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Linear Color-Separable Human Visual System
Models for Vector Error Diffusion Halftoning
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Abstract—Image halftoning converts a high-resolution image to
a low-resolution image, e.g., a 24-bit color image to a three-bit color
image, for printing and display. Vector error diffusion captures
correlation among color planes by using an error filter with ma-
trix-valued coefficients. In optimizing vector error filters, Damera-
Venkata and Evans transform the error image into an opponent
color space where Euclidean distance has perceptual meaning. This
letter evaluates color spaces for vector error filter optimization. In
order of increasing quality, the color spaces are YIQ, YUV, oppo-
nent (by Poirson and Wandell), and linearized CIELab (by Flohr,
Kolpatzik, Balasubramanian, Carrara, Bouman, and Allebach).

Index Terms—Color image display, color quantization, image
quality, multifilters.

I. INTRODUCTION

I MAGE halftoning converts a high-resolution image to
a lower resolution image, e.g., for printing and display.

Common examples are converting an eight-bit-per-pixel
grayscale image to a binary image and a 24-bit color image
(with eight bits per pixel per color) to a three-bit color image.
Applying grayscale halftoning methods separably to color
images does not take the correlation among color planes
into account and can lead to artifacts such as spurious color
impulses in the resulting halftones.

In grayscale halftoning by error diffusion, each grayscale
pixel is thresholded to white or black, and the quantization error
is fed back, filtered, and added to the neighboring grayscale
pixels [1]. Although an error filter is typically lowpass, the feed-
back arrangement causes the quantization error to be highpass
filtered, i.e., pushed into high frequencies where the human
eye is least sensitive. The feedback arrangement sharpens the
original image by passing low frequencies and amplifying
high frequencies. Traditional grayscale error diffused halftones
appear sharper than the original and contain highpass noise [2].

Vector error diffusion, first proposed in [3], represents each
pixel in a color image as a vector of values. The thresholding
step would threshold each vector component separately. The
vector-valued quantization error (image) would be fed back, fil-
tered, and added to the neighboring (unhalftoned) color pixels.
A matrix-valued error filter could take the correlation among
color planes into account. For an RGB image, each error filter
coefficient would be a 3 3 matrix. For RGB vector error dif-
fusion, matrix-valued error filter coefficients are adapted in [4]

Manuscript received June 3, 2002; revised August 14, 2002. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Prof. Scott T. Acton.

The authors are with the Center for Perceptual Systems, The Univer-
sity of Texas, Austin, TX 78712 USA (e-mail: vishal@ece.utexas.edu;
geisler@mail.utexas.edu; bevans@ece.utexas.edu).

Digital Object Identifier 10.1109/LSP.2002.806708

Fig. 1. Linearized model of vector color error diffusion. The quantizer has
been replaced by a linear transformation by~K plus additive noisen(m) that
is uncorrelated withu(m). The original image isx(m), and the halftone is
b(m).

to reduce the mse between the halftone and original. However,
the mse does not have perceptual meaning in RGB space.

A linear color human visual system (HVS) framework [5] de-
signs matrix-valued error filters by transforming the error image
into luminance and chrominance components and minimizing
a linear model of the human visual response to the quantiza-
tion noise. In this framework, the mse has perceptual meaning.
Based on this framework, this letter evaluates four color spaces
in which to optimize matrix-valued error filters. We find that
the objective and subjective rankings of color spaces agree. The
color spaces in order of increasing quality are 1) YIQ space,
2) YUV space, 3) opponent color space [6], [7], and 4) linearized
CIELab color space [8]. The first two color spaces are common
in video, where Y refers to the luminance component, and the
other two letters refer to the two chrominance components. The
opponent color space is a part of the pattern–color-separable vi-
sion model [6], [7] that forms the basis for the industry standard
Spatial-CIELab (S-CIELab) color space [7]. We did not con-
sider the S-CIELab color space because we are restricting our
attention to color spaces based on a linear transformation from
RGB. However, the HVS model with the linearized CIELab
color space under consideration [8] closely approximates the
S-CIELab framework.

Section II linearizes vector error diffusion and defines the
vector error filter optimization problem. Section III generalizes
the linear color HVS model [5] to compute the vector error filter
coefficients. Section IV describes color space transformations
and the associated spatial filters. Sections V and VI report objec-
tive and subjective quality measures, respectively. Section VII
concludes the letter.

II. V ECTORCOLOR ERRORDIFFUSION

We use to denote a two-dimensional (2-D) spatial index
, and to denote the domain variables .

