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Abstract

The Mixed Raster Content (MRC) standard (ITU-T T.44) spesifa framework for document
compression which can dramatically improve the compreggimlity tradeoff as compared to traditional
lossy image compression algorithms. The key to MRC comess the separation of the document
into foreground and background layers, represented as aybmask. Therefore, the resulting quality
and compression ratio of a MRC document encoder is highlyeddent on the segmentation algorithm
used to compute the binary mask.

In this paper, we propose a novel multiscale segmentatioense for MRC document encoding based
on the sequential application of two algorithms. The firgioathm, cost optimized segmentation (COS),
is a blockwise segmentation algorithm formulated in a glawst optimization framework. The second
algorithm, connected component classification (CCC), esfithe initial segmentation by classifying
feature vectors of connected components using an Markadorarfield (MRF) model. The combined
COS/CCC segmentation algorithms are then incorporatedaimiultiscale framework in order to improve
the segmentation accuracy of text with varying size. In cangons to state-of-the-art commercial MRC
products and selected segmentation algorithms in thelitez, we show that the new algorithm achieves
greater accuracy of text detection but with a lower falseectn rate of non-text features. We also
demonstrate that the proposed segmentation algorithmroprove the quality of decoded documents

while simultaneously lowering the bit rate.
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Text Segmentation for MRC Document

Compression

. INTRODUCTION

With the wide use of networked equipment such as computeas)\ners, printers and copiers, it has
become more important to efficiently compress, store, anustea large document files. For example,
a typical color document scanned at 300 dpi requires apprabely 24M bytes of storage without
compression. While JPEG and JPEG2000 are frequently usesl famohatural image compression, they
are not very effective for the compression of raster scamoedpound documents which typically contain
a combination of text, graphics, and natural images. Thieisabse the use of a fixed DCT or wavelet
transformation for all content typically results in seveirgging distortion near edges and line-art.

The mixed raster content (MRC) standard is a framework fogtdased document compression defined
in the ITU-T T.44 [1] that enables the preservation of textadewhile reducing the bitrate of encoded
raster documents. The most basic MRC approach, MRC mode itledian image into three layers: a
binary mask layer, foreground layer, and background layke binary mask indicates the assignment of
each pixel to the foreground layer or the background layeali$” or “0” value, respectively. Typically,
text regions are classified as foreground while picture mgjiare classified as background. Each layer
is then encoded independently using an appropriate encbdeexample, foreground and background
layers may be encoded using traditional photographic cesgion such as JPEG or JPEG2000 while
the binary mask layer may be encoded using symbol-matchawpd compression such as JBIG or
JBIG2. Moreover, it is often the case that different comgi@s ratios and subsampling rates are used for
foreground and background layers due to their differentrattaristics. Typically, the foreground layer
is more aggressively compressed than the background l&agauise the foreground layer requires lower
color and spatial resolution. Figure 1 shows an example adrkain an MRC mode 1 document.

Perhaps the most critical step in MRC encoding is the segatient step, which creates a binary
mask that separates text and line-graphics from naturajénzand background regions in the document.
Segmentation influences both the quality and bitrate of an MRCGuuhent. For example, if a text
component is not properly detected by the binary mask layer,text edges will be blurred by the
background layer encoder. Alternatively, if non-text isomeously detected as text, this error can also

cause distortion through the introduction of false edgdaamts and the excessive smoothing of regions
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Fig. 1. lllustration of Mixed Raster Content (MRC) document compressiandard mode 1 structure. An image is divided
into three layers: a binary mask layer, foreground layer, and backgt layer. The binary mask indicates the assignment of
each pixel to the foreground layer or the background layer by a “ldcf) or “0” (white), respectively. Typically, text regions
are classified as foreground while picture regions are classified &gioand. Each layer is then encoded independently using

an appropriate encoder.

assigned to the foreground layer. Furthermore, erroneotstgcted text can also increase the bit rate
required for symbol-based compression methods such as2JBIfs is because erroneously detected
and unstructure non-text symbols are not be efficiently mgoreed by JBIG2 symbol dictionaries.

