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Abstract—Dual-energy X-ray CT (DECT) has the potential to  scattering [6]. In practice, it is usually more convenient t
improve contrast and reduce artifacts as compared to traditonal  reparameterize the energy-dependent attenuation as ar line
CT. Moreover, by applying model-based iterative reconstration combination of two basis materials or components [7] such

(MBIR) to dual-energy data, one might also expect to reduce ¢ d iodi So in thi biective is th
noise and improve resolution. However, the direct implemetation as water and iodineé. -0 In this case, our objective IS then

of dual-energy MBIR requires the use of a nonlinear forward tO accurately reconstruct cross-sections corresponairtget
model, which increases both complexity and computation. Al equivalent densities of, say, water and iodine.

ternatively, simplified forward models have been used which Early work on dual-energy reconstruction focused on de-
treat the material-decomposed channels separately, but #se composing the dual-energy measurements into two indepen-

approaches do not fully account for the statistical dependecies - . .
inp?he channels. y P dent sinograms, each of which corresponds to a basis com-

In this paper, we present a method for joint dual-energy MBIR ~ Ponent or material. This can be done by first applying a
(JDE-MBIR), which simplifies the forward model while still ac- material-decomposition function to the two energy measure
counting for the complete statistical dependency in the matrial-  ments. This material-decomposition function then produce
decomposed sinogram components. The JDE-MBIR approach 4 sinograms corresponding to the two basis materialsyMan
works by using a quadratic approximation to the polychromatic .
log-likelihood and a simple but exact non-negativity congaint method_s_have_been p_roposed over the years fo_r experimentall
in the image domain. We demonstrate that our method is determining this function. Alvarez and Macovski [6] propds
particularly effective when the DECT system uses fast kVp the numerical inversion of a polynomial approximation to
swtihing, since il’! this case the. model accounts for the inau.ra}cy the polychromatic measurement process. Other approaches
of interpolated sinogram entries. Both phantom and clinica directly approximate the material-decomposition functis

results show that the proposed model produces images that . .
compare favorably in quality to previous decomposition-baed a polynomial [7]-[12], or compute the decomposition throug

methods, including FBP and other statistical iterative appoaches. an iterative estimation process [4], [13]-[15].
Alternatively, other approaches to dual-energy reconstru
Index Terms—Computed tomography (CT), dual-energy CT, tion work by first reconstructing images from the low- and

spectral CT, tomographic reconstruction, iterative recorstruction, high-energy sinograms using filtered back projection (FBP)
statistical reconstruction, model-based iterative recostruction method, and then performing image-domain material decom-

(MBIR). position [16]-[19]. However, while sometimes effectivhist
type of image-domain reconstruction makes substantial ap-
l. INTRODUCTION proximations, particularly when the X-ray spectrum forleac

: _ measurement is broad. So the resulting reconstructionsmay
UAL'ENET.GY CT.tﬁDtECTL.S 2?”?”5' V\;h'Ch acquf|re X uantitatively inaccurate and suffer from artifacts. Relyean
. ray projections with two distinct spectra, are ol grégte aiive FBP method [20] has been proposed to account for
Interest in appl!catlons such as medical imaging [.1]’ [2 he polychromatic spectra. It repeats the process thapmesf
security inspection [3], [4], and nondestructive testii. [ o ;roiection, image-domain material decompositiord an
The objective of DECT reconstruction is to determine thﬁ)rward projection of the decomposed results with a cafésta

enertgy-dtep_erlldetﬂt attenuatl(;)n at deacth t\:oxel.t_For'FuneftHIy, nonlinear model. This method can be applied to the case where
most materials, the energy-dependent attenuation is @BIyIr o o the gual-energy measurements is missing for each ray.

a_lpprommated 6;‘:’. a Imerz;lr colmb|nat|%n of .tWO bgsgs func- Recently, statistical reconstruction based on iteratiethm
tions corresponding to photoelectric absorption and COMpt,yq aq heen found to be very effective in single-energy CT
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and the decomposition-based methods. The direct-inversio ﬁ T4‘ X-ray source
3

methods reconstruct images directly from dual-energy mea-

surements [32]-[36]. In particular, Fesslet al. [33] for- T

mulated the likelihood function of the detector output by

using a Poisson model. Huh and Fessler [35] applied a

penalized weighted least square (PWLS) approach to DECT

with fast kVp switching acquisition and used an approximate

Gaussian noise model for the log-transformed measurements

These approaches generally include a highly nonlineardodw

model in the likelihood function to model the polychromatic :

measurement process, so this formulation increases caityple

and consequently complicates the optimization. betector % Ml low energy
. L. .. M high energy

Alternatively, decomposition-based statistical apphesc

reconstruct images from material-decomposed sinograms X-ray tube voltage

[37]-[39] with a simplified forward model. Fesslet al. high

[37], [39] applied PWLS approaches with diagonal weighting (140 kVp)

matrices for the pair of decomposed sinogram entries. These ow

methods, which we refer to as independent dual-energy MBIR (80 kVp)

(independent DE-MBIR), model the decomposed sinogram w I L L

entries as statistically independent when conditionedwagie o T T T Time

Conte,nt' The mdependgnt D,E_MBlR methods are Compma‘thﬂé. 1. This figure illustrates a model for fast kVp switchitechnique.

ally simpler than the direct-inversion methods, but theodec A single X-ray tube alternates the voltage between low- aigh-kVp from

pled likelihood functions ignore the correlation in sinagr View to view. Thus each view contains only one measureméherelow- or

entries that are caused by the decomposition process fq], [ M9M-eneroy

Perhaps the most closely related work is Kinahan, Alessid, a

Fessler’s [38] method for dual-energy PWLS reconstrudtion

PET/CT attenuation correction. This framework also alldw

for the potential correlation of sinogram entries, but gfen

the specifics of how the entries should be weighted. &Jerformed for the traditional decomposition-based apghtea

In this paper, we develop a novel JomF dual-eqergy MBI. to ensure perfect registration. The JDE-MBIR method also
(JDE-MBIR) method to reconstruct basis material densities . = . . S
exploits sinogram interpolation; however, the recongtomc

from the decomposed sinograms. In Sec. 1I-C, we introduce ﬁncipally depends on only the real measurements, which

key novelty of the JDE-MBIR method, which is a qu‘rjl(]lrat'makes it robust to interpolation error and capable of pxesgr

approximation to the joint likelihood model. This quadcati . o
S . i . more resolution than other decomposition-based apprsache
approximation weights the decomposed sinogram entries b L )
e also propose a novel non-negativity constraint for the

r}on—glagonal matrlce.s.that expl!cnly model the noise elary DECT reconstruction. Previous approaches have enforaed no
tion in the decomposition domain. The proposed method alsg ~ .. . . . .
. .negativity constraints directly on reconstructed mateféansi-

Bs [32], [35], [43], which is not generally physically cect.
. . . We proposed a non-negativity constraint that is applied in
constraint that accurately reflects the true physical camstof the attenuation space. This constraint can be enforcedas tw

non-negative X-ray attenuation. We use the iterative coatd simple linear constraints on the material images and atalyra
descent (ICD) algorithm to compute the solution. We note P g Y

e . ; . Teéflects the true physical constraints of X-ray attenuation
that a preliminary version of this method was presentedeén t .
In our experiments, we evaluate the performance of the JDE-
conference paper of [42].