A. Matrix Gain Model

Fig. 1 shows a model of vector color error diffusion halftoning
after linearizing the system by replacing the quantizer with ma-
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trix gain and an additive white-noise image [5]. The
matrix gain is related to the amount of sharpening, and the noise
image models the quantization error.is chosen to minimize
the error in approximating the quantizer with a linear transfor-
mation, in the linear minimum mse sense

(1)

where is the quantizer output process (halftone), and
is the quantizer input process. When and

are wide-sense stationary [9], the solution for (1) is

(2)

where and are covariance matrices. The linearized
vector error diffusion system (Fig. 1) has two inputs (original
signal and quantization noise) and one output (the halftone).
Using (2), the signal and noise transfer functions are [5]

(3)

(4)

The overall system response is given by

(5)

B. Error Measure

We form an objective function that measures the average
visually weighted noise energy in the halftone. The output noise
is computed by inverse transforming (4)

(6)

We weight the noise energy by a linear spatially invariant
matrix-valued HVS model and form

(7)

Given a linear spatially invariant HVS model , the problem
is to design an optimal matrix-valued error filter

(8)

where the constraint enforces the criterion that the error filter
diffuses all quantization error [10]

(9)

is the set of coordinates for the error filter support, i.e.,
for Floyd–Steinberg.

For each of the four HVS models in Section IV, we obtain
the optimum filter coefficients by solving a matrix version
of the Yule–Walker equations, based on the constraint
[5]. We use a descent algorithm based on the quasi-Newton
Broyden–Fletcher–Goldfarb–Shanno update [11]. This reduces
the number of iterations required to converge to the minimum
by about half for the same effort per iteration versus steepest
descent [5].

Fig. 2. Generalized linear color model for the human visual system.

III. GENERALIZED PERCEPTUALMODEL

The linear color model employed in [5] is based on the pat-
tern–color-separable model in [6] and [7]. Damera-Venkata and
Evans [5] transfer device-dependent RGB values into an oppo-
nent representation [7], [12]. The three opponent visual path-
ways are white–black (luminance pathway) and red–green and
blue–yellow (chrominance pathways). By- , we mean that in
value is at one extreme, andis at the other.

We generalize this model as a linear transformationto a
desired color space, which is not necessarily the opponent rep-
resentation [6] but any one that satisfies pattern–color separa-
bility, followed by appropriate spatial filtering in each channel.
A complete HVS model is uniquely determined by the color
space transformation and associated spatial filters. This gener-
alization provides a platform for evaluation of different models
in perceptual meaning and error filter quality obtained by min-
imizing (7).

The linear color model Fig. 2 consists of 1) a linear trans-
formation and 2) separable spatial filtering on each channel.
Each channel uses a different spatial filter. The filtering in the
domain is a matrix multiplication by a diagonal matrix . In
the spatial domain, the linear HVS model is computed as

(10)

The following section discusses the transformationand the
spatial filters .

IV. COLOR TRANSFORMATIONS ANDSPATIAL FILTERS

Since we are targeting color halftones for display, we first
account for the nonlinear response of a CRT to frame buffer
values. We pass the RGB values of original image through this
nonlinearity to obtain the RGB values of the colors displayed
on the monitor before halftoning. This ensures that the colors
in the halftone are closest to the colors actually rendered on the
monitor. This process is the inverse of gamma correction. We
use “gamma uncorrection” as specified by the sRGB standard
[13] on the original image prior to halftoning.

We employ transformations to the following color spaces:
linearized CIELab [8], opponent [7], YUV, and YIQ. These
color spaces are chosen because they all score well in percep-
tual uniformity [14] and approximately satisfy the requirements
for pattern–color separability [6]. Since RGB values are device
dependent, we perform the color transformations based on an
sRGB monitor. The transformation to opponent color space is

sRGB CIEXYZ opponent representation
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The standard transformations from sRGB to CIEXYZ and
from CIEXYZ to opponent representation are taken from the
S-CIELab [7] code,1 which is also the source for transfor-
mations to the YUV and YIQ representations. The linearized
CIELab color space is obtained by linearizing the CIELab
space about the D65 white point [8] in the following manner:

(11)

(12)

(13)

Hence is sRGB CIEXYZ Linearized CIELab. The
component is similar to the luminance, and theand com-
ponents are similar to the R–G and B–Y opponent color compo-
nents. The original transformation to the CIELab from CIEXYZ
is a nonlinear one

(14)

(15)

(16)

where

if

if

The values for , , and are as per the D65 white point
[13].

The nonlinearity in the transformation from CIELab dis-
torts the spatially averaged tone of the images, which yields
halftones that have incorrect average values [8]. The linearized
color space overcomes this and has the added benefit that it
decouples the effect of incremental changes in at
the white point on values

(17)

In the opponent color representation, data in each plane are fil-
tered [7] by separable spatial kernels

(18)

where . The parameters and
are based on psychophysical testing and are available in [7].

The spatial filters for Linearized CIELab and the YUV and YIQ
color spaces are based on analytical models of the eye’s lumi-
nance and chrominance frequency response.

