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Abstract

We quantitatively compare filtered backprojection (FBP), expectation maximization (EM), and Bayesian
reconstruction algorithms as applied to the IndyPET scanner - a dedicated research scanner which has
been developed for small and intermediate field of view imaging applications. In contrast to previous
approaches that rely on Monte Carlo simulations, a key feature of our investigation is the use of an
empirical system kernel determined from scans of line source phantoms. This kernel is incorporated into
the forward model of the EM and Bayesian algorithms to achieve resolution recovery.

Three data sets are used, data collected on the IndyPET scanner using a bar phantom and a Hoffman
3-D brain phantom, and simulated data containing a hot lesion added to a uniform background. Recon-
struction quality is analyzed quantitatively in terms of bias-variance measures (bar phantom) and mean
square error (lesion phantom).

We observe that without use of the empirical system kernel, the FBP, EM, and Bayesian algorithms give
similar performance. However, with the inclusion of the empirical kernel, the iterative algorithms provide
superior reconstructions compared to FBP, both in terms of visual quality and quantitative measures.
Furthermore, Bayesian methods outperform EM. We conclude that significant improvements in recon-
struction quality can be realized by combining accurate models of the system response with Bayesian
reconstruction algorithms.
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1 Introduction

Iterative methods for positron emission tomography (PET) reconstruction can theoretically improve re-

construction quality by accurately modeling the data acquisition process and by regularizing the ill-posed

inverse problem. Importantly, iterative methods can achieve significant resolution recovery by incorporat-

ing an accurate model of the tomography scanner accounting for sinogram blurring due to detector crystal

penetration, inter-crystal scatter, depth of interaction and other effects[1, 2, 3]. However, this advantage

is often not fully exploited in practical implementations of iterative reconstruction algorithms.

Early investigations for the expectation maximization (EM) reconstruction algorithm[4] have found

that a more accurate system kernel can reduce bias in region-of-interest (ROI) quantitation[5, 1]. However,

the more accurate kernel increased the variance of the ROI estimates obtained from EM reconstructions,

even for simulated projection data that had been generated with the same kernel. This effect is likely due

to the fact that a more accurate system kernel results in a more ill-posed reconstruction problem[5], which

is consistent with the observation of ringing artifacts[6]. The increased ill-posedness adversely affects the

quality of EM reconstructions, particularly, since EM does not use any explicit regularization.

Bayesian reconstruction techniques[7, 8, 9, 10, 11, 12, 13, 14] on the other hand, explicitly address the

ill-posedness by regularizing the reconstruction through use of a prior model such as a Markov random

field (MRF)[15, 7, 8, 16, 17, 18, 19]. Consequently, we would expect Bayesian methods to provide better

reconstruction quality as compared to EM, especially when a more accurate system kernel is used. Qi,

et al., [6, 20] have successfully applied 3D Bayesian MAP reconstruction combined with an advanced

response model[3] to data from the microPET[21] and the Siemens/CTI HR+[22] scanners. The results

demonstrate that this approach can give superior resolution and ROI quantitation at lower variance as

compared to FBP and OSEM[20, 23].

In this study, we quantitatively compare FBP, EM, and Bayesian reconstruction algorithms and eval-

uate the impact of accurately modeling the scanner for iterative reconstruction. Our results are based on

simulated data and phantom data acquired on the IndyPET tomography scanner[24], a high resolution

dedicated research scanner for use in small animal, intermediate sized animal and small field of view hu-

man (brain, breast) imaging applications. The scanner has a non-circular detector geometry consisting of

two, approximately planar detector banks mounted on a rotatable gantry as shown in Fig. 1.

In contrast to previous studies which have relied on analytical modeling of detector properties[25, 26]
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Figure 1: (a) Photograph of the IndyPET scanner with the front cover removed. (b) Layout of the scanner showing
the detector modules, septa, and shielding. The detector separation is adjustable.

or on Monte Carlo simulations[27, 28, 29, 3], we have obtained a system kernel for the IndyPET scanner

empirically using scans of line source phantoms. This empirical approach is simplified by the non-circular

detector geometry of the IndyPET scanner which allows for measuring the full range of incident photon

angles for any pair of detectors using only sources positioned near the center of the field of view. While

our approach is also applicable to a circular scanner geometry, more measurements would be required

since the incident photon angle is a strong function of radial source position. We note that the empirical

approach implemented in this study ignores the depth dependence along the lines of response, though

it could be added as an additional model parameter. As shown in Fig. 2, our results indicate that even

for a centered source and normal photon incidence, our empirical system kernel is very different from the

triangular shape expected for idealized detectors.

For EM and the Bayesian reconstruction methods, we compare reconstruction quality for our empiri-

cal (2-D) kernel and the simple triangular kernel shown in Fig. 2. The objective of this comparison is to

demonstrate the importance of accurate system modeling for iterative reconstruction, and, more impor-

tantly, to investigate the relative improvement in reconstruction quality separately for each algorithm. We

note that the use of the triangular system kernel is not intended to reflect performance of the empirical sys-

tem kernel compared to existing accurate system modeling techniques such as Monte Carlo methods[3].

To further investigate the importance of accurate system modeling for iterative reconstruction, we use

parametric system kernels of different widths to study the impact of deviations in the kernel.

In addition to FBP and EM, we compare three different prior models for Bayesian reconstruction; a

Gaussian Markov random field (GMRF), a generalized Gaussian Markov Random field (GGMRF)[18] and
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Figure 2: Plots of triangular and empirical detector kernels for the IndyPET scanner which characterize the response
of a single detector pair as a function of source offset from the ideal projection line. The triangular kernel is the
analytical result, based on solid angle, for a source located midway between idealized detectors of width 3.3 mm.
The empirical kernel shown here was obtained as a slice from Fig. 7 and corresponds to a projection with normal
detector incidence for a source centered between the detectors.

a recently proposed nonlinear wavelet prior model[30, 31] that performs space-adaptive regularization.

Furthermore, we evaluate a modification of Bayesian methods proposed by Fessler and Rogers[32] that

produces reconstructions with approximately uniform resolution. All Bayesian methods are based on

maximum a posteriori (MAP) estimation using iterative coordinate descent (ICD) optimization[9, 14].

To compare reconstruction methods, three data sets are used: The first data set was acquired on

the IndyPET scanner using a bar phantom. This phantom is similar to an X-ray line-pair phantom and

generates square-wave emission profiles with different periodicities. Reconstructions are analyzed in terms

of spatial bias and variance which are calculated by fitting harmonic series to the reconstructed wave

forms. Different combinations of reconstruction algorithms and system kernels are compared in terms of

the bias-variance envelopes obtained by varying a smoothing parameter for each method. In addition,

we compare the convergence speed of EM and Bayesian GMRF MAP. The second data set was collected

on the IndyPET scanner using a Hoffman 3-D brain phantom. Reconstruction images are compared in

terms of visual quality. The third data set consists of simulated projection data containing a circular lesion

added to an approximately uniform background. The reconstructions are analyzed quantitatively in terms

of the expected mean square error (MSE) for the lesion and the background regions. While mean square

error is not a direct indicator of clinical performance, it provides an objective measure of the quantitative

accuracy of the reconstruction.

2 IndyPET Scanner

As illustrated in Fig. 1, the distinguishing feature of the IndyPET scanner is the use of two, approximately

planar detector banks with adjustable separation which are mounted on a rotatable gantry. In comparison
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to using a full ring of detectors, this geometry results in reduced parallax and approximately uniform

resolution throughout the field of view. The detector separation can be adjusted for each subject, giving

increased sensitivity for small subjects. The use of two detector banks is also economical since fewer

detectors are required compared to a circular geometry. However, because the detectors do not form a

full ring, data must be collected at different gantry angles, resulting in increased imaging time.