An important novelty of JDE-MBIR is that it achievesMBlR by using phantom and clinical data. The experimental

. . : —“results show that the JDE-MBIR significantly improves reso-
computational efficiency by reconstructing from material- " S o

. . o ution and reduces noise in the reconstructed materialityens
decomposed sinograms while retaining an accurate forwar : N
mages and the synthesized monochromatic images.

model and noise model in the decomposition domain. |n The paper is organized as follows. Sec. Il describes the

particular, the ‘]DE'MBIR. models the interdependence in .d%rmulation of the JDE-MBIR. Sec. Ill gives the ICD solution
composed sinogram entries that result from the decompusnb the optimization problem. Sec. IV presents the expertalen

process. This model leads to reconstructions with lessenols L .
than those of the independent DE-MBIR methods results on phantom and clinical data to demonstrate theémag

The JDE-MBIR also allows for accurate modeling of DECﬂuallty Improvement achieved by JDE-MBIR as compared to
) o . : BP and independent DE-MBIR.
data collected using fast kVp switching techniques. Fig. 1

illustrates a model for the fast kVp switching technique, in
which the system alternates between low- and high-energy
measurements from view to view. In this case, each viewlLety € R**2 be the set of dual-energy CT measurements,
contains either low- or high-energy measurements, whéheaswhere each rowy; = [y;1, yin]. Specifies the low- and

material decomposition requires both to be available.@lth
She angular difference between the low- and high-energy mea
surements is small, an additional interpolation step néets

into materials and introduces a simple but exact non-négati

II. MAP RECONSTRUCTIONFRAMEWORK



high-energy projection measurements for iHeray. We use in the detector system. From this, the conditional mean and
subscript “I" for “low-energy” and subscript “h” for “high- variance of); , are given by

energy”. Furthermore, leth € RV*? be the reconstructed El\ Y 3
density images of the scanned object for the selected rahteri Wiglm] = ik ) (3)
basis pair, where each rowm,; = [m; ,, m; ], represents the Var(Aixlm) = Ay +og. (4)
water- and iOdine-eqUivalent densities for ty\té‘ voxel. We Then we approximate the conditional mea_ny@fC as

use subscript “W” for “water” and subscript “I” for “iodine” - ’

In this paper, we choose water and iodine since they are Elyi x|m] = _1Og( ik ) (5)
frequently used as basis materials for separation into lugv a ' Ai k0

high X-ray attenuation characteristics, respectivelyweleer, To compute the conditional variance @f;, we first perform
the use of other material pairs is equally valid. The integerfirst-order Taylor series expansion to the expressiop; f
M specifies the number of distinct ray paths during data (2) about); 4,

acquisition, andN specifies the number of voxels in the Ak
reconstructed volume. Yik = —1 <)\lZ )
Our goal is to reconstruct the material density images, i,k,0
from the measurementg, One typical approach is to compute >~ _log (M) _ ;()\i K — Aik)
the maximuma posteriori (MAP) estimate ofm given by Ai k0 Ak ’
1 -
m = arg glgg{log P(y|lm) 4 log P(m)}, (1) = Elyixlm] — m (/\i,k — /\i,k) , (6)

which yields the approximation we will use for the conditibn

where P(y|m) is the conditional distribution of; givenm, .- oo Ofyix [44],

P(m) is the prior distribution ofm, and( is the constraint _
set for the reconstruction. _ o Var(iglm)  Nip 402 ik +o0?

. . . Var(.%.k|m) - - N2 = 2 ) (7)
The following sections develop the theoretical framework ’ Ak A g

Ak
for the JDE-MBIR algorithm from the basic physical mOdels\ivhere;\i7k is approximated by its observation, .. Thus, we

Section II-A presents a noise model for the dual-ener%/. . ;
-~ il model the conditional mean and covarianceypfas
detector measurements based on photon statistics. SdeBon

then derives the forward model for the dual-energy datagusin Elyilm] = [Elyialm], Elyinlm]], (8)

widely accepted models of polychromatic X-ray attenuation Var(y; 1|m) 0

through materials. With this framework in place, SectioClI Cov(y;|m) = O, Var(yinm) | 9)
Yih

then introduces the primary innovation of our techniquegivh
is a quadratic approximation to the log-likelihood funatio Note that the off-diagonal elements of the covariance matri
in the projection domain. Section II-D then shows how thigre zeros since we assume that the low- and high-energy
innovative model can be applied to the important problem afeasurements are made independently.

fast kVp switching data and provides a theoretical analgbis Assuming y; is conditionally Gaussian with mean and

JDE-MBIR'’s advantages in this application. covariance given by (8) and (9), the distributionyefis given
by
1
A. Measurement Preprocessing —log P(y;|m) = B (yi — E[ys|m]) Wi (y; — E[yi|m])T + C,
(10)

In the X-ray transmission problem, we measure the photon i . i ,
flux after object attenuation, which is denoted by for where C' is a normalizing constant, an/; is the inverse

ray i and source spectrurh, wherek € {1, h}. We also Ccovarance oly;,

measure the air scan photon fluk; o, which counts the wip 0 N .
detected photons with no object present. The air scan counts Wi=1 o T Cov™ (ys|m), (11)
can be calibrated accurately by repeated scans and therefor h
are assumed noiseless. The projection measuremgnts Where
then computed as the negative log of the photon measurement 1 N )\12_’1
normalized by the corresponding air scan photon count, Wil = Var(yiijm) Mg+ 02’ (12)
1 A2
Yi = [yiL Yinl win = o vh 13
. A A YT Vel a8
- {_ log <)\i 1 0) » ~log (/\i b Oﬂ : @) with the assumption of measurements at distinct projestion

being conditionally independent, the distribution of thatad
We model \; ;, as the summation of a Poisson randomgiven the object information is given by,

variable with conditional meap_\l-_,k and a Gaussian random M
variable with mean zero and varianeé. In fact, \; is ] 1 T

.. . . * —log P(ylm) = = i — Ely;lm WZl—Elm +C.
the conditional mean of\; , given the imagem, and the g Plyim) 2 ;(y lyilm]) W (y lyilm])
Gaussian random variable presents additive electronisenoi (24)



However, this function is still a nonlinear function ofi The quantityp; represents the line integral of material den-
because the conditional expectatidtjy;|m], is in general a sities along rayi. We then define a vector-valued function,
nonlinear function of the argument. In Section 1I-C, we will h: R? — R2, as

use this result to construct a fully quadratic approxintatio -
the log-likelihood in (14). h(p;) £ —log < / S(€)e P (#E) d8> . (21)
R
B. Forward Model which models the nonlinear relationship between the nlteri

We next need to formulate a physical model ofty;|m)]. dgnsity projections and the expected photon attenuatiamm F
Given the linear attenuation coefficients, the conditional this, we have
mean of), , is computed by integrating the photon attenuation Elyilm] = h([Am];). (22)

over the source spectrum, The function h does not depend on particular ray paths

Ei ] = Nig = / Xiko Sk(E)e” Jeay; nr&)drqe (15) generally; however, it can be a function of the ray indgx,
if the source spectruny(£), varies among rays. This is the
where& (keV) is the photon energyi, (£) is the normalized case in practice with systems including bowtie filters topgha
photon energy distribution for source spectrémandu(r,£) the X-ray beam to a particular scanned object.
(cm™1) is the linear attenuation coefficient as a function of Thus, substituting (22) into (14), we have the negative log-
locationr and energy, representing X-ray photon absorptiorikelihood function,
per unit distance. Since andm contain the same information,

—log P
note thatE[-|;] = E[-|m]. Y (ylm)
If we discretizep(r, £), then this leads to the expression 1 T (23)
. 2;(:9 ([Aml:)) Wi (yi — h([Am];))” +C
B\ olu] = / Noko Se(€)e” S Aam©qg (16 =
® This is the likelihood function used in the direct-inversio

where A € RM>N s the projection matrix, with its element,methods.
A; j (cm), representing the intersection of rawith voxel ;. While the forward model of (23) could be used directly
We use the distance driven approach [45] to comput&hen for MBIR reconstruction, it is not practical for a number
from (5), the conditional mean of the projection measuregmesf reasons. First, the functioh is generally not measured
is given by on real CT systems. In practice, real CT systems require a
SN A6 knowledge of the material decomposition functidii;!, as
Elyi|u] = —log (/ S(E)e™ szt At dé‘), (17)  described in the following section. This is because' is
" required for implementation of standard direct reconsioac
wherey; = [yi1, ¥:n) andS(E) = [S1(E), Su(E)].

