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Training-Based Descreening
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Abstract—Conventional halftoning methods employed in elec-
trophotographic printers tend to produce Moiré artifacts when
used for printing images scanned from printed material, such
as books and magazines. We present a novel approach for de-
screening color scanned documents aimed at providing an efficient
solution to the Moiré problem in practical imaging devices, in-
cluding copiers and multifunction printers. The algorithm works
by combining two nonlinear image-processing techniques, res-
olution synthesis-based denoising (RSD), and modified smallest
univalue segment assimilating nucleus (SUSAN) filtering. The
RSD predictor is based on a stochastic image model whose param-
eters are optimized beforehand in a separate training procedure.
Using the optimized parameters, RSD classifies the local window
around the current pixel in the scanned image and applies filters
optimized for the selected classes. The output of the RSD predictor
is treated as a first-order estimate to the descreened image. The
modified SUSAN filter uses the output of RSD for performing an
edge-preserving smoothing on the raw scanned data and produces
the final output of the descreening algorithm. Our method does not
require any knowledge of the screening method, such as the screen
frequency or dither matrix coefficients, that produced the printed
original. The proposed scheme not only suppresses the Moiré
artifacts, but, in addition, can be trained with intrinsic sharpening
for deblurring scanned documents. Finally, once optimized for a
periodic clustered-dot halftoning method, the same algorithm can
be used to inverse halftone scanned images containing stochastic
error diffusion halftone noise.

Index Terms—Descreening, halftone, Moiré artifacts, resolution
synthesis, smallest univalue segment assimilating nucleus (SUSAN)
filter.

1. INTRODUCTION

OST of the available printing technologies cannot pro-
duce continuous tones. Instead the images printed with
these devices contain a series of dots arranged in specific pat-
terns to simulate different shades of gray. The process of con-
verting a continuous-tone image into a binary image that can be
rendered using a bi-level printing device is called halftoning.
Conventional halftoning methods involve either changing
the size of printed dots, called amplitude modulation (AM),
or changing the relative density of dots on the page, called
frequency modulation (FM). The most common method for
performing AM halftoning is clustered dot screening [29] while
commonly used FM halftoning algorithms are dispersed dot
screening [6], [27], [30] and error diffusion [11], [17], [32].
AM halftoning methods offer the advantage of stable dot for-
mation and, therefore, are widely used in electrophotographic
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and commercial offset printers where a single isolated dot may
not develop and be stable. Essentially all printed material in the
form of books, newspapers and magazines employs clustered
dot halftoning. However, there is one serious drawback to
using AM methods. The regular placement of dots in clustered
dot halftoning can lead to Moiré patterns when it is used for
reprinting images scanned from printed originals [1]. The term
Moiré, in general, is used to describe interference patterns
that arise due to the frequency difference or misalignment of
two similar overlapping periodic structures. In a scan-to-print
process, the halftone screens in the printed original and target
printer are the two overlapping frequencies that could interfere
and render the resulting print useless due to severe Moiré
artifacts. In general, FM halftoning methods do not cause
severe Moiré [19], however, the tiny isolated dots produced by
these methods cannot be stably printed by electrophotographic
printers. Thus, FM halftoning is mostly limited to ink jet
printers.

A variety of different approaches have been suggested
in the literature to avoid the Moiré patterns when printing
scanned originals. The proposed techniques fall into two broad
categories. The first approach is to improve upon the image
rendering algorithm used in the printer for printing scanned
halftones [8], [13], [18], [21]. One example of such a technique
is the AM/FM halftoning algorithm developed in [13]. AM/FM
works by simultaneously modulating the dot size and dot
density to produce the best print quality at each gray level. The
formation of larger dot clusters in AM/FM offers improved
dot stability over traditional FM methods, while the irregular
placement of dots leads to better Moiré suppression than if AM
methods were used alone.

The second approach to coping with the Moiré problem is to
process the scanned image for removal of screen frequencies
before it is actually rehalftoned in the print engine. Perhaps,
the simplest way of suppressing halftone noise is to smooth the
entire scanned document with a single low-pass filter; however,
this approach also softens the image edges [34].

Currently, there exist many sophisticated inverse halftoning
algorithms aimed at reconstructing continuous-tone images
from their halftone versions while protecting the detail and
edge information in the image. Methods developed in [2], [10],
[14], [28], and [31], including the projection scheme in [34],
have been shown to produce high-quality results with binary
halftones. Most of these procedures are iterative, and all assume
full knowledge of the halftoning kernel, which is not reasonable
when descreening scanned images printed through unknown
printing processes. We note that while there do exist techniques
for estimating the dither matrix thresholds [2], [10] and error
diffusion weights [34] from binary halftones, these methods
do not work effectively with grayscale (or color) scanned
halftones. Lookup table [23] and hybrid LMS-MMSE [7]
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Fig. 1. Architecture of the descreening algorithm for processing color scanned halftones. (a) Block diagram. (b) Denoising accomplished through Gaussian blur.

(c) Denoising accomplished through training-based RSD.

inverse halftoning algorithms are fast, and they do not assume
explicit knowledge of the halftoning kernel; however, these
methods are also intended for processing only binary halftones.
Among the wavelet-based approaches, important contributions
include [22], [24], and [38]. Some of the existing algorithms
that can be used to provide efficient descreening solutions in
low-cost implementations are gradient-based adaptive filtering
[16], blind inverse halftoning [33], and segmentation-based
descreening [15].