The two detector banks of the scanner consist of 8 CTI-HR[33] BGO detector modules each. The

radius of curvature of the detector banks is 41.2 cm, the same as in the original CTI-HR scanner. The

detector crystal in each of the 16 detector modules is cut into a 7 (transaxial) by 8 (axial) array of crystal

segments with a transaxial spacing of 3.3 mm and an axial spacing of 6.3 mm. The crystal depth is 30 mm.

As indicated in Fig. 1(b), removable septa can be mounted directly in front of the detectors. These

septa limit the oblique angles between axial slices and significantly reduce the influence of scatter[24]. The

septa were used for all data sets collected in this study.

The scanner uses CTI bucket controllers and coincidence electronics. Coincidence events are sorted

into sinogram bins corresponding to angle and displacement using the CTI ACS-II real-time sorter. For

all results presented here, automatic randoms correction was performed. The bucket electronics report

the singles count rates for each bucket with and without deadtime correction. The ratios of these count

rates were used for deadtime correction.

Figure 3(a) shows the resolution of the IndyPET scanner as a function of source position relative to

the center of the field of view for different detector separations. The resolution throughout the field of

view is within approximately 20% of the resolution at the center and is nearly independent of detector

separation. Figure 3(b) shows the sensitivity of the scanner for typical values of detector separation in

comparison to that of a ECAT 951/31R scanner (Siemens/CTI Inc., Knoxville, TN, see [34, 35]).

Data collection on the IndyPET scanner is performed in a ‘step and shoot’ mode where multiple frames

of data are collected with equal durations at uniformly spaced gantry angles. Because the detectors do

not form a complete ring, the data collected for each frame form a diamond shaped sinogram segment as

illustrated in Fig. 4. In cases where radioactive decay is significant, data can be collected using multiple

gantry sweeps to avoid imaging different angular positions at significantly different activity levels.

2.1 Non-uniform Sinogram Spacing

The geometry of the IndyPET scanner results in projection measurements that are non-uniformly spaced

in angle and displacement. Iterative reconstruction algorithms such as EM and Bayesian techniques can

account for the non-uniform spacing, however, FBP requires a sinogram with a full set of evenly spaced
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Figure 3: Resolution and sensitivity of the IndyPET scanner. The plots in (a) show the resolution of the IndyPET
scanner as a function of source offset from the center for different detector separations. The resolution was measured
as geometrical mean of the radial and tangential FWHM measurements obtained from line source reconstructions
using FBP with a ramp filter. The sinogram for the resolution measurement was generated as described in Section
2.1 using only the 12 central rows of the sinogram segments for each frame. The limit of 12 rows was chosen
to minimize the angular error in the generation of a full sinogram to less than 0.01 degrees to characterize the
capabilities of the scanner. The barplot in (b) shows the absolute sensitivity of the scanner as a function of detector
separation in comparison to that of a CTI 951/31R. The sensitivity was obtained by calculating the percentage
of detected decays for a 1 ml spherical source in the center of the field of view using all 56 rows of the sinogram
segment. Note that the axial field of view of the CTI 951/31R scanner is 10.8 cm as compared to 5.0 cm for the
IndyPET scanner.

angles and uniform displacements.

For the FBP reconstructions in this study, an approximate sinogram was generated as follows: First,

the gantry rotation steps for all data sets were chosen to be integer multiples of the 1.0 degree angular

span of a detector segment in the center of the detector banks. Specifically, the detector separation was

set to 37.815 cm, and the data sets were acquired using 45 frames with gantry rotation steps of 4 degrees

between frames. The sinogram segments were individually corrected for relative detector sensitivity,

deadtime, and decay. The normalization for detector sensitivity was performed using measurements

collected with a plane phantom centered in the field of view. A full sinogram was then obtained by

summing the segments after they had been shifted by the appropriate number of rows to account for

the gantry rotation. This procedure avoids interpolation which would smooth the sinogram data. The

resulting sinogram is approximate because the center of curvature of the detector banks does not coincide

with the center of gantry rotation. To limit the effect of this approximation, we only summed the central

angular region (32 out of 56 rows) of each segment as illustrated in Fig. 4. For 32 rows, the maximum

error in the angular position of the lines of response relative to a uniform angular spacing is 0.14 degrees

as compared to the 1 degree angular span of one detector segment. In contrast, at 56 rows, the error in

angular position is 0.9 degrees which would result in significant loss of resolution for FBP reconstruction.
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Figure 4: Diamond shaped sinogram segment acquired by the IndyPET scanner for a single gantry position. The
points a, b, and c illustrate the positions of sample lines of response relative to the detectors and the sinogram.
For FBP reconstruction, a full sinogram is generated by combining the central angular portions of the sinogram
segments collected at different gantry positions.

Since the 32 central rows contain 81% of the total number of elements in each sinogram segment, we

consider this limit an acceptable tradeoff between FBP resolution and sensitivity.

We emphasize that the procedure above was only used for FBP reconstruction. All iterative reconstruc-

tions used the original, uncorrected sinogram segments including all 56 rows. For iterative reconstruction,

the projection angle and displacement for each element of each sinogram segment were calculated using

the exact scanner geometry.

2.2 Modeling the System Kernel

Iterative reconstruction algorithms can achieve resolution recovery by incorporating an accurate system

kernel that accounts for sinogram blurring due to the width of the detector segments and effects such as

crystal penetration and inter-crystal scatter into the forward operator of the reconstruction algorithm. For

the IndyPET scanner, we obtained an empirical system kernel using scans of line sources. We compare

iterative reconstructions using the empirical kernel and the triangular kernel shown in Fig. 2.

2.2.1 Parameterization of System Kernel

Let x be the N -dimensional vector of emission rates of the pixels in raster order, and let y denote the

vector of photon counts for all M projections, where for a single reconstruction plane M = 45 × 3136,

corresponding to 45 gantry positions, each with a sinogram segment containing 3136 measurements. Define

P as the M ×N projection matrix such that Pij is proportional to the probability that an emission from
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tion i and location s, hi(s) = h̃i(∆ts,i).

pixel j is registered by the ith detector pair. The expectation E[y] is then given by

E[y] = Px . (1)

Let s = (s1, s2) denote the Cartesian coordinates in the field of view of the scanner and define hi(s)

as the kernel of the ith detector pair. Then Pij can be computed as the 2-D integral

Pij =
∫

s∈Sj

hi(s) ds (2)

where Sj is the set of coordinates s in pixel j. We now assume that pixels in the reconstruction image

are considerably smaller than the detectors so that hi(s) is approximately constant over the support of a

single pixel. Then

Pij ≈ hi(scj )Aj (3)

where Aj is the area and scj is the center coordinate of pixel j. For larger pixels, this assumption can be

enforced by computing P for a sub-sampled pixel grid and summing the contributions for each pixel[6].

As illustrated in Fig. 5, define the ideal projection i as the line connecting the surface centers of the

ith detector pair. Let θi be the projection angle, and let ti be the displacement of projection i from

the coordinate origin. The displacement difference ∆ts,i between an arbitrary location s = (s1, s2) and

projection i is ∆ts,i = s1 cos(θi) + s2 sin(θi) − ti. We model the detector kernel hi(s) as having the form

hi(s) = h̃i(∆ts,i) (4)

= h̃i(s1 cos(θi) + s2 sin(θi) − ti) (5)
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where h̃i is a 1-D function of ∆ts,i. This parameterization ignores the depth dependence of the detector

kernel, i.e., the coordinate parallel to the projection line; however, this dependence could be added as an

additional parameter.