Moreover, the linear attenuation coefficient can be expldassmEthOdS such as FBP; so it is accurately measured using

. L . . cqlibration procedures. Howeveh, is not easily computed
as a linear combination of the mass attenuation functions -1 : L
rom A+ and would require a completely separate calibration

two or more basis materials [7]. With water and iodine as theocedure. Second, direct nonlinear optimization of thePMA

basis, the linear attenuation function can be decomposed ePsr
' P cost function using (23) would be very complex and potelytial

1 (E) = mj o (E) +my, 0 (E), (18) very computationally expensive since it does not have a
where m;,, (mg/cn?) is the equivalent density for basisduadratic form. So our goal will next be to derive a quadratic
materials at voxelj, wheres € {W, I}, ande,(€) (cm?/mg) function that accurately approximates (23).
is the known energy-dependent mass attenuation function fo
basis materiak, which represents the photon absorption pe&l. Quadratic Joint Likelihood Model
unit distance for the particular material with 100% concant |, this section, we introduce a quadratic approximation

tion under standard temperature and pressure. Note that fhey,o negative log-likelihood function, log P(y|m), which
reconstructionsy;,, andm;,,, do not depend on energy. yeqyces the complexity of the reconstruction algorithmlevhi
Then, by substituting (18) into (17), we have still retaining an accurate model of the noise correlatiothie
Ely:|m] decomposition domain.

N We first define the inverse functioh, ! : #2 — R?, as
= —log (/ S(E)e 31 Ai (mj',wsaw(f)erg-,IsaI(f))dg) ) .
» h= (h(pi)) = pi - (24)

2 —log </ S(E)e"’?‘(“’(g))TdE) , (19) In practice, theh~! function is called the “material decom-
R position function”. There are a variety of means to deteemin
where o(£) £ [py,(£), ¢, ()], and p; (mglcn?) is the this function. One may employ a polynomial approximation
material density projection defined as to the h function and then solve numerically fqs; [6],
N N or directly approximate théx—! function as a polynomial
Pi 2 [Piy, Pig) = ZAi’jmj’W’ ZAz‘.,jmj,I 2 [Am);.  [71-[12]. The goefficient_s_ of the polynomial _appr_oximaﬁnn
=1 =1 can be determined empirically by system calibration. Pdasi
(20) calibration methods include a projection-domain calilorat



[11], [46], or an image-domain approach [12]. One may alstuty cycle between low- and high-energy views to optimize
compute the decomposition through an iterative estimatidiose. This is graphically depicted by the fact that the low-
process [4], [13]-[15]. In practice, we approximate the! energy (orange) line may be longer than the high-energy
function as a high order polynomial through calibrationjath (green) line. For typical scans, the low-energy dwell tirge i

will be described in detail in Sec. IV. greater than the high-energy dwell time, but this depends on
With the h~! function, we can then compute the decommany details of the scan parameters. While the dwell time
posed sinogram entrieg; = [p; ., , Di,(], as may be different from view to view, data acquisition still
5 2 h=1 () (25) results in consecutive views alternating between low- agh-h
pi Yi)s energy measurements. Dwell time characteristics are aken

with p; an estimate of the material density projectign, account inh~! by calibration. The dwell time of the view

Performing a Taylor series expansion[efim]; aty; yields, generally will affect the resulting noise variance, witmdmr
dwell times reducing noise variance and short ones inargasi

_ —1

[Am]i = b (h([Am];)) variance. However, this change in variance is fully accednt
=~ h N y) + (h([Am]s) — yi) [V (3)] for by the estimates of noise variance given in Sec. II-A and
= pi+ (R([Am]) — ;) [VA ()], (26) more specifically equation (7).

. ] . For fast kVp switching, each projection contains either-low
whereVh~'(y;) is the gradient of function ' aty;. For our o high-energy measurements. Therefore, for each projecti
_probler_n,Vh*l(yi) is @2 x 2 invertible matrix. This results gjthery, | or y; ,, is missing. In the case of the true likelihood
in the linear approximation we will use in the model, of equation (23), this missing measurement can be accommo-

. _ -1 i ighti i
yi — h([Am];) = (p; — [Am];) [Vh 1(%)} . 27) dated by setting the weighting matrix to be

Thus_ by substitutin_g (2_7) into (23), we approximate the true w0 . for low-energy projections:
log-likelihood function in (23) by 0 0

W, — (30)
1 0
—log P(y|m) = 5 > (bi — [Amy) B; (pi — [Am);)" + C, . for high-energy projections.
1 (28)

0 win
where the estimated material projectign, is given by (25), So in this case, the missing measurement is always weighted

T " Lo by zero.

and the statistical weighting matrixg;, is given b _ - N
istical weighting Wi, Is g y However, in the case of the joint approximation in (28),
B; 2 [V Yy " Wi [Vh ()] L. (29) we still must determine a value for the weighting matBx

Each B; is a 2x2 symmetric matrix representing the inversérom equation (29) and the estimated projectign, from

covariance of the decomposed sinogram entfieEachB, is équation (25). Unfortunately, both these values depend on

" A, . the missing measurement. In order to solve this problem, we
therefore also positive semi-definite and has a zero eiggmva 9 b

. ; . . : interpolate the missing value @f, and use this interpolated
if and only if the diagonal matrixi¥’;, has a zero elgenvalue,value to compute both the gradient/of! used for the weight
which implies that\;; = 0 in (12) or A;;, = 0 in (13). P 9 9

The equation (28) gives the likelihood model we use irrpatrlx Bi, and- the projectiory;. Wh|le th!s mter_polatloq
rocess does introduce error, this error is relatively mino

the proposed JDE-MBIR method. In contrast to the direcly % o joint log-likelihood approximation is used, which

inversion methods, our model has a simple quadratic form, S . . ; . . .
it allows for direct application of existing quadratic apfza- allows using relatively straightforward interpolatiochaiques
without significant concern for the quality of the reconstad

tion methods for the computation of the MAP reconstructiorilr.na es. In order to see this. consider the plots of Fias 2 and 3
It should also be noted that our weighting matri¥;, is ges. ' P 9

in general non-diagonal for everv proiection. The off-diaal Fig. 2 graphically illustrates the importance of using the
9 gona’for every projection. g joint log-likelihood approximation rather than the simpli
elements ofB; provide significant information about the nms%.