Many segmentation algorithms have been proposed for aecteat extraction, typically with the
application of optical character recognition (OCR) in mifxhe of the most popular top-down approaches
to document segmentation is the X-Y cut algorithm [2] whicbrks by detecting white space using
horizontal and vertical projections. The run length smagiafgorithm (RLSA) [3], [4] is a bottom-up
approach which basically uses region growing of charadierdetect text regions, and the Docstrum
algorithm proposed in [5] is another bottom-up method whisesk-nearest neighbor clustering of
connected components. Chen et. al recently developed a-plate based segmentation method by
incorporating a thresholding method [6]. A summary of thgosithms for document segmentation can
be found in [7], [8], [9], [10], [11].

Perhaps the most traditional approach to text segmentaid@isu’s method [12] which thresholds
pixels in an effort to divide the document’s histogram intojexts and background. There are many
modified versions of Otsu’s method [13], [6]. While Otsu usegl@bal thresholding approach, Niblack
[14] and Sauvola [15] use a local thresholding approach. Kemoethod [16] uses entropy information
for the global thresholding, and Tsai [17] uses a moment pvewg approach. A comparison of the
algorithms for text segmentation can be found in [18].

In order to improve text extraction accuracy, some text sagation approaches also use character
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properties such as size, stroke width, directions, andlength histogram [19], [20], [21], [22]. Other
binarization approaches for document coding have useddistertion minimization as a criteria for
document binarization [23], [24].

Many recent approaches to text segmentation have been bassttistical models. One of the best
commercial text segmentation algorithms, which is incoaped in the DjVu document encoder, uses
a hidden Markov model (HMM) [25], [26]. The DjVu software pade is perhaps the most popular
MRC-based commercial document encoder. Although thereottier MRC-based encoders such as
LuraDocument [27], we have found DjVu to be the most accuraig @bust algorithm available for
document compression. However, as a commercial packagdulihdetails of the DjVu algorithm are
not available. Zhenget al. [28] used an MRF model to exploit the contextual documenorimfation
for noise removal. Similarly, Kumar [29t al. used an MRF model to refine the initial segmentation
generated by the wavelet analysis. J. G. Kaikal. and Caoet al. also developed a MAP-MRF text
segmentation framework which incorporates their propgsgal model [30], [31].

Recently, a conditional random field (CRF) model, originaltpgosed by Lafferty [32], has attracted
interest as an improved model for segmentation. The CRF nubffeis from the traditional MRF models
in that it directly models the posterior distribution of &b given observations. For this reason, in the CRF
approach the interactions between labels are a functiortf labels and observations. The CRF model
has been applied to different types of labeling problemsugling blockwise segmentaion of manmade
structures [33], natural image segmentation [34], andlpise text segmentation [35].

In this paper, we present a robust multiscale segmentalgmmitnm for both detecting and segmenting
text in complex documents containing background gradatioarying text size, reversed contrast text,
and noisy backgrounds. While considerable research hasdm®e in the area of text segmentation, our
approach differs in that it integrates a stochastic modeterf structure and context into a multiscale
framework in order to best meet the requirements of MRC dantntompression. Accordingly, our
method is designed to minimize false detections of unairadt non-text components (which can create
artifacts and increase bit-rate) while accurately segmgritue-text components of varying size and with
varying backgrounds. Using this approach, our algorithm &ehieve higher decoded image quality at a
lower bit-rate than generic algorithms for document sediat@n. We note that a preliminary version of
this approach, without the use of an MRF prior model, was el in the conference paper of [36],

and that the source code for the method described in thisr gapeiblicly available!

https://engineering.purdue.edu/bouman
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Our segmentation method is composed of two algorithms thatapplied in sequence: the cost
optimized segmentation (COS) algorithm and the connectegpooent classification (CCC) algorithm.
The COS algorithm is a blockwise segmentation algorithm thasecost optimization. The COS produces
a binary image from a gray level or color document; howeva resulting binary image typically contains
many false text detections. The CCC algorithm further preesghe resulting binary image to improve
the accuracy of the segmentation. It does this by detectimgtext components (i.e. false text detections)
in a Bayesian framework which incorporates an Markov randimid (MRF) model of the component
labels. One important innovation of our method is in the giesif the MRF prior model used in the
CCC detection of text components. In particular, we designeanergy terms in the MRF distribution so
that they adapt to attributes of the neighboring componeelstive locations and appearance. By doing
this, the MRF can enforce stronger dependencies betweepaments which are more likely to have
come from related portions of the document.