Considering effects such as detector penetration, we expect the differences between the h̃i(∆ts,i) for

different detector pairs i to be predominantly due to the incident photon angles of the different projections.

For the IndyPET scanner, the detector banks are approximately planar, and it is a good approximation

to assume that the incident photon angle is equal to the projection angle. Therefore, we assume that the

detector kernel is only a function of the projection angle θi

hi(s) = h̃i(∆ts,i) = h(θi, ∆ts,i) (6)

where we call the 2-D function h the system kernel. We note that our assumption of planar detector banks

is used only to simplify the parameterization in (6), and the exact shape of the detector banks is used to

determine the positions of lines of response in the measurement of the system kernel in Section 2.2.2 and

for all iterative reconstructions. The validity of this assumption is confirmed by the weak dependence of

the measured system kernel in Fig. 7 on projection angle. The parameterization in (6) does not account

for the boundaries between different detector blocks, an effect that has typically been ignored[3, 6, 20].

While the parameterization in (6) is applicable to the geometry of the IndyPET scanner, we note

that an analogous approach is applicable to a circular geometry. In that case, the parameterization

can be expressed in terms of the displacement t of the lines of response, i.e. hi(s) = h(t, ∆ts,i). This

parameterization is possible because the angle of incidence is a function only of the displacement when

depth dependence of the detector kernel is ignored, as assumed for the IndyPET geometry above. For a

circular geometry, an empirical system kernel can be obtained as described in the next section by extending

the measurements to the radius of the field of view.

2.2.2 Empirical Model Based on Line Source Scans

We measured the system kernel h(θi, ∆ts,i) using scans of an axially oriented line source phantom, resulting

in an approximate point source in the transaxial 2-D reconstruction plane. The line source was a stainless

steel tube with an inside diameter of 0.5 mm filled with F-18 FDG. As illustrated in Fig. 6(a), the line

source was mounted on a translation stage positioned near the center of the field of view and 65 data

sets were collected as the source was moved horizontally in steps of 0.5 mm. Figure 6(b) shows the signal

measured for a single detector pair as a function of the horizontal position of the line source.

The measured counts for all detector pairs and all needle positions were corrected for detector efficiency

and parameterized by projection angle θ and displacement difference ∆ts,i between the needle position
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Figure 6: (a) Illustration of the procedure used to determine the empirical system kernel using line source scans.
(b) Signal measured by one detector pair as a function of line source position. The FWHM of the detector pair
response is roughly equal to the detector crystal spacing indicated by the scale bar.

s and the ideal projection line. All counts were then accumulated onto a 180 × 200 point meshgrid

with dimensions −24.87 deg ≤ θ ≤ −24.87 deg and −10 mm ≤ ∆t ≤ 10 mm using nearest neighbor

assignment, followed by normalization of each grid value by the number of assigned measurements. Note

that θmax = 24.87 deg is the maximum projection angle for the zero gantry position using our detector

separation of 37.815 cm. To reduce noise, the gridded data were filtered with a 2-D Gaussian lowpass

kernel with a standard deviation of 2 samples, corresponding to 0.2 mm in displacement and 0.5 degrees

in angle. The result is an estimate for the system kernel h(θ, ∆t).

A critical component in performing the procedure described above is to estimate precisely the physical

positions s of the line source. While the horizontal position increments are accurately known by virtue

of the translation stage, the initial source position s0 is unknown. However, estimating h(θ, ∆t) with a

constant offset in the assumed source positions implies that reconstructions of data collected at a zero

gantry angle will be shifted by the same offset. For reconstruction of data collected at multiple gantry

angles, this results in circular blurring artifacts since projections at non-zero gantry angles α are modeled

using the rotated kernel h(θ − α, ∆t). Thus, to achieve resolution recovery, it is critical to estimate the

initial source position with an uncertainty much smaller than the width of a detector crystal segment.

Interestingly, the circular blurring effect can be exploited to iteratively estimate s0 and h(θ, ∆t) by

using an approach similar to that proposed in [36] for center of rotation calibration in computed tomog-

raphy (CT). Below, we summarize our approach, the details can be found in the Appendix. We first

calculate an initial kernel h(θ, ∆t) using an estimate of s0 obtained from the sinogram. Given a second

set of projection data containing a point source taken at different gantry angles, we use h(θ − α, ∆t)
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Figure 7: Meshplot (a) and contour plot (b) showing the empirical system kernel h(θ,∆t) for the IndyPET scanner.
The kernel is parameterized by projection angle θ and the displacement ∆t of the source from the ideal projection
line.

to separately reconstruct the projection data collected at each gantry angle. The positions of the point

source in the reconstruction images for each gantry angle allow us to estimate the phase and radius of the

circular blurring, which in turn give an improved estimate of s0. Based on this improved estimate, we

calculate a new h(θ, ∆t) and iteratively repeat the calibration procedure until the radius of the circular

blurring is below a specified threshold, in our case 0.57 mm. Note that this procedure calibrates the offset

relative to the center of rotation of the gantry, independent of errors in the detector mounting.

Figure 7 shows our empirical system kernel for the IndyPET scanner estimated using the iterative

procedure described above. The result does not indicate a significant dependence on projection angle. This

effect is due to the limited range of projection angles acquired with the IndyPET scanner. Furthermore,

our measurements become noisier towards larger angles since, due to the scanner geometry, the number of

projections decreases with increasing angle, and fewer data points are available in this range. For iterative

reconstruction, we truncate the system kernel to the range |∆t| < 5 mm.

We note that even though our line source measurements are performed only in the center of the field

of view, these measurements capture the full range of incident angles for any detector pair and therefore

provide a sufficient characterization for any line of response within the field of view (ignoring depth

dependence). For reconstruction, this characterization of the lines of response is used throughout the field

of view, taking into account the exact scanner geometry including the curvature of the detector banks.
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3 Reconstruction Algorithms

We compare reconstructions obtained using FBP, EM, and Bayesian techniques with three different prior

models. For EM and the Bayesian methods, we use the exact Poisson counting statistics to model the

data acquisition. Given the notation of section 2.2.1, the shifted Poisson log-likelihood[37] is

log py|x(y|x) =
M∑
i=1

(
− (Pi∗x + s + 2r) + (yi + 2r) log(Pi∗x + s + 2r) − log((yi + 2r)!)

)
(7)

where Pi∗ the vector formed by the ith row of the projection matrix P and s and r denote contributions

due to scatter and random coincidences respectively.

In general, scatter and randoms are a function of the projection index i; however, for this study, we

assumed identical scatter and randoms values for all projections. We only performed a simplistic scatter

correction by manually setting the scatter value s to the average sinogram activity near the edge of the

imaged object. Randoms were not modeled for the reconstruction; the projection counts yi were randoms

pre-corrected by the scanner acquisition hardware and the parameter r was set to a small constant (r ≤ 1.5,

which in all cases was less than 2% of the average projection value) to compensate for negative sinogram

entries yi resulting from the pre-correction. Importantly, for a given set of projection data, the same

values of s and r were used for all reconstruction algorithms to ensure a fair comparison.