. o, : . fied independent approximation using some typical values
correlation between distinct decomposed sinogram entries of [y, yin] — [3.9,3.8] at 80 kVp and 140 kvp. In the

o o . independent approximation, the off-diagonal entrieBpfare

D. Likelihood Model For Fast kVp Switching Modality set to zero, so the errors iy, and j;, are modeled as

Our proposed model is particularly well suited for Clindependent, and the approximated log-likelihood functias
systems that use fast kVp switching to acquire dual-energlfipsoidal level curves. This is a very poor approximatain
data. Fig. 1 graphically illustrates a model for the fast kVthe true log-likelihood and artificially imposes a penaloy f
switching technique, in which the system alternates beatweany deviation from its uniqgue maximum. With incorporation
low- and high-energy measurements between adjacent vieafsthe off-diagonal terms inB;, the joint approximation is
Fast kVp switching requires high-speed detectors and X-reyuch more accurate. The joint approximation appropriately
sources and generators that allow for fast switching, butritains the under-specified nature of the maximum-likeltho
offers the advantage that low- and high-energy measuremeprojection estimate, allowing it to move along its leveldin
are interlaced closely in time and space so that misaligitsnewithout change in cost.
due to motion or other effects are minimized. Notice that a Fig. 3 illustrates more precisely the effect of interpaati
fast kVp switching system has the capability of varying therror in the joint and independent log-likelihood approaim
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tions. The figure shows contour plots of the log-likeliho
function of Fig. 2, but also shows the effect of a 5% inti
polation error in the missing sample. The interpolatioroer
has a relatively minor effect on the joint approximation,jleh
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interpolation error because the weighting matri¥;, has a S _ . _ _
zero eigenvalue in the direction of any interpolation error (&) joint, high attenuation (f) independent, high attenuation

This is due to the fact that the underlying matfiX; of Fig. 3. This figure plots the contours of the true log-likelild function
: : : o d different approximations. We compare the independesdeiand the
equation (29) has a zero in the location of the missing Samﬂ?)éint model within three different attenuation levels. Wit each figure, we

In practice, we will see that the independent approximatit the contours of the true log-likelihood (blue), approation without
results in reconstructions which lose resolution due to tlirgerpolation error (red), and same approximation véi#a interpolation error

interpolation process. AIternativer, the joint appro&ilimn present (green). Without loss of generality, we fix the amnsphoton flux

. . . . to be [A g, An,0] = [5000,5000], and then simulate the low, medium,
approach preserves resolution by primarily depending ¢y 0rind high ‘attenuation cases with photon measurenénis\,] equivalent to
the uninterpolated samples in the reconstruction. [2500, 2650], [500, 550], and [100, 110], respectively. Each plot covers two

Fig. 4 provides a pseudocode of the joint |Og-|ike|ihooatandard deviations of water and iodine projections.

approximation for fast kVp switching. First, the missing
measurement is interpolated, and then the interpolatadevabf b.

; ; . ; jrs Can be further adjusted to balance between noise
is used to compute the material decomposition estimate, 5 resolution in the reconstruction. By choosing this nhode
and the projection weighting matrixz;.

we perform the regularization independently on each of the
material components in the image domain.

E. Prior Model Our particular choice of potential function is the
We model the reconstructed density image as a Markg\(/enerallzed Gaussian MRE-GGMRF) of the form
: . . »
random field (MRF) with the following form pe(A) = |A| _ (32)
1+ |A/cslPe

—log P(m) = Z Z bjr,sps(mj,s - mr,s)u (31)

. o < : .
(W} (frTec with 1 < ¢ < p < 2. This type of prior has shown to

be effective in many tomographic reconstruction studigg,[2
wheres is the index of material typ€j, v} specifies a neigh- [24], [47]-[49]. With 1 < ¢ < p < 2, the potential function is
boring pair consisting of voxej and voxelr, C represents strictly convex [21], which guarantees global convergeotce
the set of all such voxel pair$,, ; is the prior strength for the cost function and produces reconstruction as a conisiuo
voxel pair {j,7} and materials, and p(.) is the potential function of the data [50].

function. We choose;, s to be inversely proportional to We setp = 2.0 and¢ = 1.2 in our application, since this
the distance between voxgl and voxelr, and the scale particular setting has shown a desirable compromise betwee



JDE-MBIR(y1, yn, w1, w, h =, VA~ 1){ S
for s =1to M do ) Min B
if w;n =0 then . max
yin < Interpolation E 05
else if w;, = 0 then 2
y:1 < Interpolation 2 o e
end if 2
Yi < [Yil, Yin ;
W; « diag{w;, w;n} . N 5 05
pi + h~1(y;) {Material decompositioh =
Bi « [VA~ (y:)] "' Wi[ VR (i)~
gnd for 1 -0.5 0 05 1
m < ImageRecor, B) water density (mg/cm®)
return m
} Fig. 5. This figure illustrates the feasible values of a vpxel
m; = [mj,my,;], wherem; , is the water-equivalent density and

Fig. 4. Pseudocode of JDE-MBIR for DECT that uses fast kVptavinig.  ™j,1 is the iodine-equivalent density. The yellow region shdwesdonstrained
First, we interpolate the missing sample for each projectiSecond, we solution set, which is formed by the intersection of only thalf planes,
perform material decomposition and also compute the tatisweighting one defined bynmax and the other byimin. The green arrows show the
matrix. Finally, we use the decomposed sinograms and weghtatrices to attenuation vectors at intermediate energies.
reconstruct the images iteratively. The subroutine ImageR is described in
Fig. 8.

Fig. 5 illustrates the constraint set and the associateds mas

) S o ) ~attenuation vectors. Then the constraint set for the entire
noise and resolution in similar clinical studies [21]. W'“']mage denoted by, is given by

p = 2.0, the potential approximates a quadratic function for

small voxel differences, which preserves details in lowtcast Q= Q’N, (36)
regions. The valueg = 1.2, approximates the behavior of a . .

generalized Gaussian MRF [50] for large voxel diﬁerence@’,hereN is _the number of voxels in the reconstructed volume.
which preserves edges in high contrast regions. The pagamé&tl€arly, €' is a convex set and so 3.

¢ models the transition between low and high contrast costent 1he proposed constraint allows negative values for the
In practice, we choose, = 10 mg/cni for water image and reconstructed densities of water and iodine. This is bexaus

¢, = 0.5 mg/cn? for iodine image. the reconstructed densities are only some coefficientshier t
linear combination that produces the equivalent atteonati
However, in the attenuation domain, the combination of the
F. Constrained Optimization reconstructed material densities should remain non-ivegat

In X-ray tomographic reconstruction problems, an impdrtan .Combining th(_a Iog-likeliholod in (28) and th_e prior in (31)
physical constraint to the reconstruction is that the Iinegl'th the constraints in (36) yields the expression for theMA

attenuation of any material at any photon energy must be nc;ﬁg:onstructlon of equation (1),

negative. More specifically, for afl € [40, 140] keV, we know 1 M .
that i = arg min {5 Z} (pi — [Am];) B; (p; — [Am]:)
i (€) =mj-p(€) 20, (33) =
where the photon energy range [40, 140] keV is of particular + Z Z bjr,sp(mjs —mys) p . (37)
interest for medical imaging and is above fhedge of iodine. se{W,I} {j,rtec
Let Q' be the constraint set of a single voxel value, which
is given by I1l. OPTIMIZATION ALGORITHM

QO = Neepaoao {m; € R2:m;-n(E) >0}, (34) There are a wide variety of techniques that can be used to
' ' solve the optimization problem (37), from which we choose

where n(&) £ % is the normalized mass attenuatiorthe i'Ferative coordinate descent (I.CD) algo_rithm. The ICD
vector. In this Way,Ql is formed by the intersection of analgorithm has the advantages that it has rapid convergénce a
infinite number of half planes. However, the form@fcan be high spatial frequencies [25], especially when initiadizeith
dramatically simplified by observing that the directiongf) FBP to obtain a good original estimate of low frequencies.
moves continuously witlf. As a consequence, the constrainfISO; it can easily incorporate the proposed non-negativit
can be represented much more simply by the intersection@nstraint.

only two planes corresponding to the minimum and maximum The ICD algorithm sequentially updates voxels of the recon-
values ofn(€), asnmin = n(40) andnma, = n(140), structed image. Within each ICD iteration, every singleelox

is updated with remaining voxels fixed so as to minimize the
Q' ={m; € R*:m; - nmin > 0andm; - nmax >0}, (35) total cost function. Within each ICD update, we compute the



exact solution to the constrained voxel update with the Klaru :
Kuhn-Tucker (KKT) condition. 10000N"

More precisely, by changing only one voxel while fixing \
the rest of the image, we compute the voxel updaig, from
the current imagemn, by

—p(A)

8000

6000

value

4000

ue 2000 N

M

. )1 .