In this paper, we present a new descreening algorithm
targeted for scan-to-print pipeline in a multifunction printer
(MFP). The algorithm effectively removes a wide range of
Moiré causing screen frequencies, as well as error diffusion
halftone noise, from a scanned document while maintaining
the overall image quality in terms of edge sharpness and detail
preservation. In fact, the proposed technique can be trained
with built-in sharpening to enhance the text quality and edge
details.

The algorithm is based on two major components: resolution
synthesis-based denoising (RSD), similar to the RS method de-
veloped by Atkins et al. [4], [5] for image scaling, and a modi-
fied version of a noise removal technique, the smallest univalue
segment assimilating nucleus (SUSAN) filter [26]. RSD is based
on a stochastic image model whose parameters are optimized
in an offline training process. The training data for optimizing
the stochastic model parameters is generated using print-to-scan
methods from real scanners and printers, and is thus representa-
tive of the nonidealities found in a practical imaging device. The
training method provides a framework where the training data
obtained from an imaging platform is used to automatically op-
timize the descreening parameters with respect to that specific
hardware.

In principle, RSD can be compared with the Kite’s method
[16] that works by adaptively constructing smoothing filters
based on the local gradient information extracted using four
different masks. In RSD, we use a larger (8-D) local feature
vector, which includes higher order information in addition
to the first order gradients, based on which optimal filters are
chosen to process the local window.

The modified SUSAN filter is a nonlinear filter that reduces
the halftone noise in smooth regions of the scanned image while
preserving the edges and nonhalftoned image detail.

The remainder of this paper is organized as follows. In
Section II, we explain in detail our proposed scheme for de-
screening color scanned halftones. Section III contains the
experimental results, while the concluding remarks are pre-
sented in Section IV.

II. DESCREENING COLOR SCANNED HALFTONES

Fig. 1(a) shows the basic structure of our scheme. The no-
tational convention uses two indices (7, j) to index gray scale
images and three indices (k, 1, j) to index RGB color images.
We shall use k£ = 0,1, and 2 to represent the R, G, and B color
channels, respectively. The input image f(k,1,7) is an sSRGB
color image [3] that is obtained by scanning a printed color
halftone image using a calibrated scanner. The scanner resolu-
tion is considered to be 600 dpi. The first step in the descreening
process is to obtain the grayscale image f (4, j) from the color
scanned image. The grayscale image is computed using the re-
lation: f(4,7) = 0.30£(0,4,7)+0.59f(1,4,5) +0.11f(2,4, ).
The grayscale image is then processed through the denoising
module in order to reduce the effects of the periodic halftone
noise. The output of the denoising module u(4, j) is treated as a
first order estimate to the reconstructed contone image.

The denoising could be accomplished with as simple a tech-
nique as a conventional Gaussian blur as shown in Fig. 1(b);
however, in this paper, we develop a sophisticated statistical pro-
cedure, RSD, that significantly improves the descreening quality
by preserving high-frequency image details. As shown in Fig.
1(c), the grayscale image f (i, 7) is decimated to f4(i, j) before
it is input to the RSD predictor. Decimation blends the large
halftone dots in the 600-dpi image resulting in a reduced screen
period. The value of this is explained in Section II-A3. The task
of RSD is two fold. First, it must suppress the residual screen
patterns in the decimated image without further deteriorating
the edge details. Second, it should scale up the 300-dpi image to
the original scanner resolution of 600 dpi. RSD performs spa-
tial processing that depends on the local content in the input
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image. The strength of RSD comes from the fact that, even in
the presence of strong halftone noise, it can accurately distin-
guish whether the local window forms part of a smooth region
or belongs to an edge of a particular orientation. If the local fea-
ture is identified as a smooth texture, the optimal RSD prediction
filters perform blurring to dilute the effect of the halftone noise,
whereas for an edge region the filters tend to preserve the local
image structure.

The output of the RSD module u(z, j) is a grayscale image
at 600 dpi in which the screen patterns have been substantially
removed while the nonhalftone details are essentially preserved.
However, the overall visual quality of the RSD output is not
sufficiently high to be used as the final descreened result. The
image u(%,j) is input to the modified SUSAN filter where it
is used to perform an edge preserving smoothing of the color
scanned data that results in the descreened output.

In order to prevent color shifts during the descreening
process, it is important that the modified SUSAN filter be
applied to the scanned image data in a linear RGB color space.
The sRGB color image f(k,,7) is transformed to linear color
coordinates f;(k, 1, j) using the following relation:

255

where

 [/12.92, if0<x<003928
W) = (m005)2 o oz008 <o <1 O

For each k, the modified SUSAN filter then processes
f1(k, 1, j) to produce the linear RGB image ¢;(k, ¢, j) which is
then gamma corrected to produce the sRGB output g(k, 1, 7).
The transformation from linear to gamma corrected color
coordinates is given by the relation

F(kyi,5) = 2550~ (fi(k,i,5)) G)
where

1 { 12.92z, if 0 < z < 0.00304
w i (z) =

1.055077 — 0.055, if0.00304 < x < 1. )

The training-based RSD algorithm is discussed in Sec-
tion II-A. In Section II-B, we introduce the basic SUSAN
filtering algorithm and develop the modified SUSAN filter.