The system matrix P was calculated from h(θ, ∆t) using (6) and (3). In our implementation, we speed

up computation by storing P . To reduce storage space, we only store the submatrix for the zero gantry

position. The elements Pij for non-zero gantry angles are obtained by rotating the coordinates of pixel j

by the negative gantry angle and mapping the rotated coordinates into the pixel grid at the zero gantry

position. Corrections for attenuation, deadtime, and decay were performed by multiplying the entries

Pij by the appropriate factors. The attenuation coefficients were calculated by forward projecting the

estimated support of the imaged object using a constant attenuation coefficient. This is appropriate for

our phantoms since the attenuation of acrylic and FDG are approximately equal.

3.1 Bayesian Reconstruction Algorithms

Bayesian reconstruction methods regularize the tomographic reconstruction by using a prior probability

distribution p(x) that incorporates assumptions about typical images such as local smoothness. The image

reconstruction is computed as the approximate maximum a posteriori (MAP) estimate

x̂MAP = arg max
x

(log p(y|x) + log p(x)) . (8)
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We compare three Bayesian techniques using a Gaussian Markov random field prior (GMRF), a gen-

eralized Gaussian Markov random field (GGMRF) prior, and an adaptive wavelet graph model (WGM)

prior respectively. The GMRF prior can be written as

log p(x) = − 1
2σ2

∑
{k,j}∈N

bk−j(xk − xj)2 + constant (9)

where σ is a smoothing parameter and N is the set of all neighboring pixel pairs in the image x. The bk−j

are the 8-point MRF neighborhood coefficients with bk−j =
√

2/(4(
√

2 + 1)) for horizontal and vertical

neighbors, and bk−j = 1/(4(
√

2 + 1)) for diagonal neighbors.

A disadvantage of the GMRF is that its squared potential function tends to oversmooth edges. To

address this problem, several edge-preserving potential functions have been proposed[15, 7, 8, 16, 17, 18,

19]. One such model is the GGMRF[18] which can be written as

log p(x) = − 1
pσp

∑
{k,j}∈N

bk−j(xk − xj)p + constant (10)

where p is a shape parameter. We chose p = 1.5 because we have found that this significantly enhances

edge sharpness without producing the segmented appearance that can result with smaller values of p.

The adaptive wavelet graph model (WGM)[30, 31] is a nonlinear prior model formulated in the wavelet

domain. The WGM exploits dependencies between wavelet coefficients at different resolutions to adapt

the degree of regularization to the local image statistics. This allows for strong regularization of uniform

image regions while edges and textures are preserved. Due to the adaptation, the prior is data dependent

and strictly speaking, does not result in a MAP reconstruction, however, for simplicity we refer to it as

a MAP technique. The WGM requires a set of training data to estimate the model parameters. For

this study, the WGM was trained on the same set of MRI reconstructions as previously described[30, 31].

Since the training data serves to provide information about the interpolation of textures and edges, it is

not necessary to specifically train the model on PET imagery.

The MAP optimization for all three prior models was performed using the iterative coordinate descent

(ICD) algorithm[18, 14]. The ICD algorithm sequentially optimizes the MAP equation (8) with respect to

single pixel values. In comparison to gradient methods[38, 10, 12, 39], the ICD algorithm allows for simple

enforcement of pixel positivity, resulting in more robust convergence. However, a disadvantage of ICD is

that the computational complexity cannot be reduced by using a factored matrix model as in [12, 3, 20].

While previous ICD implementations rely on FBP initialization, in this work, we propose a simple

multiresolution initialization strategy. Starting at a reconstruction resolution of 16×16 pixels with constant

initialization, we compute a sequence of coarse-to-fine scale reconstructions where each reconstruction is
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initialized with the interpolated result from the next coarser scale. This strategy eliminates the need for

a preliminary FBP reconstruction while providing good computational efficiency. Specifically, the coarse

scale solutions are fast to compute and provide a good initialization, thereby reducing the number of

computationally expensive iterations required at the finest scale. Note that the assumption of constant

system kernel per pixel (3) does not hold at coarse scales, however, since the coarse scale solutions are

only used for initialization, the final fine scale reconstructions are not affected. The choice of MRF

smoothing parameters at coarse scales is not critical, specifically, we have used σn = 2−nσ0 where σn

denotes the smoothing parameter at scale n and n = 0 denotes the finest scale. For all reconstructions,

25 iterations were performed at each scale to ensure sufficient convergence. Note, that the convergence

could be measured by using a stopping criterion based on the change in successive values of the log-

posterior at each scale. However, since for MAP reconstruction in general, very small changes of the

log-posterior can result in large visual differences, we prefer to run a fixed number of iterations at each

scale, chosen sufficiently large such that no more visible changes occur in the reconstruction. Note, that

for the optimization of the MAP equation (8), there is in general no closed-form update equation at each

iteration similar to (11) for EM. The detailed ICD optimization algorithm is described in [18, 14].

3.2 Expectation Maximization Reconstruction Algorithm

The EM algorithm used in this study is the basic algorithm[4] modified as in [20] to include corrections

for scatter and random coincidences. The EM update equation used was

xn+1
j =

xn
j∑M

i=1 Pij

M∑
i=1

Pij
yi + 2r

2r + s +
∑N

k=1 Pikx
n
k

(11)

where xn is the reconstruction estimate after the nth iteration. The smoothness of the reconstructions

was controlled by the number of iterations performed. For all reconstructions, the EM algorithm was

initialized with a constant image whose forward projection matched the total number of counts in the

measured projection data. To ensure a fair comparison, our implementation of EM was based on the same

programming code as the Bayesian ICD-MAP algorithm, and thus, both methods used exactly the same

system matrix computation and corrections.

3.3 Filtered Backprojection

For filtered backprojection reconstruction, an approximate complete sinogram was generated as described

in section 2.1. The frequency response of the FBP reconstruction filter was

H(f) = Hramp(f)
(

0.5 + 0.5 cos
(

πf

αfN

))
for |f | ≤ min(αfN , fN ) (12)
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Quadrant 2
2.31 mm bars

Quadrant 3
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Quadrant 4
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Figure 8: Illustration of the bar phantom. The phantom consists of four arrays of parallel bars with thicknesses of
1.55, 2.31, 2.90, and 4.32 mm separated by gaps of equal widths.

and zero elsewhere, where α is a smoothing parameter and fN is the Nyquist frequency. For α = 1, we

obtain a Hanning filter, and for α > 1, the Hanning response transitions to a ramp filter. For the results

presented, we varied α in the range from 0.3 to 8.0 and used a ramp filter for minimal smoothing.

4 Experimental Results

Phantom data acquired on the IndyPET scanner as well as simulated data were used to evaluate re-

construction quality for different reconstruction algorithms and for different system kernels. Three data

sets were used, a bar phantom, a Hoffman 3-D brain phantom, and a simulated data set containing a

circular lesion on an approximately uniform background. Fluorine-18 in the form of FDG was used as

the radioisotope for the phantom studies. Quantitative analyses of reconstruction quality for FBP, EM,

and the Bayesian techniques were performed for the bar phantom and the simulated data set. For the

bar phantom, we also compare reconstruction quality for the empirical and the triangular system kernels,

and we evaluate reconstruction quality for a set of parametric system kernels with different widths. The

triangular and parameterized kernels are modeled as a function of ∆ts,i only, whereas the empirical kernel

includes the dependence on θi as shown in Fig. 7. Finally, we compare the computational efficiency of

different initialization strategies for the ICD-MAP algorithm.

To ensure fair comparison of the images presented for each data set, all system kernels used in the

iterative algorithms were normalized for the same area and the same pixel intensity scale is used to

display the results. The FBP images were scaled such that their summed intensity was equal to that of

the Bayesian GMRF MAP reconstructions.