T, 4 arg min {5 Z lp: — [Am]; + A, ; (mj — U)HQ&
i=1

%o 0 A:* 500
+ > D bpaplus—mes) o, (38) 9

e{W,I} redj . L. . . . ] .
s€{W.1} Fig. 6. This figure illustrates the desired substitute fiomctThe substitute

We denote||z|? = xzBaz” for simplicity. We introduce a Lunctign,tg(?;A;), fiquals the trflue fu?ctiOTfrr)](A),thattALghﬁﬁ and uptpe:j
dummy variableu = [u,u,] 10 represent the voxel value o4 e e ncton everyunere e Tus e s uaranee
being updated, to distinguish from its current value,.

Define the error sinogram; £ Am — p. Then intuitively,

the first term in equation (38) describes the change in th&uitively, a valid substitute function for minimizatisshould
error sinogram introduced by the change in the voxel valuequal the true function at the current point and upper bound

Equivalently, equation (38) can be written as the true function everywhere else. Fig. 6 illustrates therdd
1 ) substitute functiong(A; A*). It is important to know that re-
mh; ¢ arg min {(U —m;)f + 5 llu—myla, (39) placing the true potential function with the substitutedtion
still guarantees monotone convergence of the cost function
[24], [53].
+ Z Z bjr.sp(us = mir,s) + const. o . Replacing the potential function in (39) with the subsgtut

sE{W.I} €0y function yields a quadratic cost function of

where §; and §, are the first and second derivatives of the

. . . . 1
log-likelihood function, which are given by m; < arg IIélSIzl, {(u —m;)bh + 5Hu — ijgz
M
6, = A; ;Biel, (40) 1
1 ; 3 +§ Z llu — mT||12b7~ + const. p , (44)
M redj
0, = > A7.B;. (41)  where
= birw Q) 0
wheree; = [Am]; — p; is thei'" row of the error sinogram, Y & [ JT’WO mw . ] : (45)
and A; ; is a scalar that represents the intersection of iray g
with voxel j. Furthermore, define
Solving the 2-D optimization problem in (39) simultane- N T T
ously for both material components may be difficult, since th ¢1 = 01— bam; — Z Yrmy (46)
prior term cannot be explicitly expressed as a function:of r€9j
To address this problem, one may use a functional substituti 2 & b2+ Z (5 (47)
approach [24], [51]-[54]. In this problem, we introduce a red;j

precisely, letA = u;, —m,. s andA* = m; ; —m, 5. Then we

define the substitute functiog(A; A*), as min %uqﬁguT + ugy + const. (48)
q(A; A7) = FLEAT 4 (42) S U Ny > 0
. . >
with U Nmax > 0
p'(A") This is a standard quadratic minimization problem with two
Ajrs = A+ (43) |inear constraints. It can be solved exactly by applying the

o PAY) KKT condition following a standard procedure [55]. Fig. 7

Cjrs = p(A") - TA ’ shows the procedure for computing the solution by using the

whereC;, , is an offset constant and therefore can be ignoréd<T condition. As shown in the pseudocode, we first test
during optimization. This functiong(A; A*), satisfies the the KKT condition on the unconstrained solution. If it fails

following two constraints for a valid substitute functiopd], We solve the minimization problem on either boundary of the
[51]-[53]. feasible set by rooting the derivative of the resulting 13tco

s . function, and then we test the corresponding solution with t
q(A%A%) = p(AY), KKT condition. Once the KKT condition is met, the particular
q(A; A7) > p(A). solution becomes our updated value. This is because the KKT

V



KKTSolve(p1, ¢2, Nmin, Nmax){ ImageRecon, B){

/I unconstrained solution m < raw FBP images
u < —¢l oyt A + Compute
if % nmin <00r u-nma. <0 then e+ Am —p
/I solve on the boundary defined by n,;, =0 Tmin, MPmax < Compute
k < Nmin(1)/nmin(2) repeat
u —p1(1) + ko1 (2) ) 1, -k repeat
B2(1,1) — 2kea(1,2) + k2 p2(2,2) ’ j + Select a voxel according to random schedule

A (- [$2(1,1), 62(1,2)] + 61.(1)) / (munin(1)) o o e by Using (40) and (41)

for eachr € 05 do

e -
It Tmax < 0 OF A < 0 then 1, < Compute by using (43) and (45)

I/ solve on the boundary defined by ny.x =0

end for
k nmax(l)/nTZc((Ql)) k) 1, ¢2 + Compute by using (46) and (47)
u r o 1, k] 1 KKTSONE(b1, 3o, mins )
¢2(111) _2k¢2(1,2)+k ¢2(2,2) J 1, #¥2, Ttmin, "tmax

e+ e+ A*_’j(ﬁlj — mj)

A (u [92(1,1), 62(1,2)] + 61(1)) / (max(1)) m < m+ 6;(ri; —my)
_ until All voxels have been visited
if u-nmin <0o0r A <0 then o until Imagem converges to the desired level
/I only feasible solution is the origin return m
u + [0, 0] }
end if
end if Fig. 8. Pseudocode for reconstructing the image by usingrgenCD
. algorithm. We initialize m with the raw FBP images and also initialize
end if the error sinogram. Within each iteration, for each setkatexel, we first
return wu compute the column of the forward projection matrix. Secomd compute
} first two derivatives of the log-likelihood function. Thirdve compute the

coefficients for the surrogate prior. Fourth, we computefitisetwo derivatives
of the quadratic cost function. Fifth, we solve the optirtizza problem with
the KKT condition to obtain the voxel update. Finally, we af&l the error
sinogram and the image. We defifieas an/V x 1 vector that is 1 for element
j and 0 otherwise. The subroutine KKTSolve is described in Fig

Fig. 7. Pseudocode for solving the quadratic minimizatioobfem in (48)
with the KKT condition. We first test the KKT condition on theeonstrained
solution. If it fails, we solve the minimization problem oither boundary of
the feasible set, and then we test the corresponding solutith the KKT

condition. Once the KKT condition is met, the particulargimn becomes
the updated value. The origin will be the only feasible sohuif no qualified

solution is found in the previous cases. The derivation f@ $olution is

provided in the appendix. IV. EXPERIMENTAL RESULTS

We have applied the proposed JDE-MBIR algorithm to real
3D DECT reconstruction problems. Raw data were acquired

condition is both necessary and sufficient in this problen d .
to the fact that the cost function and the constraints are gﬁ' a Discovery CT750 HD scanner (GE Healthcare, Wi, USA)

: . ) ..~ 1N a dual-energy fast switching acquisition mode, with the X
continuously differentiable and convex [56]. The originllwi :
be the only feasible solution if no qualified solution is fnlunray tube voltage alternating between 80 kVp and 140 kvp