The organization of this paper is as follows. In Section Il andti®a Ill, we describe COS and
CCC algorithms. We also describe the multiscale implentemtain Section V. Section V presents

experimental results, in both quantitative and qualitativays.

[I. COSTOPTIMIZED SEGMENTATION (COS)

The Cost Optimized Segmentation (COS) algorithm is a blocledhasgmentation algorithm formulated
as a global cost optimization problem. The COS algorithm immased of two components: blockwise
segmentation and global segmentation. The blockwise sdgtimn divides the input image into over-
lapping blocks and produces an initial segmentation folhdalock. The global segmentation is then
computed from the initial segmented blocks so as to minimizgobal cost function, which is carefully
designed to favor segmentations that capture text compen€he parameters of the cost function are

optimized in an off-line training procedure. A block diagrdor COS is shown in Fig. 2.

A. Blockwise Segmentation

Blockwise segmentation is performed by first dividing the gmanto overlapping blocks, where each
block containsm x m pixels, and adjacent blocks overlap by/2 pixels in both the horizontal and
vertical directions. The blocks are denoted®y; for i =1,.., M, andj =1, .., N, whereM and N are
the number of the blocks in the vertical and horizontal dimets, respectively. If the height and width

of the input image is not divisible by, the image is padded with zeros. For each block, the cola axi
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Fig. 2. The COS algorithm comprises two steps: blockwise segmentatioglainal segmentation. The parameters of the cost

function used in the global segmentation are optimized in an off-line trainiogeplure.

having the largest variance over the block is selected amedtin a corresponding gray image block,

O; ;.

The pixels in each block are segmented into foreground (“t"background (“0”) by the clustering
method of Cheng and Bouman [24]. The clustering method @lesstach pixel inD; ; by comparing
it to a thresholdt. This threshold is selected to minimize the total sub-clasgce. More specifically,
the minimum value of the total sub-class variance is given by

. 2 . 2
Nojij* 04,5+ Niij*oi;;

2 : J
"I te(0,255] No,ij+ Niij

(1)

where Ny ; ; and Ny, ; are number of pixels classified as 0 and 10y, by the threshold, and 03
and 0%7“ are the variances within each sub-class (See Fig. 3). Notehbatub-class variance can be
calculated efficiently. First, we create a histogram by cawgnthe number of pixels which fall into each
value between 0 and 255. For each threshoi [0, 255], we can recursively calculai€], ; and o7,
from the values calculated for the previous threshold-efl. The threshold that minimizes the sub-class

variance is then used to produce a binary segmentation dltek denoted byC; ; € {0,1}™*™.

B. Global Segmentation

The global segmentation step integrates the individual segations of each block into a single

consistent segmentation of the page. To do this, we allovh ddaock to be modified using a class
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Fig. 3. lllustration of a blockwise segmentation. The pixels in each blocls@parated into foreground (“1") or background

(“0™) by comparing each pixel with a threshotd The threshold is then selected to minimize the total sub-class variance.

assignment denoted by; ; € {0, 1,2,3}.

sij=0 = Ci;=0Cij (Original)

sij=1 = Cjj=2C; (Reversed)

5 (2)
sij =2 = C;;={0}™™ (All background)

sij=3 = C;;={1}y™*™ (All foreground)

Notice that for each block, the four possible valuessgf correspond to four possible changes in the
block’'s segmentation: original, reversed, all backgrauordall foreground. If the block class is “original”,
then the original binary segmentation of the block is regdinlf the block class is “reversed”, then the
assignment of each pixel in the block is reversed (i.e. 1 doed, or O goes to 1). If the block class
is set to “all background” or “all foreground”, then the pigen the block are set to all O's or all 1's,
respectively. Figure 4 illustrates an example of the foursfime classes where black indicates a label of
“1” (foreground) and white indicates a label of “0” (backgra).