4.1 Bar Phantom

As illustrated in Fig. 8, the bar phantom consists of four arrays of parallel acrylic bars with thicknesses of

1.55, 2.31, 2.90, and 4.32 mm separated by gaps of equal widths, resulting in square wave emission profiles
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with different periods for each quadrant. Fourteen different data sets were collected sequentially on the

IndyPET scanner, each corresponding to a full 180 degree gantry sweep using 45 frames. The acquisition

time per frame was identical for all 14 data sets. By summing different subsets of these data sets frame

by frame, we generated 4 combined data sets with a total of 10.4M, 4.4M, 2M, and 586,000 counts in the

reconstructed plane. For these combined data sets, the randoms rates reported by the delayed window

estimation were 17.7%, 9.0%, 4.6%, and 2.6% respectively. The average deadtime fractions per detector

pair were 31%, 16%, 9%, and 5% respectively.

FBP, EM, and Bayesian reconstructions of the four combined data sets were computed using a wide

range of smoothing parameters for each algorithm. The reconstruction resolution was 256 × 256 pixels

with a field of view of 18 cm, resulting in a pixel size of 0.7 mm. For EM and Bayesian MAP with a

GMRF prior, we compare reconstructions for both the empirical system kernel shown in Fig. 7 and the

triangular kernel shown in Fig. 2. For Bayesian GGMRF MAP and the Bayesian wavelet graph model

(WGM), only the empirical system kernel was used. In a separate experiment described in section 4.1.2,

we compare Bayesian GMRF reconstructions for a set of parametric system kernels of different widths.

Figures 9 and 10 show sample reconstructions for the data set with 10.4M counts. The images were

cropped to 192×196 pixels, corresponding to a physical size of 13.50×13.78 cm. The smoothing parameters

for the reconstructions shown in Fig. 9 were chosen to minimize the expected spatial reconstruction error

(bias2+variance, see section 4.1.1) for the 4.32 mm bars in quadrant 4. Similarly, Fig. 10 shows recon-

structions with minimum error for the 2.90 mm bars in quadrant 3. The images of the EM reconstructions

are slightly clipped due to the high amplitude of the noise peaks in the reconstructions.

Based on visual inspection, the empirical system kernel significantly improves the quality of the iter-

ative reconstruction techniques. Also, when the empirical system kernel is used, the iterative techniques

provide improved resolution over FBP. For the Bayesian reconstructions, the non-Gaussian GGMRF and

WGM prior models provide sharper edges as compared to the GMRF prior. However, the GMRF prior

appears to have a wider frequency response, allowing for good reconstruction quality of all quadrants

using a single regularization parameter. Note that none of the reconstruction methods can resolve the

horizontal 1.55 mm bars in quadrant 1, thus our quantitative analysis below is limited to quadrants 2-4.

4.1.1 Bar Phantom Bias and Variance Analysis

The bar phantom reconstructions were analyzed by comparing the reconstructed signal to the expected

square wave profile. Bias and variance measures were computed separately for each quadrant by fitting

harmonic series to the reconstructed bar profiles. Let xQ(r, n) denote the reconstruction values in a 50



17

FBP ramp filter
EM, 198 iterations

triangular kernel

MAP GMRF, σ = 5.5

triangular kernel
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empirical kernel

MAP GMRF, σ = 6.9

empirical kernel

MAP GGMRF, σ = 6.9

empirical kernel

Bayesian WGM, ω = 2.5

empirical kernel

Figure 9: Bar phantom reconstructions for 10.4M total counts. The images correspond to a physical size of
13.50× 13.78 cm with a pixel size of 0.70 mm. The smoothing parameter for each method was selected to minimize
the expected error for the bar profile in quadrant 4 (4.32 mm bars).

FBP ramp filter
EM, 342 iterations

triangular kernel

MAP GMRF, σ = 8.7

triangular kernel

EM, 1068 iterations

empirical kernel

MAP GMRF, σ = 13.0

empirical kernel

MAP GGMRF, σ = 15.0

empirical kernel

Bayesian WGM, ω = 6.0

empirical kernel

Figure 10: Bar phantom reconstructions for 10.4M total counts with smoothing parameters selected to minimize
the expected error for the bar profiles in quadrant 3 (2.90 mm bars).
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by 50 pixel window centered over quadrant Q. Let n denote the coordinate running perpendicular to the

bars (e.g., the horizontal coordinate in quadrants 2 and 4) and let r be the coordinate parallel to the bars.

The 1-D average reconstruction bar profile x̄Q(n) is obtained as

x̄Q(n) =
1
R

R∑
r=1

xQ(n, r) (13)

where R = 50 is the size of the window and 1 ≤ n ≤ R. We then determine the coefficients ak and bk of

a harmonic series x̃Q(n)

x̃Q(n) = b0 +
K∑

k=1

(ak sin(2πkfQn) + bk cos(2πkfQn)) (14)

by using a least squares optimization to fit x̃Q(n) to x̄Q(n). The frequency fQ is a fixed frequency

appropriate for each quadrant. The order of the fitted series was K = 7.

The reconstruction bias is calculated by comparing the fit x̃Q(n) to an ideal square wave. Let αk and

βk be the Fourier coefficients of an ideal square wave with unit amplitude, a DC value of one, and a phase

equal to the phase of the fundamental of x̃Q(n). We then calculate the squared reconstruction bias for

quadrant Q as

bias2Q = min
c

{
K∑

k=1

(
ak

c
− αk

)2

+
K∑

k=0

(
bk

c
− βk

)2
}

. (15)

The minimization over c accounts for the fact that the absolute scaling of the reconstruction algorithms

is not calibrated. Thus, we scale the reconstructed signal to the ideal square wave such that bias is

minimized. The minimization in (15) is performed analytically. The bias is affected by the choice of the

scatter and randoms parameters r and s in (7) used for the reconstruction. Specifically, a smaller value

for s results in increased bias due to an increased DC offset in the reconstructed wave profile. Thus, we

emphasize that for a given set of projection data, we use the same scatter and randoms values for all

reconstruction methods to ensure a fair comparison.

While the bias characterizes the systematic deviation of the reconstruction from the true signal, the

variance characterizes the random variation of the reconstruction around its average. The variance for

quadrant Q is calculated as the combined variance over all rows r around the fit x̃Q(n)

varQ = std2
Q =

1
c2(R2 − 1)

R∑
r=1

R∑
n=1

(xQ(n, r) − x̃Q(n))2 (16)

where c is the scaling constant determined in (15). Note that the variance defined here is the spatial

variance characterizing the noisiness of a single reconstruction as compared to the variance of the recon-

struction estimator.
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Figure 11: Plots of bias versus standard deviation for the bar phantom reconstructions of the data set containing
10.4M total counts. Bias and standard deviation were calculated using the Fourier analysis described in section 4.1.
The curve for each reconstruction algorithm was obtained by varying the smoothing parameter.
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Figure 12: Plots of bias versus standard deviation for reconstructions of the bar phantom data. The three rows
correspond to quadrants 4, 3, and 2 with 4.32, 2.90, and 2.31 mm bars, respectively. The three columns correspond
to data sets containing 4.4M, 2.0M, and 586K counts, respectively.

Figure 11 shows reconstruction bias versus standard deviation for the 10.4M count case separately for

the three quadrants. The curves were obtained by varying the smoothing parameter for each reconstruction

method. Note that the points closest to the coordinate origin in Fig. 11(a) and (b) correspond to the

reconstruction images shown in Fig. 9 and Fig. 10 respectively.