: . I S from view to view. This spectral CT imaging technique is also
:2 ttf;]eepz)irs;)/;onu;)((:ases. The derivation of the solution is joken referred to as Gemstone Spectral Imaging (GSI). Each scan

contains approximately 2500 views per rotation, with each

The pseudocode in Fig. 8 summarizes the procedure fo¢p having the same numbero_f views, which is. approximately
reconstructing the image from the decomposed sinograms. W0 Each scan was made with a large bowtie present. Each
initialize the image and the error sinogram with the raw FBRf the reconstructed images has a thickness of 0.625 mm,
images. Then within each iteration, for each selected vox#ith 512x512 pixels. We reconstruct with water and iodine
4, we first compute thg” column of the forward projection Sinograms after material decomp05|t|0n, with _each m_ater!a
matrix, which is A, ;, by using the distance driven method'@ving the same number of views per rotation, which is
[45]. Second, we compute the first two derivatives of th@PProximately 2500. The reconstructed images represent th
log-likelihood function,#; and .. Third, we compute the Cross-sections corresponding to water- and iodine-etguiva
surrogate prior coefficients),, for each of the neighboring densities in units of mg/cfn The “monochromatic” image,
voxels by using (43) and (45). Fourth, we compute the ﬁrg{hl_ch specmes the cross-section corresponding to the-atte
two derivatives for the quadratic cost functiafh, and¢,, by Uation given the photon energy, can then be generated by a
using (46) and (47). Fifth, we solve the optimization prable Ilnear_comb|nat|0n of the reconstructed density imagesas |
in (48) by using the KKT condition to obtain the voxel update€duation (18). Note that we do not generate monochromatic
Finally, we update the error sinogram by forward projectingfnograms for reconstruction.
the voxel update and update the image as well. The functionh—! in equation (25) is approximated by using
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a high order polynomial with the following form, in [60], we compute the MTF gain as the image modulation

R R 1 divided by the object modulation.

[Piw s Dia] = B (Yi: Yin) (49) " The JDE-MBIR method improves the spatial resolution
L L Lk and simultaneously reduces noise in the phantom study. This

= Z Zcmvnawymyﬁh’ Z Zcmm,lylﬁy?h - is illustrated by the GEPP reconstructions shown in Fig. 9.

m=0n=0 m=0n=0 As shown in the figure, JDE-MBIR provides greater noise
where L = 10. The specific coefficients for the polynomialsuppression than FBP and independent DE-MBIR in both
defined as{cm,n.wsCmmn,.}, ¥vm € {0,1,---,L}, Vn € water and iodine images, which leads to visually smoother
{0,1,---, L}, are computed in a calibration procedure fohomogeneous regions. Meanwhile, JDE-MBIR improves the

each device as described in [57]. As described in Sec. II-Bsolution by producing a less blurred wire spot and sptial
these coefficients depend on many specific details of theore distinguishable bars in both material density images
device’s physics including the X-ray spectra and detectoan also observe the resolution improvement in the monechro
sensitivity. The coefficients of the material decompositise matic images as shown in Fig. 10, which are synthesized from
estimated in two stages. First, a polynomial is estimated fioe reconstructed material density images shown in Fig. 9
correct for beam hardening on a water phantom, and theased on equation (18). The increased visual separation of
the full set of coefficients are estimated for complete nialterthe bars is illustrated by the profile plots in Fig. 11.
decomposition. The visual improvement on the GEPP reconstruction is

We will compare the proposed JDE-MBIR method withurther verified by quantitative measurements in Table thwi
two other decomposition-based methods, one using FBP cemparable noise level in 70 keV monochromatic images,
construction and the other using independent DE-MBIR. TIREOE-MBIR significantly reduces noise as compared to FBP
FBP method consists of first obtaining two material sinogranand independent DE-MBIR, especially for water images. JDE-
from the material decomposition and then performing FBMBIR also improves the in-plane resolution substantially a
on each sinogram with a standard reconstruction filter kerneompared to FBP and independent DE-MBIR, according to
Then the resulting material density images are processedthgse two different resolution metrics.

a correlation-based noise reduction method [40], [58]. TheFig. 13 and 14 show the resolution and noise of the
independent DE-MBIR was implemented in the same way asonochromatic images across various photon energiesawith
described in Sec. II-D. That is, the off-diagonal terms af thmatched noise level at 70 keV. Fig. 12 presents the monochro-
weighting matrix,B;, were set to 0. All of the above methodsmatic images at two distinct energies as an example. As
work with the same decomposed sinograms. In practice, wkown in Fig. 13, JDE-MBIR method significantly raises the
implement the interleaved non-homogeneous ICD algorithresolution as compared to the FBP method and the independent
[24] for both independent DE-MBIR and JDE-MBIR. ThisDE-MBIR method. Fig. 14 also shows this resolution improve-
method focuses computation where updates are mostly needeent by investigating the bar patterns at three differeatiap
which consequently accelerates the convergence. Both fheguencies. Each plotis computed using the method destrib
independent DE-MBIR and JDE-MBIR are implemented oim [60]. Note that for each spatial frequency, the JDE-MBIR
a standard 2.53 GHz clock rate 8 core Intel processor wornkethod produces the largest contrast (i.e., closest toeal id
station with the Linux operating system. For both methodsgalue of 100%) across all energies. This is consistent wai¢h t
we run 10 iterations to obtain the fully converged results. visual quality of the resolution bars in Fig. 10 and 12.

In order to compare fairly among different reconstruction In addition, Fig. 13 shows that the JDE-MBIR monochro-
methods, in each experiment we match the noise level nmatic image contains less noise than the FBP image for all
70 keV monochromatic images. That is, the difference ehergies of diagnostic interest. It also has a more trastabl
the noise standard deviation measured within a fixed ROl nsise characteristic than the monochromatic image agsdcia
less than 1 HU among different methods. We adjust the priaith the independent DE-MBIR method. More precisely,
strength,b;x s in (31), to match the noise level. although the independent DE-MBIR monochromatic image

We first evaluate the performance of the methods with tleg@pears slightly less noisy than the JDE-MBIR monochrornati
phantom. For quantitative assessment, we use a 20 cm didgmage for some energy levels, the noise rises rapidly for the
eter GE Performance Phantom (GEPP) scannéd in0.625 independent model as energy decreases. This is due to the fac
mm helical mode at pitch 0.938:1 in 540 mAs in 300 mm fielthat the iodine component dominates the photon attenuation
of view (FOV). The GEPP contains a Plexiglas insert witht low energy and the independent DE-MBIR method tends
resolution bars and a 50m diameter tungsten wire placed into produce noisy iodine reconstructions. Also, optimizithg
water. We measure the standard deviation within a fixed R@fior strength for independent DE-MBIR becomes difficuledu
in a homogeneous region of Plexiglas for noise assessmeatthis huge variation. This result also indicates that oae c
and also measure the modulation transfer function (MTF) lbyrther reduce noise while still earning the advantage atiap
using the wire for in-plane resolution assessment [59]. Thesolution by using the JDE-MBIR method.
width of the MTF is proportional to the spatial resolution. | We also compared the convergence speed of the JDE-
this paper, 10% MTF width is chosen for comparison, sinceMBIR and the standard single-energy MBIR [24] with the
generally reflects the visual resolution of the image. Intgald GEPP reconstruction to measure the additional computdtion
to the above wire method, we also use the cyclic bar patterndsurden occasioned by the dual-energy reconstruction. For
measure the spatial resolution. Following the method desdr single-energy MBIR, we simply took the water sinogram
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(a) FBP, water (b) indep. DE-MBIR, water (c) JDE-MBIR, water (d) Difference: (c)— (a) (e) Difference: (c)— (b)

(f) FBP, iodine (9) indep. DE-MBIR, iodine (h) JDE-MBIR, iodine (i) Difference: (h)— (f) (j) Difference: (h)— (g)

.