Our objective is then to select the class assignments<c {0, 1,2,3}, so that the resulting binary

masks,@vj, are consistent. We do this by minimizing the following giblost as a function of the class

December 4, 2010 DRAFT



SUBMITTED TO IEEE TRANSCATIONS ON IMAGE PROCESSING 7

Fig. 4. lllustration of class definition for each block. Black indicates a labél” (foreground) and white indicates a label of
“0” (background). Four segmentation result candidates are deforégginal (class 0), reversed (class 1), all background (class

2), and all foreground (class 3). The final segmentation will be onthede candidates. In this example, block sizenis= 6.

assignmentss = [s; ;| for all ¢, j,

M N

F109) =D {E(sig) + MVi(sig, sigr1) + AaVa(sig, sit1,5) + AsVa(sij)}- (3)
i=1j=1

As it is shown, the cost function contains four terms, the fesin representing the fit of the segmentation
to the image pixels, and the next three terms representiwdagzing constraints on the segmentation. The
values\, Ao, and A3 are then model parameters which can be adjusted to achievsetit segmentation
quality.

The first term& is the square root of the total sub-class variation withinlack given the assumed
segmentation. More specifically,

Yi.j if Sij = 0 or Sij = 1
g(Sm’) == (4)

0 j if Sij = 2 or Sij = 3

whereo; ; is the standard deviation of all the pixels in the block. Singe must always be less than
or equal too; j, the term& can always be reduced by choosing a finer segmentation conéis to
s;; = 0 or 1 rather than smoother segmentation corresponding fo= 2 or 3.

The termsV; and V, regularize the segmentation by penalizing excessive apwadiriation in the
segmentation. To compute the teff, the number of segmentation mismatches between pixelsein th
overlapping region between bloafk,j and the horizontally adjacent blockjﬂ is counted. The terniry
is then calculated as the number of the segmentation misemttivided by the total number of pixels in

the overlapping region. Als®; is similarly defined for vertical mismatches. By minimizirfgese terms,
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the segmentation of each block is made consistent with beighg blocks.

The term V3 denotes the number of the pixels classified as foreground“@i”® in C‘M divided by
the total number of pixels in the block. This cost is used touemghat most of the area of image is
classified as background.

For computational tractability, the cost minimization teratively performed on individual rows of
blocks, using a dynamic programming approach [37]. Note tba-wise approach does not generally
minimize the global cost function in one pass through thegimaTlherefore, multiple iterations are
performed from top to bottom in order to adequately incogberthe vertical consistency term. In the
first iteration, the optimization of*" row incorporates thé’ term containing only the — 1*" row.
Starting from the second iteratiofr; terms for both the — 1** row andi + 1** row are included. The
optimization stops when no changes occur to any of the bltesses. Experimentally, the sequence of
updates typically converges within 20 iterations.

The cost optimization produces a set of classes for ovengpipliocks. Since the output segmentation
for each pixel is ambiguous due to the block overlap, the fifaBGegmentation output is specified by
the 7 x 3 center region of eacin x m overlapping block.

The weighting coefficients\1,A2, and A3 were found by minimizing the weighted error between
segmentation results of training images and correspongingnd truth segmentations. A ground truth
segmentation was generated manually by creating a masithieates the text in the image. The weighted

error criteria which we minimized is given by

Eweighted = (1 - W)Nmissed_detection + WNfalse_detection (5)

wherew € [0,1], and the termsV,,issed_detection @NA Nqise_detection are the number of pixels in the
missed detection and false detection categories, respbctFor our application, the missed detections
are generally more serious than false detections, so we aisedue ofw = 0.09 which more heavily
weighted miss detections. In the next section, we will shaw lthe resulting false detections can be

effectively reduced.

[1l. CONNECTED COMPONENTCLASSIFICATION (CCC)

The connected component classification (CCC) algorithm refimeesegmentation produced by COS by
removing many of the erroneously detected non-text compsndhe CCC algorithm proceeds in three
steps: connected component extraction, component imrgrand component classification. The connected

component extraction step identifies all connected compenarthe COS binary segmentation using a
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4-point neighborhood. In this case, connected componenssthan six pixels were ignored because they
are nearly invisible at 300 dpi resolution. The componengiigion step corrects text segmentation errors
that sometimes occur in COS segmentation when text is joeatibedded in a highlighted region (See
Fig. 5 (a)). Figure 5 (b) illustrates this type of error wherattés initially segmented as background.
Notice the text “100 Years of Engineering Excellence” is allti segmented as background due to the red
surrounding region. In order to correct these errors, we fietect foreground components that contain
more than eight interior background components (holes)kdoh case, if the total number of interior
background pixels is less than half of the surrounding faregd pixels, the foreground and background
assignments are inverted. Figure 5 (c) shows the result efitiviersion process. Note that this type of
error is a rare occurrence in the COS segmentation.