A. Resolution Synthesis-Based Denoising (RSD)

An overview of the training-based RSD procedure is pre-
sented in Fig. 2, while a detailed illustration of the predictor is
provided in Fig. 3. The RSD predictor discussed in this section
is similar to the RS predictor developed by Atkins et al. [4], [5]
for optimal image scaling. The prediction parameters comprise
the classification parameters 6 and filter parameters 4 which are
computed in an offline training process.

The training data comprises pairs of low-resolution (300 dpi)
scanned images and their corresponding spatially registered
high-resolution (600 dpi) continuous-tone digital originals
(see Figs. 2 and 4). The scans contain residual energy from
a periodic halftone screen that can produce Moiré artifacts
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Fig. 2. Overview of the training-based RSD procedure.
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Fig. 3. Illustration of the RSD predictor.
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Fig. 4. Generation of training image pair. f, (7, j) is a 300-dpi scanned image.
gn(i,7) is the corresponding 600-dpi registered grayscale digital original
image. The training image pairs {(f. (¢, ), gn(i,j))}ne{l_____Nimages},
where Nj,ages denotes the number images in the training set, is used to design
classification and filter parameters for the RSD predictor.

on printing. The digital originals do not contain such Moiré
causing frequencies and therefore can be printed without
creating these undesirable interference patterns. The spatial
alignment of low-resolution scans and high-resolution originals
is accomplished using subpixel registration techniques devel-
oped in [12].

The input to the RSD predictor is the grayscale decimated lu-
minance image f4(, 7) at 300 dpi. The decimation from 600 to
300 dpi is performed by replacing each nonoverlapping 2 x 2
pixel block in the high-resolution image with its average value.
For each pixel in the low-resolution input, the prediction task is
to compute the corresponding block of high-resolution pixels in
the original. Thus, in addition to performing scaling as in the RS
predictor [5], we require that RSD eliminate the periodic screen
noise in scans. For prediction we use pixels in a 7 x 7 neighbor-
hood centered at the input pixel. These pixels are written as the
elements of an observation vector 2. The RSD predictor extracts
the spatial feature vector y from the observation vector. It is as-
sumed that the feature vector ¥ is distributed with an M class
mixture distribution. Using the parameters @, the RSD classifier
computes the probability that the feature vector y belongs to a
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particular component j in the mixture. To estimate the high-res-
olution pixels, the observation vector z is first filtered with the
optimal predictors for the individual classes. The output vector
x is then computed as a linear combination of the outputs of
all M filters with the weighting function for the jth filter corre-
sponding to the probability that the image data is in class j.

In the remainder of this section, we derive the output of the
RSD predictor and discuss its optimality under certain assump-
tions. The derivation is similar to that given in [4]. Then we dis-
cuss efficient RSD which provides a way to reduce computa-
tion and expedite the prediction process. This is followed by a
description of the feature vector used for local window classifi-
cation. Next we explain how to generate the training data for es-
timating the prediction parameters. Finally, we give the training
algorithm for optimizing the parameters of the RSD predictor.

1) Optimal Prediction: In this subsection, the output of RSD
is derived as an MMSE predictor, assuming that the classifier
parameters # and filter parameters 9 are known. In the fol-
lowing discussion, we shall use upper-case letters for random
variables and lower-case letters for their realizations. The anal-
ysis is based on the following assumptions about the image data.

Assumption 1: The feature vector Y is distributed as a mul-
tivariate Gaussian mixture. The probability density function of
Y can be written as

M
pr(®) = py1syli)m; ©)
Jj=1
where J € {1,..., M} is a random variable representing the

class, m; is the probability that J = j, and py|(y|J) is a multi-
variate Gaussian density for each j. For the jth Gaussian distri-
bution we assume that the mean vector is K, while for all classes
in the mixture the covariance matrix is assumed to be given by
the same diagonal matrix A?. The covariance matrix could be
chosen to vary with class, however, experimentally we observed
that using the same covariance matrix for all classes improves
the results. This happens because the reduced number of param-
eters makes the training more effective and accurate. We define
the nonzero diagonal elements of A by the vector [0y, . .., 04]
where o; represents the standard deviation of the sth component
of the feature vector y and d represents the dimension of the fea-
ture vector. The conditional density py|.;(y|j) is given by

i) = 2 e { LA w-n) ) ©
j) = ——75 €XP{ — = —
where x denotes the L, norm of vector x.

The parameters of the mixture distribution py (y) are written
as f = {{ﬂjaﬂj}j]\iUA}-

Assumption 2: The conditional distribution of X given
Z and J is a multivariate Gaussian, with mean A;Z + ;.
The filter parameters represented by 4 are obtained directly
from the parameters for these distributions, so we write
’¢ = ({Aj}j]\/il{ﬂ]}jjwzl>

Assumption 3: The class J is conditionally independent of
the high- and low-resolution vectors X and Z, given the feature
vector Y. Formally, this means that

>

prx.z(ile,z) = pyy(ily). )
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With these assumptions, the MMSE [25] estimate is given by

X = E[X|Z] (8)
M

= > E[X|2,J = jlpsz(j|Z) ©
=1
]J\/[

=) (A;Z +B))psz(i|Z) (10)
=1
]J\/[

= > (A;Z+B;)psy(ilY). (1)