(k) FBP, 70 keV () indep. DE-MBIR, 70 keV (m) JDE-MBIR, 70 keV (n) Difference: (m)— (k) (o) Difference: (m)— (1)

Fig. 9. Comparison of FBP, independent DE-MBIR (indep. DBIR) and JDE-MBIR reconstructions from a GEPP scan. Frontadmottom: water density
image, iodine density, and 70 keV monochromatic image. Fiftrto right: FBP, independent DE-MBIR, JDE-MBIR, differee between JDE-MBIR and
FBP, difference between JDE-MBIR and independent DE-MBMsplay window for water images: window width (WW) 600 mgfrand window level
(WL) 1000 mg/cnd; for water difference images: WW 600 mg/érand WL 0 mg/crd; for iodine images: WW 15 mg/cfand WL -0.5 mg/cr; for iodine
difference images: WW 7.5 mg/cimand WL 0 mg/cm; for monochromatic images: WW 600 HU and WL 0 HU; for mono efiéince images: WW 300
HU and WL 0 HU. The white box on the 70 keV FBP image (first at thiedtrow) indicates the region where the noise standardatievi is evaluated.

2 ® L 2
L 2 L 2 Y
Y Y Y

(a) FBP (b) independent DE-MBIR  (c) JDE-MBIR

Fig. 10. Resolution bars in the 70 keV monochromatic images fa GEPP
scan reconstructed with: (a) FBP; (b) independent DE-MR&RJDE-MBIR.
Display window: WW 200HU and WL -400HU. Each image zooms irihte
resolution bars of the monochromatic images shown in Figit® avdifferent
display window.

the resulting single-energy MBIR reconstruction has ndipar
ularly quantitative meaning, but it is still useful for coarng

the computation time. Both algorithms were implemented on
the same software platform as described at the beginning of
this section and run on the same hardware. Fig. 15 shows
the comparison of convergence speed between JDE-MBIR and
single-energy MBIR. Since these two methods do not reach the
same final cost due to different cost functions, we scaledke c

of the single-energy MBIR such that it has the same final cost
as JDE-MBIR, assuming full convergence has been reached in
10 iterations as usually observed in practice. It is showtmén
figure that both algorithms converge within 4 iterationsthis
experiment, the average total computation time per i@nati
for JDE-MBIR was 1.47 times the computation required for
single-energy MBIR case as measured across about 9 million

and weight from the data used in the experiment of Fig. xels located differently in the 3D FOV. The main reason
and performed the reconstruction. In this case, the datd user the increase in computation stems from the fact that the
in JDE-MBIR and the single-energy MBIR share the sanms@nograms for JDE-MBIR contain twice as much data as that
scanner geometry and settings such as helical pitch, aotatfor single-energy MBIR because of interpolation.

speed, and local statistics for the water component. N@e th We also evaluated the reconstruction accuracy of JDE-
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TABLE |
COMPARISON OFFBP,INDEPENDENTDE-MBIR AND JDE-MBIRFOR
MEASUREMENT OF NOISE AND INPLANE RESOLUTION FOR THE IMAGES
IN FIG. 9. THE RESOLUTION MEASURED BY USING THE CYCLIC BARS
METHOD IS MADE IN THE 70 KEV MONOCHROMATIC IMAGES AT THE
THREE LOWEST SPATIAL FREQUENCIES

Noise Measurement (Standard Deviation)

water iodine 70 keV mono.
(mglcn?) (mglen?) (HU)
—* FBP 21.21 0.60 14.18
(&) profile line on the image Independent DE-MBIR 14.31 0.89 1355
JDE-MBIR 9.68 0.30 13.69
200 .
100 { ‘ Resolution Measurement (10% MTF by the wire method)
water iodine 70 keV mono.
0 (Ip/cm) (Ip/cm) (Ip/cm)
~100 FBP 6.15 5.81 6.60
= Independent DE-MBIR 8.61 6.35 8.90
L -200 JDE-MBIR 11.80 10.59 11.70
o
2 -300
g Resolution Measurement (MTF gain by the cyclic bars method)
& -400 6.25 Iplcm | 7.69 Ip/cm 10 Ip/cm
© (%) (%) (%)
500 FBP 1155 3.70 0
-600 Independent DE-MBIR 15.35 3.74 0.25
—FBP a ~‘ | JDE-MBIR 40.30 19.10 3.28
-7001 ——independent DE-MBIR N
_gool.——OE-MBIR__ | | | | |
20 40 60 80 100 120 140 160 Fig. 18 presents the corresponding monochromatic images

pixels along the reference line . . . ;
at various energies. The resolution improvement can be ob-

. _ _ served in the monochromatic images as compared to the
o s o o icpentant DR, vt O two methods, with a fixed noise fevel in the 70 keV
profile line on the image: (b) attenuations along the profite with FBP Monochromatic image. However, according to the resolution
(blue), independent DE-MBIR (green), and JDE-MBIR (red). and noise curves shown in Fig. 13, one can achieve less
noise while still retaining better resolution for the JDEBNR
method as compared to the FBP method, by adjusting the
MBIR by using a GE GSI contrast phantom, which waprior strength. These results illustrate the potentiagdastic
scanned in32 x 0.625 mm axial mode in 384 mAs in benefits of the JDE-MBIR method for DECT reconstruction.
500 mm FOV. This phantom consists of a water phantohote that either JDE-MBIR or independent DE-MBIR can
with several cylindrical rods inserted, each of which corga be further improved by tuning the parameters for a particula
known concentrations of iodine and water. The JDE-MBIRIinical application.
reconstructions of this phantom are shown in Fig. 16, while
the theoretical iodine and water densities are given ineldbl V. CONCLUSION
Fig. 16 also plots the reconstructed iodine and water dessit In this paper, we have presented a JDE-MBIR approach
for FBP and JDE-MBIR. For each rod with known iodingor DECT reconstruction. The proposed method combines a
concentration, we calculated the average of the reconsttucjoint likelihood model to account for the noise correlation
values in an ROI within the rod. As shown in the plots, FBih material-decomposed sinograms with MRF regularization
and JDE-MBIR produce equally accurate material densitiesand features a physically realistic constraint that ersoomn-

We also compared FBP, independent DE-MBIR, and JDEegative X-ray absorptions. We also demonstrate that tlie JD
MBIR by using real clinical data, as shown in Figs 17 and 18IBIR method retains a more accurate model of the data
The data were collected from an abdominal scaédix 0.625  likelihood than other decomposition-based statisticadaitive
mm helical mode at pitch 0.984:1 in 540 mAs in 500 mmmethods when DECT uses fast kVp switching techniques.
FOV. Fig. 17 shows that the JDE-MBIR dramatically reducebhe experimental results on phantom and clinical data show
the noise in the homogeneous regions (e.g., liver) in batat the JDE-MBIR method can reduce noise and increase
water and iodine images. The bone structures in the JDisolution as compared to the FBP method and the independent
MBIR water image also suffer from less blooming and havieE-MBIR method. We expect that the improvement in terms
sharper edges than those of the other two methods. Meanwhile lower noise and higher resolution brought by the JDE-
the JDE-MBIR method improves the resolution in the iodin®IBIR method may potentially reduce the CT dose required
image as compared to the other two methods. For examgta, a particular image quality. Future investigation widlsess
one can see details such as vessels in the liver more cledrbyv to further improve material separation performance and
in the JDE-MBIR image. investigate potential clinical benefits.