The bias versus standard deviation plots indicate that using the empirical system kernel as compared

to the triangular kernel significantly lowers the bias at equal variance for EM and Bayesian GMRF MAP.

Interestingly, when the triangular kernel is used, EM and GMRF MAP perform similarly. However, when

the empirical kernel is used, GMRF MAP achieves significantly lower bias at equal variance as compared

to EM. For the empirical kernel, the GGMRF prior performs slightly better than the GMRF model. The
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Figure 13: Bar profile reconstruction averages x̄4(n) for quadrant 4 (4.32 mm bars). The profiles were calculated
from the reconstruction images shown in Fig. 9, i.e., for smoothing parameters minimizing the error in quadrant 4.
The dashed lines for EM and MAP GMRF correspond to reconstructions using the triangular system kernel.

WGM model performs well in quadrant 4 but not as well in quadrants 2 and 3. The FBP reconstructions

have low variance and high bias even for a ramp filter since no resolution recovery is performed. FBP only

partly resolves the bars in quadrant 3 and does not resolve quadrant 2. For quadrant 4, the FBP bias versus

standard deviation is similar to the low variance range of the curves for the iterative algorithms using

a triangular system kernel. However, when the empirical system kernel is used, the iterative techniques

achieve significantly lower bias at equal variance as compared to FBP.

Figure 12 shows the bias versus standard deviation curves for the bar phantom data sets with 4.4M,

2M, and 586K total counts. The results are consistent with those for the 10.4M count data set. Due to

the lower signal to noise ratio at lower count levels, the advantage of using the empirical system kernel

decreases slightly. This is expected, as the potential for resolution recovery is best at high signal to noise

ratios. For the 586K data set, the bars in quadrant 2 cannot be resolved in the reconstructed images (not

shown) and the bias versus standard deviation curves are essentially flat for all methods.

For an ideal system, or reconstruction of simulated projection data, we would expect the reconstruction

bias to approach zero as the standard deviation increases, i.e., as less smoothing is performed. Since our

experiments are based on phantom data, our measurements have limited accuracy due to partial volume
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effects and limited accuracies of the system kernel and estimated ground truth. These systematic errors

result in a non-zero bias even when no smoothing is performed in the reconstruction. Moreover, most of

the curves in Figs. 11 and 12 indicate that after reaching a minimum, the bias increases for larger values

of the standard deviation. We attribute the increase to two factors. First, our reconstructions have slight

circular artifacts resulting from an imperfect normalization scan that was applied to the data collected

at each gantry position. Thus, the reconstruction profile deviates systematically from an ideal square

wave as less smoothing is performed. Secondly, the bias is calculated using a limited window of 50 by

50 pixels for each quadrant which may result in noisy estimates of the higher order Fourier coefficients.

As expected, the bias curves for EM and the Bayesian methods approach each other for reconstructions

performed with the same system kernel.

Figure 13 shows the reconstructed bar profiles in quadrant 4 for the reconstruction images shown in

Fig. 9. The plotted profiles are the averages x̄4(n) as defined in (13) normalized by their DC value. For

EM and GMRF MAP, the dashed lines correspond to the reconstructions using the triangular system

kernel. Again, the iterative reconstructions using the empirical system kernel achieve much larger values

of the amplitude to DC ratio. For the EM results, using the empirical kernel produces a slightly asym-

metric profile with peaks overshooting the ideal profile. The GMRF MAP profile is symmetric but has

very smooth transitions, indicating blurred edges. The GGMRF MAP method produces slightly sharper

transitions. The WGM prior results in much sharper transitions but has some artifacts in the regions of

high amplitude. We note that in general, the reduction in bias achieved by the empirical system kernel

as shown in Figs. 11 and 12 is largely due to the increased amplitude of the reconstructed bar profiles.

4.1.2 Comparison of Parametric System Kernels of Different Widths

To evaluate the impact of systematic changes in the width of the system kernel, we compare Bayesian

GMRF reconstructions of the bar phantom for a set of parametric kernels. The parametric kernels were

obtained by convolving the triangular kernel of Fig. 2 with Gaussians of different standard deviations β.

To obtain a baseline 1-D kernel that is similar to the 2-D empirical system kernel, we first computed an

average of the empirical kernel in Fig. 7 over the 80% central portion of the angular range. The β value for

the baseline parametric kernel was then estimated to obtain a least-squares fit to the averaged empirical

kernel. For the reconstructions, we consider parametric kernels with parameters from β = 0 (triangular

kernel) to β = 2βf , where βf is the fitted value. Figure 14 shows examples for β = 0.5 βf and β = 1.5 βf .

All parametric kernels were normalized such that the area under the curve was equal to that of the 1-D

averaged empirical kernel.
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Figure 14: Examples of system kernels used to evaluate reconstruction quality as a function of kernel width. The
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Figure 15: Plots of bias versus standard deviation for Bayesian GMRF reconstructions of the bar phantom data
(10.4M counts) for different system kernels. The β/βf values indicate the width of the parametric kernel where βf

is the value obtained by fitting the 1-D averaged empirical kernel.

Figure 15 compares the bias versus standard deviation curves of reconstructions using parametric

kernels of different widths and the original 2-D empirical kernel shown in Fig. 7. We observed that some

improvements in reconstruction quality can be achieved by increasing the width of the parametric kernel

as compared to the triangular kernel (β = 0). However, the result for β = βf deviates noticeably from that

obtained using the original 2-D empirical system kernel. This difference indicates that small deviations in

the system kernel can significantly affect reconstruction quality. For very high values of the reconstruction

standard deviation, i.e., as the influence of the Bayesian prior model is minimal, the empirical system

kernel results in the lowest bias for quadrants 2 and 4. This effect may indicate that the empirical kernel

more accurately describes the scanner as compared to the parametric models.
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Figure 16: Plots of minimum value, taken over all smoothing parameters σ, of the reconstruction error√
(bias2 + variance) as a function of the width of the parametric system kernel. The discrete points correspond

to the minimum reconstruction error using the 2-D empirical system kernel. Data are shown for Bayesian GMRF
reconstructions of the bar phantom data with 10.4M counts.

Figure 16 shows the minimum value, taken over all smoothing parameters σ, of the reconstruction error√
(bias2 + variance) as a function of the width of the parametric system kernels. The results indicate that

the fitted width β = βf provides a good compromise for all quadrants. Using a wider system kernel

increases the error in quadrant 2 but improves the result for quadrants 3 and 4. However, as can be seen

from the curve for β = 1.2 βf in Fig.15(a), a wider kernel improves the result only for a very small range

of standard deviations. This effect may be due to interactions with the GMRF prior, i.e., over-sharpening

the reconstruction through the forward model may counteract the blurring of the GMRF prior.

4.2 Hoffman 3-D Brain Phantom

The second data set used in this study was acquired on the IndyPET scanner using a Hoffman 3-D brain

phantom. A single plane of the data set containing 2M counts was used for the reconstruction. The

randoms rate and deadtime per detector pair were 13% and 14% respectively. The reconstruction was

performed at a resolution of 256 × 256 pixels with a field of view of 20 cm, resulting in square pixels of

size 0.78 mm. For EM and Bayesian GMRF MAP, we compare the empirical and the triangular system

kernels. Only the empirical system kernel was used for the other Bayesian techniques.