Nasanen and Sullivan [15] chose an exponential function to
model the luminance frequency response

(19)

1http://white.stanford.edu/~brian/scielab/scielab1-1

TABLE I
NOISE GAIN (IN DECIBELS) OF THE FLOYD–STEINBERG ERRORFILTER

OVER THE OPTIMUM ERRORFILTER FOR FOUR HVS MODELS

where is the average luminance of display;is the radial
spatial frequency; ; and

(20)

The frequency variable is defined [8] as a weighted magni-
tude of the frequency vector , where the weighting
depends on the angular spatial frequency[15]. Thus

(21)

where and

(22)

The symmetry parameter is 0.7, and . The
weighting function effectively reduces the contrast sensi-
tivity to spatial frequency components at odd multiples of 45.
The contrast sensitivity of the human viewer to spatial variations
in chrominance falls off faster as a function of increasing spatial
frequency than does the response to spatial variations in lumi-
nance [16]. The chrominance model we use reflects this [17]

(23)

Here, is determined to be 0.419, and [17]. Both
the luminance and chrominance response are lowpass in na-
ture, but only the luminance response is reduced at odd mul-
tiples of 45 . This will place more luminance error across the
diagonals in the frequency domain where the eye is less sensi-
tive. Using this chrominance response as opposed to identical
responses for both luminance and chrominance will allow more
low-frequency chromatic error, which will not be perceived by
the human viewer.

V. SIMULATION RESULTS

We evaluate four models based on linearized CIELab, oppo-
nent, YUV, and YIQ color spaces using four images. Table I
gives the noise shaping gain of the optimal filter over the
Floyd–Steinberg filter in decibels [5]

(24)

Here, refers to the value of the objective function given by
(7). The linearized CIELab model outperforms the other three
models. The other three models have similar performance. Ma-
trix-valued error filters for the four HVS models are available at
http://www.ece.utexas.edu/~vishal/halftoning.html (Fig. 3).
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Fig. 3. Results of halftones of peppers generated by optimizing the vector error filter in the four color spaces.

VI. SUBJECTIVE TESTING

We develop a subjective assessment procedure for comparing
the models based on a pair-comparison task. On each trial, the

observer saw an original image above a pair of halftone images
positioned to the left and right. The images were displayed on
an sRGB monitor. The observer was forced to pick the halftone
that looked most similar to the original. For each original image,
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observers made six preference judgments, one for each possible
pairing of the four halftone images generated using the four dif-
ferent HVS models.

The relevant data from the assessment procedure is the pro-
portion of trials where one given halftoning method is preferred
to the other. If one method is not preferred over the other, then
the measured proportion should (ideally) be 0.5. Further, to con-
clude that one method is significantly better, we require it to
be picked over the other 60% or more of the time. Using the
binomial probability distribution, the total number of trials in
the study was picked so that the binomial proportion could be
estimated to within a tolerance of 0.03 with 95% confidence.
This requirement resulted in a total of 960 comparisons [18],
[19] for each of the six possible pairings of the four halftoning
methods. The total comparisons/trials were obtained from 60
subjects who judged 96 comparisons each.

Let , , , and be the four halftoning methods (or HVS
models) to be compared. Based on the subjective test data, we
build

where is the proportion that method was preferred to
method . The entries in satisfy . The
data from the subjective assessment procedure giveas

This results in a unique rank order of the methods i.e.,
, where refers to the HVS model based on Lin-

earized CIELab; refers to the model based on the opponent
color space; refers to the YUV model; and refers to YIQ.
Note that if a rank order of the form ex-
ists and we have , then we would automatically have

and so forth, and we can conclude thatis signif-
icantly better than or preferred to, , and . Similarly, we
can find if is better than and so on. From the entries in,
we hence conclude that the HVS model based on the linearized
CIELab [8] color space is the clear winner. In descending sub-
jective quality

Linearized CIELab Opponent YUV YIQ

The objective rankings in Table I and subjective rankings
given by agree. In Table I, YUV is slightly better than
YIQ in three of the four images. Likewise, the “perceptual”
distinction in the subjective test between YUV and YIQ is
not appreciable. The subjective test is available online at
http://www.ece.utexas.edu/~vishal/cgi-bin/test.html.

VII. CONCLUSION

For grayscale images, contrast sensitivity functions are linear
models of the HVS response versus spatial frequency. These
linear HVS models have been explicitly used in grayscale
halftoning for more than a decade to improve halftone quality
[20]. For color images, similar linear HVS models exist for
luminance channels and certain chrominance channels, which
can be applied after a color space transformation. In this letter,
we evaluate four color HVS models for color halftoning by
vector error diffusion using objective measures and subjective
testing. The color HVS model based on transformation to the
linearized CIELab [8] color space and spatial filters for the
luminance frequency response in [15] and the chrominance
frequency response in [17] yields the best error filter for vector
error diffusion.
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