The final step of component classification is performed by etitrg@ feature vector for each compo-
nent, and then computing a MAP estimate of the component.|abe feature vectory;, is calculated
for each connected componentit(;, in the COS segmentation. Eaghis a 4 dimensional feature vector
which describes aspects of thi# connected component including edge depth and color unifgrm
Finally, the feature vectoy; is used to determine the class labe}, which takes a value of O for

non-text and 1 for text.

100 Years of Engineering Excellence

In 1906 Purdue'’s Beta chapter became
the second HKN chapter formed in

(a) Original image

100 Years of Engineering Excellence

In 1906 Purdue's Beta chapter became
the second HKN chapter formed in

(b) Initial segmentation
100 Years of Engineering Excellence

In 1906 Purdue's Beta chapter became
the second HKN chapter formed in

(c) Preprocessed segmentation

Fig. 5. lllustration of how the component inversion step can correcneous segmentations of text. (a) Original document

before segmentation, (b) Result of COS binary segmentation, (cCe€ed segmentation after component inversion.
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The Bayesian segmentation model used for the CCC algorithsiadgvn in Fig. 6. The conditional
distribution of the feature vectay; given x; is modeled by a multivariate Gaussian mixture while the
underlying true segmentation labels are modeled by a Markadom field (MRF). Using this model,
we classify each component by calculating the MAP estimatlelabels,z;, given the feature vectors,
y;. In order to do this, we first determine which components atightmrs in the MRF. This is done

based on the geometric distance between components ondke pa

Y={Yq, Yo, ... Yy}
~ Observed data (feature vectors)

X={Xy, X5, ... Xy}
~ Classification of CC {0,1}N

Bayesian segmentation model

Fig. 6. lllustration of a Bayesian segmentation model. Line segments indlegendency between random variables. Each
componeniC'C; has an observed feature vectgy, and a class labek; € {0, 1}. Neighboring pairs are indicated by thick line

segments.

A. Satistical model

Here, we describe more details of the statistical model uUsedhe CCC algorithm. The feature
vectors for “text” and “non-text” groups are modeled Asdimensional multivariate Gaussian mixture

distributions,

M, —1
Ax;m - 1 t—
k) = 3 G e ™o | 50— e Bl pem) |+ (©)

wherez; € {0, 1} is a class label of non-text or text for thi€ connected component. The, and M
are the number of clusters in each Gaussian mixture disiouand they,, ,,, Ry, m, anda,, , are
the mean, covariance matrix, and weighting coefficient of+tti& cluster in each distribution. In order
to simplify the data model, we also assume that the valgeare conditionally independent given the

associated value;.
N

p(ylz) =[] p(yil=:) (7)

=1
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The components of the feature vectgfsanclude measurements of edge depth and external colorrunifo
mity of thei** connected component. The edge depth is defined as the Euclit¢ance between RGB
values of neighboring pixels across the component boun@tefined in the initial COS segmentation).
The color uniformity is associated with the variation of thrgbs outside the boundary. In this experiment,
we defined a feature vector with four componemts= [y1; y2: v3: yai]”, where the first two are mean
and variance of the edge depth and the last two are the vareamdt range of external pixel values. More
details are provided in the Appendix.

To use an Markov random field model (MRF), we must define a neidaoar system. To do this, we
first find the pixel location at the center of mass for each coteaecomponent. Then for each component
we search outward in a spiral pattern until theearest neighbors are found. The numbés determined
in an off-line training process along with other model paetens. We will use the symbals to denote
the set of neighbors of connected componento ensure all neighbors are mutual (which is required
for an MRF), if component is a neighbor of component (i.e. s € 0r), we add component to the
neighbor list of component (i.e. » € Js) if this is not already the case.

