial filtering on each channel.

Each channel uses a different spatial filter. The filtering inzhe

We weight the noise energy by a linear spatially invariagfomain is a matrix multiplication by a diagonal matfXz). In
matrix-valued HVS mode¥ (m) and form the spatial domain, the linear HVS modgim) is computed as

~ 2 ~ I T
J=E [Hv(m) + [T = h(m)] « ﬁ(m)H } N6 ¥(m) = d(m)T. (10)
The following section discusses the transformafibrand the
Given alinear spatially invariant HVS modé&(m), the problem spatial filtersd (m).
is to design an optimal matrix-valued error filter
- IV. COLOR TRANSFORMATIONS AND SPATIAL FILTERS
hopt(m) = arg _ min J (8) . . . .
h(m)eC Since we are targeting color halftones for display, we first
where the constrairit enforces the criterion that the errorfilteraccount for the nonlinear response O.f a CRT to frame buffe_r
diffuses all quantization error [10] valu_es. We pass thg RGB values of original image thrpugh this
nonlinearity to obtain the RGB values of the colors displayed
~ ~ on the monitor before halftoning. This ensures that the colors
C= {h(i), ieS| Zh(i)l = 1} ) (9) inthe halftone are closest to the colors actually rendered on the
i monitor. This process is the inverse of gamma correction. We
S is the set of coordinates for the error filter support, i+ use “gamma _urjcorrection” as specified t_)y the SRGB standard
{(1,0), (1,1),(0,1),(—1,1)} for Floyd—Steinberg. [13] on the original image prior to halftomng._ .
For each of the four HVS models in Section IV, we obtain We.employ transformations 1o the following color spaces:
the optimum filter coefficients by solving a matrix versior‘l'ne""r'zed CIELab [8], opponent [7], YUV, and YIQ. .These
of the Yule—Walker equations, based on the constréint color spaces are chosen bec"’!use they qll score well_m percep-
[5]. We use a descent algorithm based on the quasi-Ne Iun|form|ty|[14] and ag_;l)_rOXémaStgly saRt|(33fé/ th? reqU|rer(Tj1eqts
Broyden—Fletcher—Goldfarb—Shanno update [11]. This reducc% pattern—color separability [6]. Since values are device

the number of iterations required to converge to the minimu pendent, we perform the color transformations based on an

by about half for the same effort per iteration versus steepgs GB monitor. The transformation to opponent color space is

descent [5]. sRGB— CIEXYZ — opponent representation
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The standard transformations from sRGB to CIEXYZ and TABLE |
from CIEXYZ to opponent representation are taken from the NO'SSGA'N ('NODEC'BELSé OF THe FLOYD—S;E'NBERVGSEFAROR FILTER
S-CIELab [7] codé, which is also the source for transfor- VER THE DPTIMUM ERRORFILTER FORFOUR ODELS

mations to the YUV apd YIQ_ represeqtation;. The linearized Image | Linear CIELab | Opponent | YUV | YIQ
CIELab color space is obtained by linearizing the CIELab
space about the D65 white point [8] in the following manner: lena 3.3511 3.2912 | 3.2731 | 3.2778
Yy pasta 1.4623 1.4566 | 1.4472 | 1.4383
Y, =116 — — 16 (11) -
Y, fruits 1.3832 1.3730 | 1.3682 | 1.3644
X Y
C, =500 | — — — 12 peppers 1.9562 1.8766 1.8633 | 1.8545
0 |5 - ] 12)
Y Z _ _ _ _ _
C. =200 Y. "7 | (13) whereL is the average luminance of display;is the radial
" " spatial frequencyK (L) = a L*; and
HenceT is SRGB— CIEXYZ — Linearized CIELab. Th&’, 1 5
component s similar to the luminance, and @gandC . com- o(L) = cn(L) +d’ (20)

ponents are similar to the R—G and B-Y opponent color compo- . ! . .
nents. The original transformation to the CIELab from CIEXYZ N€ fréquency variablg is defined [8] as a weighted magni-

is a nonlinear one tude of the frequency vectar = (u,v)T, where the weighting
depends on the angular spatial frequendi5]. Thus
Y
Lx =116 f (-) —16 (14) 5= 21
Y, P= 59 (21)
. X Y
o =00 (1 (1) -1 (5)] (15) wherep — V@ ¥4 and
Y 7 1l—w 14w
— i IO = 4 . 22
bx = 200 {f (Yn> f (Zn)} (16) s(¢) 5 cos(49) + —5 (22)
h The symmetry parameteris 0.7, andp = arctan(v/u). The
where weighting functions(¢) effectively reduces the contrast sensi-
7 n87 16 i 0 < 2 < 0.008856 tivity to spatial frequency components at odd multiples .45
flz) = { (ST + 116 ro=z=0 N The contrast sensitivity of the human viewer to spatial variations
zl/3 if 0.008856 < x < 1. in chrominance falls off faster as a function of increasing spatial

frequency than does the response to spatial variations in lumi-

E—lr; values fotXy,, Y,,, andZ, are as per the D65 white pointpance [16]. The chrominance model we use reflects this [17]

The nonlinearity in the transformation from CIELab dis- Wi, ,c.)(p) = Ae ", (23)
torts the spatially averaged tone of the images, which yiel 4re.a is determined to be 0.419, antl = 100 [17]. Both

halftones that have incorrect average values [8]. The lineari . : .
& luminance and chrominance response are lowpass in na-