=1

~
Il

Equation (10) is obtained by invoking assumption 2. To
obtain (11), we invoke assumption 3 and use the fact that
pnz(JlZ) = [ psx z(j|®. Z)px z(x|Z)dz. The distribution
Py (jly,8) can be computed using Bayes’ rule and assump-
tion 1 as follows:

2
)

e (3 A= ) m

exo (3 Ay

pay(ily,0) = (12)

Inserting (12) into (11), we obtain the equation for optimal fil-
tering in terms of @ and %

2

i

5 .
e (3 A -] ) m
13)
2) Efficient RSD: An important parameter that affects the
performance of the RSD predictor is the number of classes M
in the mixture model. In our application, we use M = 60. From
(13), we observe that since the output pixel block X is computed
as a linear combination of all M of the RSD filters, choosing
M = 60 would require an excessive amount of computation.
Thus, for a given pixel, Atkins [4] suggested using only those
classes for averaging that best represent the local texture in the
image. We determine the output for efficient RSD as follows:

XErsp = Z (A;Z +B))

R M exp <_71 HAil(y - #j)
X =) (A;Z+8;)

i=1

jeJ
-1 —1 2
exp | 5 HA Y—mp|| )™
. . (14)
e €XP (%1 HA_l(y - l"’l)H ) m
where J* C {1,..., M} is the set containing classes which are

the most probable representatives of the local texture. The set J*
is characterized by the following set of filter selection criterion:

= {j > e—éz}

where j is the most likely class for the local feature vector y and
6 > 0. Note that § = 0 is equivalent to using only one filter per
pixel, while a large value of ¢, for example § = 15, causes all
filters to be used for determining the current pixel value.

plily
p(jly)

15)
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3) Extraction of Local Feature Vector: The spatial feature
vector g is used for local window classification in the decimated
luminance image, f4(%, 7). It is important to select spatial fea-
tures that satisfy the following criteria. 1) The feature vector
should be able to distinguish between smooth textures and edges
of different orientation in the presence of halftone noise. 2) Ex-
traction of the feature vector from the local mask should not be
computationally intensive.

We considered a variety of methods for feature extraction in-
cluding the nonlinear projection operator in [4], Gabor filters of
different radial frequencies and orientations [36], and Laws 2-D
convolution kernels [20]. For our purposes, we found that Laws
energy filters worked well in comparison to the other methods.
Laws 2-D convolution kernels are separable, providing a faster
implementation, and can be generated using the following set
of 1-D convolution kernels: level, L5 = [1 4 6 4 1]; edge,
E5 =[-1 —2021];spot, S5 = [-1020 — 1]; wave,
W5=[-120 —21];andripple R5 =1 —46 —41].

From these 1-D kernels, we can produce 25 different 2-D
kernels by convolving a vertical 1-D kernel with a horizontal
1-D kernel. Thus, convolving a vertical L5 with a horizontal E5
would produce the 2-D kernel LSES. However most of the 2-D
kernels produced with this method would be sensitive to the
halftone noise in the scanned document. Thus, we select only
those 2-D kernels that are obtained by convolution of a 1-D
vector with an L5 vector. The inherent directional smoothing
performed by these 2-D kernels helps to produce features that
give stable classification even in the presence of halftone noise.
Thus, we choose the following eight 2-D kernels for extracting
the feature vector: LS5ES5, E5L5, L5S5, S5L5, L5W5, W5L5,
L5R5, and R5L5. Each of these kernels is normalized and ap-
plied in succession to the local window in the image f4(%, ) to
get the 8-D feature vector y.

In [20], Laws has also proposed 3 x 3 and 7 X 7 convolu-
tion kernels. However, we have found the 5 X 5 kernels to give
the best performance. We must emphasize that at the considered
resolution of 600 dpi, the captured halftone dot size in the digital
scan is substantially large which renders the 5 X 5 masks unsuit-
able for direct application to the image data at full scanner reso-
lution. Decimating the luminance image f(, j), as in Fig. 1(c),
blends the periodic dots and enables the small kernels to give a
meaningful description of the underlying image texture.

4) Generation of Training Set: Fig. 4 illustrates how
the training image pairs can be obtained for optimizing pa-
rameters of the RSD predictor. The high-quality electronic
original g, (k,7,7) is a digital document that is carefully
chosen to represent a wide variety of textures and text of
different fonts and sizes. We assume that the digital doc-
ument is a color image in sSRGB coordinates. The color
digital document is converted to grayscale image g, (7,j) by
computing a weighted sum of the nonlinear sSRGB values:
Gn(ing) = 0.30§(0,7,5) + 0.595, (1,4, §)+0.11g, (K, 4, j).
The grayscale digital original g, (4,7) is then optionally en-
hanced to incorporate built-in sharpening in the RSD prediction
filters. To produce the low-resolution image, the grayscale orig-
inal is printed at a resolution of 600 dpi followed by scanning at
300 dpi. Thus, the grayscale digital original is roughly twice the
size of the scan. However, to be used in the training procedure,
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it is important that the pairs of scans and originals be perfectly
registered together. This task is accomplished by using the sub-
pixel registration algorithm developed by Han [12]. Note that
the registered high-resolution image g, (%,;j) will be exactly
twice the size of the low-resolution scan f, (4, 7).