In order to specify the distribution of the MRF, we first definegenented feature vectors. The aug-
mented feature vectog,, for thei*" connected component consists of the feature vegtepncatenated
with the horizontal and vertical pixel location of the contezl component’s center. We found the location
of connected components to be extremely valuable contekif@mation for text detection. For more
details of the augmented feature vector, see Appendix.

Next, we define a measure of dissimilarity between connecietponents in terms of the Mahalanobis

distance of the augmented feature vectors given by

di,j = \/(Zz — Zj)TE_l(ZZ‘ — Zj) (8)

whereX: is the covariance matrix of the augmented feature vectotsaiming data. Next, the Mahalanobis

distanced; ;, is normalized using the equations,

D;j= I_LJ_
" 5(digi + djoj)
- 1
digi = 57 D dik
i 25 ©
- 1
djﬁ] Y Z dj,k
193] 5

whered; »; is averaged distance between tHeconnected component and all of its neighbors, dangl

is similarly defined. This normalized distance satisfies thersgtry property, that i, ; = D; ;.
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Using the defined neighborhood system, we adopted an MRF mattepair-wise cliques. Lef® be
the set of all(i, j) wherei andj denote neighboring connected components. ThenXthare assumed

to be distributed as

1
p(z) = — P { > wigb(w # ﬂfj)} (10)
{i,j}eP
b
wi,j = — (11)
Dﬁj +a

whered(-) is an indicator function taking the value 0 or 1, amdb, andp are scalar parameters of the
MRF model. As we can see, the classification probability isaiged by the number of neighboring
pairs which have different classes. This number is also ety the termw; ;. If there exists a
similar neighbor close to a given component, the tery becomes large sincB; ; is small. This favors
increasing the probability that the two similar neighboevé the same class.

Figure 7 illustrates the classification probability of given a single neighboz; as a function of
the distance between the two componebts;. Here, we assume the classificationagfis given. The
solid line shows a graph of the probabilipyz; # x;|x;) while the dashed line shows a graph of the
probability p(x; = x;|=;). Note that the parameter controls the roll-off of the function, and and b
control the minimum and transition point for the function.€eThctual parameters; = [p, a, b]’, are
optimized in an off-line training procedure (See sec. IlI-B)

With the MRF model defined above, we can compute a maximum &past(MAP) estimate to find
the optimal set of classification labels= [z; x5 ... zx]7. The MAP estimate is given by,

Zmap = argmin {— Zlogp(yﬂxi) + Z w; j0(x; # 5) — Creatd(x; = 1)} . (12)

ze{0,1}" = {i,j}eP
We introduced a terna;.,; to control the trade-off between missed and false detestibhe termcicy:
may take a positive or negative valuecif,; is positive, both text detections and false detectionemese.
If it is negative, false and missed detections are reduced.
To find an approximate solution of (12), we use iterative cbodal modes (ICM) which sequentially
minimizes the local posterior probabilities [38], [39]. Thkassification labels{x;| i € S}, are initialized
with their maximum likelihood (ML) estimates, and then theM@rocedure iterates through the set of

classification labels until a stable solution is reached.

B. Parameter estimation

In our statistical model, there are two sets of parameteiset@stimated by a training process. The

first set of parameters comes from thedimensional multivariate Gaussian mixture distribusagiven
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Fig. 7. lllustration of classification probability of; given a single neighbog; as a function of the distance between the

two components. The solid line shows a graphp@f; # x;|z;) while the dashed line shows a graphdfc; = x;|z;). The

parameters are set to= 0.1 andb = 1.0.

by Eq. (6) which models the feature vectors from text and r-¢lasses. The second set of parameters,
¢ = [p, a, b]T, controls the MRF model of Eq. (11). All parameters are ediban an off-line
procedure using a training image set and their ground treimentations. The training images were
first segmented using the COS algorithm. All foreground catet components were extracted from
the resulting segmentations, and then each connected campwas labeled as text or non-text by
matching to the components on the ground truth segmengatiime corresponding feature vectors were
also calculated from the original training images.

The parameters of the Gaussian mixture distribution wergnagtd using the EM algorithm [40].
The number of clusters in each Gaussian mixture for text andtext were also determined using the
minimum description length (MDL) estimator [41].