Figures 17 and 18 show reconstructions that have been cropped to 177 × 148 pixels, corresponding

to a physical size of 13.8 × 11.5 cm. For each row, the figures correspond to a single reconstruction

algorithm with three manually selected smoothing parameters. Note that due to the planar structure of

the phantom, the reconstructions correspond to overlapping physical planes in locations where the shapes
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Figure 17: Reconstructions of the Hoffman 3-D brain phantom using FBP and iterative techniques with the
triangular system kernel. The three images in each row represent reconstructions from a single algorithm with three
manually selected degrees of smoothing. For comparison purposes, Fig. 18 shows reconstructions obatined using the
empirical system kernel.

of the adjacent planes in the phantom differ. The reconstructions in Fig. 17 correspond to FBP and

iterative algorithms using the triangular system kernel. Figure 18 shows EM and Bayesian reconstructions

using the empirical system kernel. We observe that using the empirical kernel improves the quality of

the iterative reconstructions. The EM reconstructions deteriorate with increasing numbers of iterations

before some of the detail is converged and do not reproduce the interior contours as well as the Bayesian

techniques. As compared to the GMRF, the GGMRF prior produces sharper contours with few artifacts.

The WGM produces a much sharper image, however, the result has significant artifacts.
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Figure 18: Reconstructions of the Hoffman 3-D brain phantom using the EM algorithm and Bayesian methods
using the empirical system kernel.

Figure 19: Simulated lesion phantom obtained by adding a circular lesion to an approximately uniform background.
The lesion has a diameter of 4 mm and an intensity equal to 5 times the average background level.
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4.3 Simulated Phantom

The third data set used in this study consists of simulated data generated by adding a constant circular

lesion of 4 mm diameter and 5 times background activity to an approximately uniform background as

shown in Fig. 19. The background image was an FBP reconstruction of an FDG mouse study on the

IndyPET scanner. Simulated projection data were generated by forward projecting the image in Fig. 19

using the empirical system kernel for the IndyPET scanner. The data samples were formed by Poisson

random variables with the appropriate means. Deadtime, decay, and relative detector sensitivity were not

modeled. Forward projection and reconstruction were performed at a resolution of 256 × 256 pixels with

a field of view of 8 cm. This results in a pixel size of 0.31 mm square which is about one tenth of the

detector resolution. The total number of counts in the reconstruction plane was 130,000. Twenty separate

noisy realizations of projection data were generated.

For reconstruction, only the empirical system kernel was used for EM and the Bayesian techniques.

Even though the use of the same system kernel for forward projection and reconstruction will bias the re-

sults towards the iterative reconstruction techniques[40], we still obtain fair comparisons between different

iterative techniques and obtain an approximate idea about their performance relative to FBP.

The reconstructions were evaluated quantitatively in terms of root mean square error (RMSE) esti-

mator performance as a function of smoothing parameter. We do not use the clinically more relevant

contrast recovery ratio (CRC) since we have found the CRC values and the relative performance of the

reconstruction algorithms to be a strong function of the exact procedure used to estimate the ROI activ-

ities for the CRC calculation, an observation that is consistent with earlier reports[1]. Thus, for clinical

evaluation, we consider it necessary to specify precisely a task with an associated ROI estimator or to

perform human observer studies[41]. For this study, we limit ourselves to MSE analysis to decouple the

reconstruction problem from the ROI estimation problem.

Let x be the ground truth image and let x̂ be a single reconstruction. Define L and B as the known

sets of lesion pixels and background pixels. The set B was obtained by thresholding the ground truth

image, eroding the resulting mask, and excluding the lesion plus a 1 mm thick annulus around it. The

set L was obtained as the non-eroded lesion region as added to the background image. Let µL and µB be

the true mean activity values in the lesion and background. We then calculate the relative MSE errors e2
L

and e2
B for the lesion and background regions as

e2
L =

1
µ2

LNL

∑
j∈L

(x̂j − xj)2 (17)
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Figure 20: Plots of lesion RMSE versus background RMSE for reconstructions of the simulated lesion phantom.
The curves were obtained by varying the smoothing parameter for each reconstruction method. The errors are
averages over reconstructions of 20 noisy realizations of the projection data. Shown in (a) is a comparison for the
different iterative methods and FBP. Shown in (b) is the effect of using the modification of the MAP prior proposed
in [32].

e2
B =

1
µ2

BNB

∑
j∈B

(x̂j − xj)2 (18)

where NL and NB are the number of pixels in the lesion and background regions L and B respectively.

We note that e2
L and e2

B are normalized relative to the true signal amplitudes since one is typically more

interested in the ratio of lesion activity to background activity as compared to their absolute values.

The errors e2
L and e2

B are averaged over the 20 reconstructions of the different noise realizations to give

estimates Ê[e2
L] and Ê[e2

B] for the expected relative errors for each reconstruction method as a function

of regularization parameter.

Figure 20(a) shows a plot of the expected reconstruction error
√

Ê[e2
L] for the lesion versus the expected

reconstruction error
√

Ê[e2
B] for the background for different algorithms. The curve for each algorithm

was obtained by varying the smoothing parameter. We observe that for the lesion region, the Bayesian

methods achieve lower error compared to EM. Also, the GGMRF prior model performs significantly better

than the GMRF prior since the GGMRF curve reaches a point closer to the coordinate origin, signifying

lower combined error.

An interesting characteristic of the Bayesian methods is that the minimum error in the lesion region

and the minimum error in the background region are achieved at different points on the curve, i.e., for

two different values of the smoothing parameter. In other words, there is no single smoothing parameter

that optimizes algorithm performance for both lesion and background. This behavior may be a result
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Figure 21: Reconstruction images and profiles for the simulated tumor phantom. Except for FBP, the smoothing
parameter for each method was selected to minimize the sum of the relative errors for the tumor and the background
region. For FBP, a ramp filter reconstruction is shown to demonstrate the limited resolution of the algorithm. The
1-D profiles correspond to a single row of pixels intersecting the center of the lesion. The ringing artifacts are due
to the high reconstruction resolution of 0.31 mm per pixel compared to the detector crystal spacing of 3.3 mm on
the IndyPET scanner.

of the activity dependency of the regularization of Bayesian methods[32]. Note that as indicated by the

single diamond in Fig. 20(a), a lower bound for achievable performance for this problem is given by the

combination of the lowest value of lesion error over all methods and lowest value of background error

over all methods. Specifically, since we assume known size and location of the lesion, we can trivially

achieve this bound by using one reconstruction method for the background and another one for the lesion.

The distance of the bound to the measured curves indicates that there is significant room for further

improvement.

Figure 20(b) shows the reconstruction error for Bayesian GMRF and GGMRF reconstructions using the

modification proposed by Fessler and Rogers[32] to achieve approximately space-invariant regularization.

This modification is effective in reducing the combined lesion and background errors since the curves
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move closer to the coordinate origin. For the GGMRF prior, the modification results in a much smaller

compromise between choosing the optimal smoothing parameter for background or lesion. However, the

minimum error in the lesion region is slightly higher for the modified priors.