Apart from misregistration, the print-to-scan process in Fig. 4
can cause the low-resolution and high-resolution images in the
training pair (f,(7,7), gn(4,7)) to mismatch in tone. To ensure
that both the images in the registered training pair have the same
tone, it is important that calibrated printer and scanner be used
to generate the training data.

The training set plays a critical role in the quality of RSD
output. With the selection of a proper training set, it is possible
to tune the RSD predictor for a particular level of detail preser-
vation. Using a training set with more smooth textures produces
more suppression of the halftone screen. On the other hand, in-
cluding more examples of nonhalftoned detail in the training set
results in improved rendition of text, edges, and high-frequency
image detail.

5) Estimating Predictor Parameters: Our objective here is
to compute the maximum likelihood (ML) estimates [25] of
% and @ from training images by extracting example realiza-
tions of the pair (Z,X), which we assume are independent.
This is generally difficult since the data does not reveal realiza-
tions of the class label J. This is known as the incomplete data
problem, where observations of the triplet (Z, X, .J) would be
complete data. To address the problem, the expectation-maxi-
mization (EM) algorithm [9], [35] has been used. The training
algorithm, derived in [4], has the following steps.

1) Build the training set using the method discussed

in Section II-A4. The training set is represented as

300-dpi scanned images, g, (i,7) are 600-dpi registered
digital original images, and Nipages is the number of
images in the training set.

2) Extract training vectors from the training set. A training
vector is a pair of low- and high- resolution vectors (z, )
corresponding to any one of the pixels in the low-resolution
images. We will denote the set of low-resolution pixels in
the training set as .S, and the extracted training vectors as
(2s,%5)ses. By writing y,, we refer to the spatial feature
vector extracted from the local observation window using
Laws masks discussed in Section II-A3. We will denote as
N the number of training vectors. In our experiments N
was selected to be 100 000.

3) Select a value for the number M of classes. For best perfor-
mance we recommend using 50-60 classes, however, satis-
factory results can be obtained with as few as 25-30 classes.

4) Initialize estimate of #. Foreach j € {1,..., M}, set 71'](»0)

j(p) to equal one of
the feature vectors from the training set. Set 03(0), 1 €
{1,...,d} as the sample variance of the ith element in
the feature vector. Note that d is the dimensionality of the
feature and equals 8 in our experiment.

5) TIterate the update (16)—(19) for 1 < j < M to estimate 8
NI =3 pyy (jlysﬁ(k))

sES

to 1/M, and set each cluster mean p

(16)
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Fig. 5. Modified SUSAN filter. (a) Block diagram. (b) Scanned image f;(k, 7, 7). (c) Denoised image u(%, 7). (d) Processed image g, (k, 7, j).

Fig. 6. Frequency response of modified SUSAN filter computed using image u(7, 7) in Fig. 5(c). (a) Response at pixel a. (b) Response at pixel b. (c) Response

at pixel c.

N kD
my ) = (17)
(1) _ 1 9
w; = N ZZISPJ\Y (J |y, 0 ) (18)
j seS
(k+1) M
o =3 e, (19)
j=1

where ¢ € {1,...,d} and

- 1 k+1)\ 2 ) k
A Z (ys,z’ - Mgz )) “PIlY (.7|ys70( )) .
Nj sES
(20)
Stop iterating through the update equations when
|N]-k+1) — N;k)| < e At this point, we regard the
resulting estimate 6 as the final estimate of 6.
Note that y, ; and y;; are the i*" components of the d-di-

mensional vectors y, and p;, respectively.
6) Estimate 9. For 1 < j < M, define

N; =3 pry(ily..8) @1)
SES
b, = <z> (22)
Zg
Vzli
1 o
= 2 by (ily..0) (24)
J seS
_(( Bazj Eazj
2] a <2t:1:zj 2zz|j 25)
1 .
= 2 bsblpav(ily.. 0). (26)

J ses

TABLE I
COLOR CHARACTERIZATION OF HP SCANJET 8250. THE R, G, AND
B CHANNELS OF THE SCANNER ARE DENOTED BY k& = 0, 1, AND 2,
RESPECTIVELY. THE NONLINEAR RESPONSE FUNCTION OF THE k-TH COLOR
CHANNEL IS MODELED BY (7, k) = a,(k)(x/255)7s(*) + b, (k),
WHERE x € {0,...,255} REPRESENTS THE INPUT R, G, OR B DIGITAL
VALUE. THE 3 X 3 MATRIX 7" GIVES TRANSFORMATION FROM LINEAR
RGB 10 CIE XYZ COLOR SPACE

k_as(k) ~s(k) bs(k) T

0 0931 2039 0015 | [ e 01eer 09080

1 0935 2161 0009 | | 0.3502 0.7750 —0.1735

2 0919 2013 o011 | L 01606 07026 0.1224
TABLE Il

CHARACTERIZATION OF GRAYSCALE RESPONSE FUNCTION OF HP SCANJET
8250 AND HP LASER JET 4050. THE RESPONSE FUNCTION OF THE SCANNER IS
MODELED BY ¢ (%) = as(x/255)7 + b,. THE RESPONSE FUNCTION OF THE