The prior model parameterg = [p, a, b]7 were independently estimated using pseudolikelihood
maximization [42], [43], [44]. In order to apply pseudolik®od estimation, we must first calculate the
conditional probability of a classification label given itsighboring components’ labels,

p(zilre;) = Zi exp {— Z w; j0(x; # .ZL'])} (13)

v jEdi

December 4, 2010 DRAFT



SUBMITTED TO IEEE TRANSCATIONS ON IMAGE PROCESSING 14

where the normalization factdf; is defined by

Zi = Z exXp {— Z wmé(azi 7& {L‘])} . (14)

2,€{0,1} j€di

Therefore, the pseudolikelihood parameter estimation toraase is,

$ = argmax H p(xi|zs;)

€S
1
= argmax H — XD\~ Z w; ;0(x; # 5) (15)
b s 7 JjEoi

= argminz {log Zi + Z w; j0(x; # x])} .
¢

ies jEDI
V. MULTISCALE-COS/CCCSEGMENTATION SCHEME

In order to improve accuracy in the detection of text withywag size, we incorporated a multiscale
framework into the COS/CCC segmentation algorithm. The sedilie framework allows us to detect both
large and small components by combining results from diffieresolutions [45], [46], [47]. Since the
COS algorithm uses a single block size (i.e. single scale)found that large blocks are typically better
suited for detecting large text, and small blocks are beftéted for small text. In order to improve the
detection of both large and small text, we use a multiscajgnsatation scheme which uses the results
of coarse-scale segmentations to guide segmentation on doades. Note that both COS and CCC
segmentations are performed on each scale, however, onf/ i€@dapted to the multiscale scheme.

Figure 8 shows the overview of our multiscale-COS/CCC schemthe multiscale scheme, segmen-
tation progresses from coarse to fine scales, where the caarakes use larger block sizes, and finer
scales use smaller block sizes. Each scale is numbered frem to 0, where L — 1 is the coarsest
scale and) is the finest scale. The COS algorithm is modified to use diffebéotk sizes for each scale
(denoted asn(™), and incorporates the previous coarser segmentatiort fegadding a new term to
the cost function.

The new cost function for the multiscale scheme is shown in E). (It is a function of the class
assignments on both theé” andn + 1** scale.

M N
£78M) =33 LAY S™) 4 A VA, 2 | (16)
i=1j=1

where (-)(™) denotes the term for the!” scale, andS(™ is the set of class assignments for the scale,
that isS = [sgz)] for all 4,j. The termB; ; is a set of pixels in a block at the positign, j), and the

termxp, ; is the segmentation result for the block.
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cos xt2 v
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(block size = m©? X mt2)

X0
X0 ~ -

Final segmentation

cos
—>  (blocksize=m® x m®) cce

Fig. 8. lllustration of a multiscale-COS/CCC algorithm. Segmentation pregsefom coarse to fine scales, incorporating the
segmentation result from the previous coarser scale. Both COS anda@Cgerformed on each scale, however only COS was

adapted to the multiscale scheme.

As it is shown in the equation, this modified cost function ipavates a new tern¥, that makes
the segmentation consistent with the previous coarsees@ale termV/,, is defined as the number of
mismatched pixels within the block; ; between the current scale segmentaﬁxgr?j and the previous
coarser scale segmentatimgb:gl). The exception is that only the pixels that switch from “1"réground)
to “0” (background) are counted Whequ;.) =0 or sgz) = 1. This term encourages a more detailed
segmentation as we proceed to finer scales. Wheerm is normalized by dividing by the block size on
the current scale. Note that thg§ term is ignored for the coarsest scale. Using the new cositifum
we find the class assignments,; € {0, 1,2, 3}, for each scale.

The parameter estimation of the cost functﬁéﬁ) forn € {0,... L—1} is performed in an off-line task.
The goal is to find the optimal parameter &) = {A" ... A} for n € {0,... L — 1}. To simplify
the optimization process, we first performed single scalinopation to finde'(") = {Aﬁ’” e Aé")} for
each scale. Then, we found the optimal segdf= {\'” ... A{*"?1 given the{@'©® ... @/ E-D}. The
error to be minimized was the number of mismatched pixelspamed to ground truth segmentations,
as shown in (5). Thev, the weighting factor of the error for false detection, wa®dixo 0.5 for the

multiscale-COS/CCC training process.