Figure 21 shows reconstruction images as well as 1-D profiles through the reconstructed lesion for the

different algorithms. The images were cropped to a size of 101 × 106 pixels corresponding to a simulated

physical size of 3.16 × 3.31 cm. The reconstruction pixel size is 0.31 mm which is about one tenth of the

3.3 mm nominal detector resolution of the IndyPET scanner. For all algorithms except for FBP, the images

in Fig. 21 correspond to the value of smoothing parameter that minimizes the combined error (Ê[e2
L] +

Ê[e2
B]) in Fig. 20. For FBP, a ramp filter reconstruction is shown to demonstrate the limited resolution

that can be achieved using this algorithm. We observed that the iterative algorithms resolve the lesion

substantially better than FBP. In comparison to EM, the Bayesian GMRF and GGMRF reconstructions

more accurately quantify the lesion. The WGM prior model segments the lesion surprisingly accurately,

however, it slightly underestimates lesion activity and has some artifacts. Overall, the modified GGMRF

model appears to achieve the most accurate result. Note that the reconstructions have ringing artifacts

in the background which is consistent with observations in earlier studies[6]. This ringing is due to the

extremely high reconstruction resolution, which in combination with the wide detector kernel results in a

highly ill-posed reconstruction problem.

4.4 Computational efficiency

As expected, the computational cost of the EM algorithm is significantly higher than for the ICD MAP

algorithm. Depending on the desired level of smoothing, a factor of 10 to 20 in computation time between

EM and MAP was not uncommon. We note, that ordered subset techniques can significantly improve the

convergence speed of EM.

Due to the large dimensionality of the problem, even the MAP reconstructions take about 40 minutes

for the reconstruction of a single 2-D plane. Specifically, the acquisition of 45 frames on the IndyPET

scanner results in 45×3136 separate projection measurements. Furthermore, the sparsity of the projection

matrix is reduced by using the relatively wide empirical system kernel. Storage of the complete projection

matrix for all 45 frames for a reconstruction resolution of 256 × 256 pixels would require on the order of

5 GB while only 120 MB are needed to store the submatrix for a single gantry position.1

Figure 22 compares the convergence speed of ICD-MAP for different initializations of the algorithm.

The graphs are based on reconstructions of the bar phantom data set with 10.4M counts using a GMRF
1As described in Section 3, we only store the 120 MB submatrix for the zero gantry position which can be kept in memory.



31

0 1 2 3 4 5 6
0

2

4

6

8

10

CPU hours

R
M

S
E

multiresolution initialization
FBP initialization            
constant initialization       

Figure 22: Plot of pixel-wise RMSE reconstruction error as a function of CPU-time for different initializations of
the Bayesian ICD-MAP algorithm. The graphs are based on the reconstruction of the 10.4M count bar phantom
data using a GMRF prior with smoothing parameters selected to minimize error in quadrant 4. The graph for the
multiresolution initialization includes the CPU-time for the reconstructions at all resolutions.

prior. We compare the multiresolution strategy (Section 3.1) to initialization by a constant and by an

FBP ramp reconstruction image. Both the constant and the FBP image were scaled such that their

forward projection matched the total number of counts in the measured sinogram. The RMSE values

were calculated relative to the final reconstruction images with smoothing parameters corresponding to

the images shown in Fig. 9. The RMSE curves for the multiresolution initialization were obtained by

separately running the complete multiresolution strategy for different numbers of iterations, using the

same number of iterations at each scale. The CPU-times were measured on a 700 MHz Pentium III CPU

and do not include the time needed for pre-processing such as the computation of the tomographic system

matrices that can be performed off-line.

The results indicate that the multiresolution initialization significantly improves the convergence speed

of the algorithm. Based on the known convergence properties of ICD[9], we do not expect a constant

initialization to perform well. However, it is surprising that the convergence for FBP initialization is

actually worse than that for constant initialization. This effect may be due to local or global scaling

differences of the FBP reconstruction in comparison to the MAP estimate. While the convergence for FBP

initialization can potentially be improved through more careful scaling, the multiresolution initialization

is uncomplicated, effective, and does not require separate implementation of FBP.

5 Conclusions

We have presented a comparison of reconstruction quality for FBP, EM, and Bayesian algorithms as

implemented for the IndyPET scanner. A key feature of this investigation is the determination of an
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empirical system kernel based on scans of line source phantoms. For the data sets and evaluation methods

used in this study, we found that without an accurate system kernel, the reconstruction quality of the

iterative methods was similar to that of FBP. However, when an accurate system kernel was incorporated,

Bayesian MAP techniques were superior to EM and EM was superior to FBP. In terms of computational

efficiency, Bayesian MAP using ICD optimization with multiresolution initialization was also dramatically

faster than EM. For the Bayesian methods, the generalized Gaussian Markov random field prior model

improved quantitative accuracy and produced sharper edges compared to the Gaussian Markov random

field. The recently proposed wavelet graph prior model produced sharper edges than the MRF priors but

resulted in artifacts. For a simulated phantom containing a lesion on an approximately uniform back-

ground, the modifications proposed by Fessler and Rogers[32] improved the performance of the Bayesian

GMRF and GGMRF techniques.
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Appendix A: Precise Estimation of Line Source Position

An accurate estimate of the line source position s0 is obtained as follows. We first obtain an approximate

estimate ŝ0 directly from the projection data and use this estimate to compute an initial empirical system

kernel h(θ, ∆t). This kernel is then used to compute single-frame reconstructions of a second data set of

a point source taken for a full set of F = 45 frames with gantry angles αf = f ∗ 180/F , 0 ≤ f ≤ F − 1.

The reconstruction images xf for each frame are computed using only the projection data collected at

frame f and using the system kernel h(θ − αf , ∆t). Let s̃(f) denote the position of the point source of

the second data set in the reconstruction image for frame f such that s̃
(f)
1 and s̃

(f)
2 are the horizontal

and vertical positions, respectively. We compute s̃(f) as the center of gravity in xf in a pixel window

around the expected position. As shown in Fig. 23 (top row), s̃
(f)
1 and s̃

(f)
2 are sinusoidal functions of

gantry angle, and a s̃
(f)
1 − s̃

(f)
2 parametric plot describes a 180 degree circle segment with radius and phase

corresponding to the error εs = ŝ0 − s0. To estimate the radius and phase of the circle segment, we fit two

sine waves s̄
(f)
1 and s̄

(f)
2 to the sequences s̃

(f)
1 and s̃

(f)
2

s̄
(f)
1 = α sin(fπ/F + φ1) + β1 (19)

s̄
(f)
2 = α sin(fπ/F + φ2) + β2 (20)
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Figure 23: Plots of point source position estimated from single frame reconstruction images. The left two columns
show the horizontal s̃

(f)
1 -position and the vertical s̃

(f)
2 -position of the point source as a function of gantry angle.

The right column shows the s̃
(f)
1 − s̃

(f)
2 parametric plot for the 180 degree gantry sweep. The top and bottom rows

show the result before and after calibration respectively. The result before calibration was obtained using an initial
estimate of the calibration line source position s0 that was additionally perturbed by 2.4 mm to demonstrate the
circular blurring effect. The solid lines show the estimated positions for each frame whereas the dashed lines indicate
the fitted sine waves. The radius and phase of the fitted circle were used to correct the estimate of s0, resulting in
the calibrated result shown on the bottom.

where α, φ1, φ2, β1 and β2 are determined to obtain a least squares fit to s̃
(f)
1 and s̃

(f)
2 . Figure 23 shows

an example of these fits (dashed lines, top row). Based on the fit, the components of εs = ŝ0 − s0 are

estimated as εs,1 = s̄
(0)
1 = α sin(φ1) and εs,2 = s̄

(0)
2 = α sin(φ2). A corrected estimate ŝ′0 is then computed

as ŝ′0 = ŝ0 − εs. This more accurate estimate is then used to obtain a more precise system kernel h(θ, ∆t).

The new h(θ, ∆t) can be tested for accuracy by repeating the frame reconstructions of the second data

set. The bottom row of Fig. 23 shows the position estimates s̃(f) after calibration.
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