PRINTER IS MODELED BY ¢, (%) = ap(x/255)7% + b,. x € {0,...,255}

REPRESENTS THE INPUT GRAYSCALE DIGITAL VALUE

as Vs bs ap Tp bp
0.925 2.127 0.001 | 0.795 1.545 0.087

The filter parameters % = ({A;})L,,{8,}}L,) are then
given by

A =%, i 27)
B; = Valj — Loy Vol (28)

B. SUSAN Filter

The SUSAN noise filtering algorithm [26] is a nonlinear fil-
tering technique that can preserve fine image structure like thin
lines and sharp corners even in the presence of significant noise.
The algorithm works by smoothing over only those neighbors in
a local mask which have a brightness level similar to the center
pixel.
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Fig. 7. (a) Scanned image. Descreened images using (b) RSD alone and (c) a combination of RSD and the modified SUSAN filter.

OMUND SCIENTIFIC, America's largest mail-order marketplace of unique items offers|
JARD-T0-FIND SCIEHTIF\C and OPTICAL PRODUCTS FOR THE BUDDING SCIENTIST

1.800-477.0022

Fig. 8. Thumbnails of sample test documents.

The SUSAN filter, as originally proposed by Smith ez al. [26],
has one input and one output. Let f;(k, 7, j) be the noisy input
image, ¢;(k, 1, j) be the processed output image, (%,, j,) be the
current pixel, and N X N be the size of the local window. Fur-
thermore, let o, and o}, be two parameters of the SUSAN filter
which control the spatial extent and brightness range of pixels
which are smoothed by the filter.

The weight assigned by the filter to the pixel (i + @0, j + jo)
is given as

(ki + g, j + Jo)
B [ (fl<k,i+io,j+jo)—
=exp |—

Op

fl(k,io7j0)>2] (29)

where i, j € [N, N]. The output pixel value is then determined
using the equation

gl(kaioajo) = k 107]0 Z Z Z ]
i=—N j=—
1760,]?50

ﬁ](kaz + 7:ovj +jo)fl(k7i + ioaj +jo) (30)

where h(%, ) is a spatial filter weighting given by
.2 .2
Wi, j) = exp (=0 (31)
202
and é(k, 4o, j,) is a normalizing constant defined by
&(k,io, jo) Z Z (ki +io, 5+ o) (32)

i=—N j=—N
1#0,57#0
From (30), we observe that the SUSAN filter is a space-
variant smoothing operator that adapts itself spatially so as to
protect the local image content. While the standard deviation

I 0.3895"
"5 1 0.3543"
“aeav 2 1.2874"

wis 3 1.5630"

IR
IR
IR
IR
IR

o@

e!» o 4 1.5748"

(b)

Lea
Scri

Potentio

(©)

Fig. 9. Selected closeup views of digital original images.

o controls the scale of the spatial smoothing, the brightness
threshold oy, controls the scale of the “brightness smoothing”
[26]. The essential concept of the SUSAN filter is to compute
a weighted average of local pixels where the weights are deter-
mined by both the spatial distance and lightness distance from
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Fig. 10. (a) Scanned image, 600 dpi (source printer: HP Laserjet 4050, source scanner: HP Scanjet 8250). Descreened images using (b) Gaussian filter (7 X 7,
o = 2.5), (c) proposed Algorithm-I (uses Gaussian filter for denoising: filter size = 7 X 7, standard deviation = 2.5), and (d) proposed Algorithm-II (uses RSD

prediction for denoising).

the center pixel. From (30) and (32), it should be noted that
the center pixel (i,,j,) is not used for averaging in the orig-
inal SUSAN filter. This is done to provide a better suppression
of shot noise. In case the denominator in (30) turns out to be
zero, Smith et al. suggested using the median of the eight closest
neighbors to estimate the pixel’s correct value.

The SUSAN filter is not well suited for removing halftone
noise. This is because pixels corresponding to what should be
similar underlying continuous-tone gray levels may have very
different luminance after halftoning. Consequently, the SUSAN
filter will not properly remove the halftone noise.

1) Modified SUSAN Filter: In this section, we develop a
modified SUSAN filter that will effectively remove halftoning
noise from scanned document. Fig. 5 shows the block dia-
gram of the modified SUSAN filter. The filter has two inputs,
fi(k,4,7) and u(i, 7), and one output, g;(k, %, 7). From Fig. 1,
we recall that u(7, j) is the grayscale denoised version of the
color scanned image. The weights assigned by the modified
SUSAN filter to the neighbors around the current pixel (4, jo)

are computed using the gray scale denoised luminance image
u(i,7) as follows:

. .. . L 2
w(‘ + ioaj +jo) = exp [— <u(l + torJ +(‘T]:) u(Z"?JO)) ]

(33)

where, as before, i,j € [—N, N]. While the weights are de-
termined using the denoised image, the output of the modified
SUSAN filter is computed by averaging over pixels in the color
scanned data f;(k,7, 7). The output pixel value is computed
using the equation

1 N N
== > > hid)

C(i(ﬂjﬂ) i=—N j=—N
Wit o, + o) fiki 0.+ o)

gl(kaimjo)

(34)



SIDDIQUI AND BOUMAN: TRAINING-BASED DESCREENING 797

Les
Scr

- Potentio

() (d)

Fig. 11. (a) Scanned image, 600 dpi (source printer: HP Laserjet 4050, source scanner: HP Scanjet 8250). Descreened images using (b) Gaussian filter (7 X 7,
o = 2.5), (c) proposed Algorithm-I (uses Gaussian filter for denoising: filter size = 7 X 7, standard deviation = 2.5), and (d) proposed Algorithm-II (uses RSD
prediction for denoising).
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Fig. 12. (a) Scanned image, 600 dpi (source printer: HP Laserjet 4050, source scanner: HP Scanjet 8250). Descreened images using (b) Gaussian filter (7 X 7,
o = 2.5), (c) proposed Algorithm-I (uses Gaussian filter for denoising: filter size = 7 X 7, standard deviation = 2.5), and (d) proposed Algorithm-II (uses RSD
prediction for denoising).