Z
color space overcomes this and has the added benefit th%ure but only the luminance response is reduced at odd mul-
decouples the effect of incremental change&¥ip C,.,C,) at .~ y the lu pOnSe

tiples of 45. This will place more luminance error across the

the white point or(L, a, b) values diagonals in the frequency domain where the eye is less sensi-
R 1 tive. Using this chrominance response as opposed to identical
Vi, .co0 (L7507 6%) Dy, = gI- 17 responses for both luminance and chrominance will allow more

_ _ low-frequency chromatic error, which will not be perceived by
In the opponent color representation, data in each plane arefile human viewer.

tered [7] by2 — D separable spatial kernels
V. SIMULATION RESULTS

f=k) wkE; (18) T
; We evaluate four models based on linearized CIELab, oppo-

nent, YUV, and YIQ color spaces using four images. Table |

whereE; = k;exp(—(2? 4+ y?)/07). The parameters; and gives the noise shaping gaMG of the optimal filter over the

o; are based on psychophysical testing and are available in [Fjoyd—Steinberg filter in decibels [5]

The spatial filters for Linearized CIELab and the YUV and YIQ

color spaces are based on analytical models of the eye’s lumi- NG = 10 logy, ( Jis ) . (24)

nance and chrominance frequency response. Jopt

Nasanen and Sullivan [15] chose an exponential function Qe 1 refers to the value of the objective function given by
model the luminance frequency response (7). The linearized CIELab model outperforms the other three
models. The other three models have similar performance. Ma-
trix-valued error filters for the four HVS models are available at
Inttp://white.stanford.edu/~brian/scielab/scielabl-1 http://lwww.ece.utexas.edu/~vishal/halftoning.html (Fig. 3).

Wiv,)(p) = K(L)e 17 (19)
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(a) Original peppers image

(b) using linearized CIELab (c¢) using opponent color space

(d) using YUV (e) using YIQ

Fig. 3. Results of halftones of peppers generated by optimizing the vector error filter in the four color spaces.

VI. SUBJECTIVE TESTING observer saw an original image above a pair of halftone images

positioned to the left and right. The images were displayed on

We develop a subjective assessment procedure for compamamgRGB monitor. The observer was forced to pick the halftone
the models based on a pair-comparison task. On each trial, that looked most similar to the original. For each original image,
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observers made six preference judgments, one for each possible VII. CONCLUSION

pairing of the four halftone images generated using the four dif-

ferent HVS models. , models of the HVS response versus spatial frequency. These
The relevant data from the assessment procedure is the giQsar HVS models have been explicitly used in grayscale

portion of trials where one given halftoning method is preferrerqlamoning for more than a decade to improve halftone quality
to the other. If one method is not preferred over the other, thf’ﬂ)]. For color images, similar linear HVS models exist for
the measured proportion should (ideally) be 0.5. Further, to cqQliinance channels and certain chrominance channels, which
clude that one method is S|gn|f|cantly better, we require it {0, pe applied after a color space transformation. In this letter,
be picked over the other 60% or more of the time. Using g, eyajuate four color HVS models for color halftoning by
binomial probability distribution, the total number of trials inector error diffusion using objective measures and subjective
the study was picked so that the binomial proportion could Bgsting. The color HVS model based on transformation to the
estimated to within a tolerance of 0.03 with 95% confidencgnearized ClELab [8] color space and spatial filters for the
This requirement resulted in a total of 960 comparisons [1§};minance frequency response in [15] and the chrominance
[19] for each of the six possible pairings of the four halftoning...q,ency response in [17] yields the best error filter for vector

For grayscale images, contrast sensitivity functions are linear

methods. The total comparisons/trials were obtained from @, gitfusion.

subjects who judged 96 comparisons each.
Let A, B, C, andD be the four halftoning methods (or HVS
models) to be compared. Based on the subjective test data, we

build 8
(2]
0.5 pap pac Ppap (3]
p— |PBA 0.5 pBc pBD
pca pc 0.5 pcep [4]
ppa ppB ppc 0.5
wherep 4 g is the proportion that method was preferred to [5]
methodB. The entries irP satisfyP(k,l) =1 — P(l, k). The
data from the subjective assessment procedureRjiae (6]
0.5 0.625 0.833 0.854 7
p— 0.375 0.5 0.563 0.621 8]
0.167 0.437 0.5 0.521
0.146 0.379 0479 0.5
9]

This results in a unique rank order of the methods i‘e.>
B > C > D, whereA refers to the HVS model based on Lin- [10]
earized CIELabB refers to the model based on the opponent

color space( refers to the YUV model; and refers to YIQ. 14
Note that if a rank order of the ford > B > C > D ex- [12]
ists and we havpsp > 0.6, then we would automatically have (3]
pac > 0.6 and so forth, and we can conclude thts signif-
icantly better than or preferred 8, C, and D. Similarly, we
can find if B is better tharC' and so on. From the entriesi, (4]
we hence conclude that the HVS model based on the linearizggk;
CIELab [8] color space is the clear winner. In descending sub-

jective quality (16]

Linearized CIELaly> Opponent> YUV =~ YIQ. [17]

[18]
The objective rankings in Table | and subjective rankings[19]
given by P agree. In Table |, YUV is slightly better than
YIQ in three of the four images. Likewise, the “perceptual”
distinction in the subjective test between YUV and YIQ is
not appreciable. The subjective test is available online a[tzo]
http://www.ece.utexas.edu/~vishal/cgi-bin/test.html.
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