(b) attenuations along the profile line
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(a) FBP, 50 keV (b) indep. DE-MBIR, 50 keV  (c) JDE-MBIR, 50 keV (d) Difference: (c)— (a) (e) Difference: (c)— (b)

(0] (i) Difference: (h)— (f) (i) Difference: (h)— (g)

Fig. 12. Comparison of FBP, independent DE-MBIR (indep. MBIR), and JDE-MBIR monochromatic images of the GEPP ated#ffit energies. From
top to bottom: photon energy at 50 keV and 130 keV. From lefiight: FBP, independent DE-MBIR, JDE-MBIR, difference Wween JDE-MBIR and FBP,
difference between JDE-MBIR and independent DE-MBIR. Bigpvindow for monochromatic images: WW 600 HU and WL 0 HU; thfference images:
WW 300 HU and WL 0 HU. These monochromatic images are syrgesising the reconstructed material densities shown inHmased on equation (18).
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Fig. 13. Resolution and noise of the monochromatic imagessacvarious energy levels with different reconstructioethods.
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(a) cyclic bars with frequency of 6.25 Ip/cm (b) cyclic bars with frequency of 7.69 Ip/cm (c) cyclic bars with frequency of 10 Ip/cm

Fig. 14. MTF measured at the cyclic bars of three differertiapfrequencies in the monochromatic images across ughoton energies. The JDE-MBIR
produces higher MTF values than the other two methods ahi@ktfrequencies.
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4 —©-Single—energy MBIR
——JDE-MBIR

Iteration

(a) iodine image

Fig. 15. Comparison of the convergence speed of the JDE-MBIR the

(b) water image

; . g —~20 theoretical é
standard single-energy MBIR with the GEPP reconstructiorFig. 9. The % o EBP
cost for the single-energy MBIR is scaled such that it readhe same final 9 % JDE-MBIR
cost as JDE-MBIR. g
:15’ &
TABLE II D
THEORETICAL DENSITIES OF IODINE AND WATER FOR THE INSERTED 3 10
RODS IN THEGSICONTRAST PHANTOM AS SHOWN INFIG. 16. 2
k] &
k<]
Rod 1 2 3 4 5 6 25 @
lodine (mg/cnt) 0 2.5 5 7.5 15 20 3 Py
Water (mg/crd) | 1000 | 999.5 | 999 | 998.5 | 997 | 995.9 g o =
0 5 10 15 20
theoretical iodine density (mg/cm3)
APPENDIX (c) reconstructed iodine density
DERIVATION OF THE SOLUTION
We derive the solution to the 2D quadratic minimization ~ 1000 theoretical
. . . . . . ) 1
problem defined in equation (48). The optimization problem £ L ER ® .
is given b 2 9
9 y % 999r
min  —ugsu’ + u¢p; + const. S
w2 S 908f
St U Nmin >0 and u-nmax >0 g
s o
whereu € ®? and g %7 :
[%]
T ©
o1 = [$1(1),01(2)]", £ 996 4
by = $2(1,1)  #2(1,2) 996 997 998 999 1000
2 = ¢2(1 2) ¢2 (2 2) ’ theoretical water density (mg/cm3)
3 3
(d) reconstructed water density
Nmin — [nmin(1)7 nmin(2)]7 . i
Fig. 16. Top row shows the JDE-MBIR reconstructions of the GElI
NMmax = [nmax(l)v nmax(2)]- contrast phantom. This phantom consists of a water phantwe &nd several

) ) N cylindrical rods, each of which contains certain concditng of iodine and
We solve this problem by using the KKT condition. Thevater. Display window for water image: WW 600 mgfnwL 1000 mg/crd;

it ; ; ; for iodine image: WW 17.5 mg/cf WL 7.5 mg/cn®. Bottom two rows show
KKT condition states that a valid solutian should SatISfy' the reconstruction accuracy of FBP and JDE-MBIR for iodind svater.

where A\; and )\, are the KKT multipliers. Then we
can compute the solution within four different cases, i.e.,
()\1 = 0,)\2 = 0), ()\1 > 0,)\2 = 0), (/\1 = 0,)\2 > 0) and

G2u” + P — Minfin — Aonan 0
)\1 ‘U Ngin = 0 . . . . .. .
solution with the inequality conditions. Since the costdun
Az U Mmax - = 0 (50) tion and the constraints in this problem are all continupusl
U Npin > 0 differentiable and convex, the KKT condition is both neeegs
U Nmax > 0 and sufficient [56]. Thus, a solution becomes our updated
A > 0 value if and only if it satisfies both the equality and inedyal

conditions.

1) Ay = 0,\2 = 0. This combination gives the uncon-
strained solution, which can be computed from the first
equation in (50) as

(A1 > 0, A2 > 0). Within each case, we compute the solution

by using the equality conditions and then test the resulting

u=—; ¢1. (51)



15

SR __/,_7.__/ S S e
(j) Difference: (g)— (a) (k) Difference: (h)— (b)

(o) Dence: _ ()

(m) Difference: (g)— (d) (n) Difference: (h)— (e)
Fig. 17. Comparison of FBP, independent DE-MBIR and JDE-RIB&constructions for an abdominal clinical scan. From topdttom: FBP, independent
DE-MBIR, JDE-MBIR, difference between JDE-MBIR and FBHfetience between JDE-MBIR and independent DE-MBIR. Frofintteright: water density
image, iodine density image, and 70 keV monochromatic im&jsplay window for water images: WW 300mg/énand WL 1000mg/cr#; for water
difference images: WW 200 mg/érand WL 0 mg/crd; for iodine images: WW 17.5mg/ctnand WL 6.5mg/cr; for iodine images: WW 8 mg/cand
WL 0 mg/cn?®; for monochromatic images: WW 400HU and WL 40HU; for mondefiénce images: WW 200 HU and WL 0 HU.
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(d) independent DE-MBIR, 60 keV (e) independent DE-MBIR, 100 keV (f) independent DE-MBIR, 130 keV

(i) JDE-MBIR, 130 keV

(m) Difference: (g)— (d) (n) D (o) Difference: (i)— (f)
Fig. 18. Comparison of FBP, independent DE-MBIR and JDE-RIBerformance on monochromatic images of an abdominatalisican at various energies.
From top to bottom: FBP, independent DE-MBIR, JDE-MBIR fefiénce between JDE-MBIR and FBP, difference between JEHRVand independent DE-

MBIR. From left to right: photon energy at 60 keV, 100 keV, at®D keV. Display window: WW 400HU and WL 40HU; for mono diféerce images: WW
200 HU and WL 0 HU. These monochromatic images are synthisigag the reconstructed material densities shown in Figbdsed on equation (18).

ieence: — (e)



We need to test this solution with the following inequal-[7]
ity conditions
0

>
= (8]
> 0 (52)

U - NMmin
U - Mmax
2) A1 > 0, = 0. In this case, we solve the optimization [°]

problem on the boundary with - n,;,, = 0. This
combination leads to the following equation [10]

o2 _n?;lin u” — 1
= . 53 11
Cm 0 N 0 (53) 11
The solution is given by [12]
ul = - <¢2_ % mgnml%% ) 1 [13]
T'min 2 Mmin (54)
)\1 — m1n¢2 ¢1
nmln(bg min [14]
This solution needs to be tested with
[15]
U * Mmax 2 0
(55)
Ao> 0 [16]

3) A1 =0, > 0. In this case, we solve the optimization
problem on the boundary with - 1, = 0. Similarly [17]
to the previous case, this combination gives the solution

[18]
UT _ (¢ ¢2 maxnlmdx¢2 ) (bl
(56)

nmax¢2 max
AQ — max¢2 ¢1 (19]

nmax¢2 max

This solution needs to be tested with [20]

U - NMmin Z 0
(57)
A > 0 [21]

4) A1 > 0, A2 > 0. With this combination, the only feasible

solution isu = [0, 0].

In practice, we test the four cases sequentially. Once Bl
the equality and inequality conditions are met, the sotutio
becomes the desired voxel update. This process is showrpi)
Fig. 7.

[22]
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