HWN = —

S WN —= —
B WN = —
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Fig. 13. (a) Scanned image, 600 dpi (source printer: HP Laserjet 5500, source scanner: HP Scanjet 8250). Descreened images using (b) Gaussian filter (7 X 7,
o = 2.5), (c) proposed Algorithm-I (uses Gaussian filter for denoising: filter size = 7 x 7, standard deviation = 2.5), and (d) proposed Algorithm-II (uses RSD

prediction for denoising).

where h(4, j) is as defined in (31) and the normalizing constant
¢(i0,Jo) is given by

c(iovjo): Z Z h(i7j)w(i+io>j+jo)'

i=—N j=—N

(35)

Fig. 5 shows the images at the various inputs and outputs of
the modified SUSAN filter. The denoised image (4, j) acts as
a “control input” based on which the filter coefficients are ad-
justed spatially while processing the linearized scanned image
f1(k,4,j) to produce the output ¢;(k,4,7). Fig. 6 shows the
transfer function of the filter at three different pixel locations in
the letter “T” illustrating how the filter adapts to local variations
in the spatial content. As already mentioned, the denoised image
u(%, j) could be produced using a conventional Gaussian filter
or the halfband filter discussed in [34], but the drawback is that
these filters can result in a loss of detail information in the de-
noised image, such as closely spaced lines. The RSD predictor

performs better in terms of preserving details in the denoised
image and hence in the final descreened output.

It should be observed that we use a luminance image to derive
weights in the modified SUSAN filter. This could lead to blur-
ring in isoluminant regions of the image that are chromatically
different. An extension of the existing method that could avoid
blurring in the isoluminant regions would be to independently
process the R, G, and B channels with the RSD denoiser, and
then use the denoised channels to derive the weights in the mod-
ified SUSAN filter. However, after evaluating the descreening
performance on a wide range of test documents, we felt that
processing of the luminance channel with the RSD represented
a good trade off between computation and quality.

Finally, comparing (34) and (35) with (30) and (32), we see
that the center pixel (i,, J, ) is included for averaging in the mod-
ified SUSAN filter. Experimentally, we found that including the
center pixel had no disadvantage, in fact, it helped improve the
rendition of fine text and high-frequency image detail in the de-
screened output.
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Fig. 14. (a) Scanned image, 600 dpi (source printer: HP Laserjet 5500, source scanner: HP Scanjet 8250). Descreened images using (b) Gaussian filter (7 X 7,

o = 2.5), (c) proposed Algorithm-I (uses Gaussian filter for denoising: filter size

prediction for denoising).

III. EXPERIMENTAL RESULTS

The performance of the descreening algorithm was evaluated
on 20 different test images. The test images were obtained by
scanning printed originals on an HP Scanjet 8250 at a resolution
of 600 dpi. The printed originals included both grayscale and
color images. The scanning mode was selected as “Millions of
Colors” which produces 24-bit color values in the scanner’s
device-dependent RGB color space. The grayscale thumbnails
for some of the test images are shown in Fig. 8. The printed
originals were obtained from a number of different sources:
newspapers; magazines; print samples from two different elec-
trophotographic printers, an HP Laserjet 4050 and HP Laserjet
5500; and print samples from an inkjet printer, an HP Deskjet
6540. While newspapers, magazines, and electrophotographic
printers use periodic clustered-dot screening methods with
varying screen frequencies, the inkjet printer uses a stochastic
halftoning method. Thus, the test images were representative
of a variety of printing methods commonly used in practice.

The scanner’s device-dependent RGB color values were con-
verted to device-independent CIE XYZ color values using the
method developed in [37]. The scanner was characterized by
three nonlinear tone curves, ¢, (x, k) where k € {0,1,2}, and
a3 x 3 transformation matrix, 7', from linear RGB to CIE XYZ
space. The results of color scanner characterization are summa-
rized in Table I. Using the CIE XYZ color values, the device-in-
dependent sRGB color coordinates for the scanned image were
computed as in [3].

= T x 7, standard deviation = 2.5), and (d) proposed Algorithm-II (uses RSD

We used three different methods to produce the descreened
images in this section: 1) low-pass Gaussian filtering; 2) pro-
posed Algorithm-I, which uses a low-pass Gaussian filter for
denoising [see Fig. 1(a) and (b)] followed by modified SUSAN
filtering; and 3) proposed Algorithm-II, which uses RSD predic-
tion for denoising [see Fig. 1(a) and (c)] followed by modified
SUSAN filtering.

Based on the observed performance of descreening, the fol-
lowing parameters were picked up manually. For the low-pass
Gaussian filter, we selected the mask size as 7 x 7 and the stan-
dard deviation as 2.5. For the modified SUSAN filter, we selected
mask size =7 X 7,05 = 2.5, and o, = 21. For the RSD pre-
dictor, we selected the classification window size as 5 X 5, the
prediction filter size as 7 x 7, the number of classes in GMM as
60, and the delta factor § as 2.2 [see (15)]. Choosing this value of
0 selects 3—4 most likely classes for processing the input pixel.

The classification and filter parameters of the RSD predictor
were generated in an offline training procedure. We used a
training set comprising 27 different image pairs. Each training
image pair included a 300-dpi grayscale scanned image and
its corresponding 600-dpi registered grayscale continuous-tone
digital original. The process through which the training image
pairs were generated is illustrated in Fig. 4. For the calibrated
grayscale source printer shown in Fig. 4, we used an HP Laserjet
4050, while for the calibrated grayscale source scanner, an HP
Scanjet 8250 was used in “256 Gray Shades” mode. The results
of grayscale printer and scanner characterization are given in
Table II.
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Fig. 15. (a) Scanned image, 600 dpi (source printer: HP Deskjet 6540, source scanner: HP Scanjet 8250). Descreened images using (b) Gaussian filter (7 X 7,
o = 2.5), (c) proposed Algorithm-I (uses Gaussian filter for denoising: filter size = 7 x 7, standard deviation = 2.5), and (d) proposed Algorithm-II (uses RSD

prediction for denoising).

One important observation that we make is that, while the
test images were obtained from a multitude of print sources,
only one printer was used for generating the training images.
It is also important to emphasize that the training images used
for optimizing the RSD predictor were different from the test
images used for evaluating the performance of the algorithm.

The RSD predictor performs reasonably well in suppressing
halftone noise and preserving image detail, however, the image
quality can be substantially improved when a combination of
both RSD and modified SUSAN filters is used to generate the
final output of the descreening algorithm. This is illustrated in
Fig. 7, where we show a comparison of the processed images
when RSD is used alone, and when RSD and modified SUSAN
filters are used together to descreen the input scanned image.

To demonstrate the performance of the descreening algo-
rithms, we select closeup views of three different regions from
images in our test image database. Fig. 9(a)—(c) shows the
continuous-tone digital original images. The scanned halftone
images, shown in Figs. 10-16(a), are generated by printing the

digital originals on three different printers—HP Laserjet 4050,
HP Laserjet 5500, and HP Deskjet 6540—followed by scanning
on HP Scanjet 8250 at a resolution of 600 dpi. We use an HP
Laserjet 4050 for the halftones in Figs. 10—-12(a), an HP Laserjet
5500 for the halftones in Figs. 13 and 14(a), and an HP Deskjet
6540 for the halftones in Figs. 15 and 16(a). Figs. 10-16(b)
show the results of processing the scanned halftone images with
the low-pass Gaussian filter. We notice that, while the Gaussian
kernel successfully suppresses the halftone noise, the processed
images are excessively blurred. The results in Figs. 10-16(c)
and (d) are produced using the proposed algorithms. Proposed
Algorithm-I is fast and produces a much higher image quality
than the conventional Gaussian blur mask. A further improve-
ment in image quality is achieved using proposed Algorithm-II,
which uses training-based RSD prediction for denoising, but at
the cost of increased computation. Proposed Algorithm-II pro-
duces sharper images than proposed Algorithm-I and performs
better in terms of preserving high-frequency nonhalftoned
image detail. This is particularly obvious when we compare the
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Fig. 16. (a) Scanned image, 600 dpi (source printer: HP Deskjet 6540, source scanner: HP Scanjet 8250). Descreened images using (b) Gaussian filter (7 X 7,
o = 2.5), (c) proposed Algorithm-I (uses Gaussian filter for denoising: filter size = 7 X 7, standard deviation = 2.5), and (d) proposed Algorithm-II (uses RSD

prediction for denoising).

output images in Fig. 12(c) and (d). We can see that the tiny
inch symbols (") are totally blurred in the former, whereas the
latter preserves the high-frequency image detail.

Overall, the Algorithm-II yields good quality on text and
graphics; however, in some cases, there may be concern about
it oversharpening detail. In such cases, it may be desirable
to classify regions of the image as text or photographic be-
fore descreening, and then apply the appropriate algorithm
accordingly.

Finally, we mention the computational complexity of the al-
gorithms. For a 600-dpi letter-sized document, proposed Algo-
rithm-I executes in 28.4 s on a Linux server with 3.20 Intel Xeon
CPU. The execution time for proposed Algorithm-II on the same
machine is 73.5 s. The algorithms were implemented in C and
were not optimized for computation speed. The execution times
do not include the image 1/0O overhead.

IV. CONCLUSION

We developed an efficient descreening algorithm targeted for
scan-to-print pipeline in an MFP. The algorithm can effectively
remove a wide range of clustered dot screen frequencies, as well
as error diffusion noise, in the scanned document while pre-
serving or even enhancing the overall image quality in terms
of image sharpness and edge detail. The proposed methodology
uses training images generated from a real MFP or scanner and
provides a method for automatically optimizing the descreening
parameters with respect to the particular imaging hardware.
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