V. RESULTS

In this section, we compare the multiscale-COS/CCC, COS/G@,COS segmentation results with
the results of two popular thresholding methods, an MRFdhasgmentation method, and two existing

commercial software packages which implement MRC docuroemipression. The thresholding methods
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used for the comparison in this study are Otsu [12] and Tsdiifiathods. These algorithms showed the
best segmentation results among the thresholding methddg], [14], [15], [16], and [17]. In the actual
comparison, the sSRGB color image was first converted to a luragsgale image, then each thresholding
method was applied. For ‘Otsu/CCC” and “Tsai/CCC”, the CC@oathm was combined with the Otsu
and Tsai binarization algorithms to remove false detectibmshis way, we can compare the end result
of the COS algorithm to alternative thresholding approache

The MRF-based binary segmentation used for the comparisoasisdbon the MRF statistical model
developed by Zheng and Doermann [28]. The purpose of theiritigois to classify each component as
either noise, hand-written text, or machine printed teatrfrbinary image inputs. Due to the complexity
of implementation, we used a modified version of the CCC allgariincorporating their MRF model by
simply replacing our MRF classification model by their MRF s®iclassification model. The multiscale
COS algorithm was applied without any change. The cliqueueagies of their model were calculated
through off-line training using a training data set. Othargmeters were set as proposed in the paper.

We also used two commercial software packages for the casgmarThe first package is the DjVu
implementation contained in Document Express Enterprissiaer5.1 [48]. DjVu is commonly used
software for MRC compression and produces excellent setatien results with efficient computation.
By our observation, version 5.1 produces the best segmemtquality among the currently available
DjVu packages. The second package is LuraDocument PDF Cosoprd3esktop Version [27]. Both
software packages extract text to create a binary mask yerdéa document compression.

The performance comparisons are based primarily on two &sp#®e segmentation accuracy and
the bitrate resulting from JBIG2 compression of the binaggraentation mask. We show samples of
segmentation output and MRC decoded images using each dnietha complex test image. Finally, we

list the computational run times for each method.

A. Preprocessing

For consistency all scanner outputs were converted to sRIEB coordinates [49] and descreened [50]
before segmentation. The scanned RGB values were first cedveran intermediate device-independent
color space, CIE XYZ, then transformed to sRGB [51]. Then, Régmm Synthesis-based Denoising
(RSD) [50] was applied. This descreening procedure was appdieall of the training and test images.
For a fair comparison, the test images which were fed to atbermercial segmentation software packages

were also descreened by the same procedure.
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B. Segmentation accuracy and bitrate

To measure the segmentation accuracy of each algorithm, sed a set of scanned documents
along with corresponding “ground truth” segmentationsstiB8 documents were chosen from different
document types, including flyers, newspapers, and magaZires documents were separated into 17
training images and 21 test images, and then each documenseeaned at 300 dots per inch (dpi)
resolution on the EPSON STYLUS PHOTO RX700 scanner. After maysafimenting each of the
scanned documents into text and non-text to create growtd segmentations, we used the training
images to train the algorithms, as described in the prevemgtions. The remaining test images were
used to verify the segmentation quality. We also scannede$tedocuments on two additional scanners:
the HP Photosmart 3300 All-in-One series and Samsung SCXF3%30hese test images were used to
examine the robustness of the algorithms to scanner \amiti

The parameter values used in our results are as follows. Timalgiarameter values for the multiscale-
COS/CCC were shown in the Table I. Three layers were used fotisoale-COS/CCC algorithm, and
the block sizes werg&6 x 36, 72 x 72, and 144 x 144. The parameters for the CCC algorithm were
p = 7.806, a = 0.609, b = 0.692. The number of neighbors in theNN search was 6. In DjVu, the
segmentation threshold was set to the default value whilaRacument had no adjustable segmentation

parameters.

TABLE |

PARAMETER SETTINGS FOR THECOSALGORITHM IN MULTISCALE-COS/CCC.

2nd |ayer | 20.484 | 8.9107 | 17.778| 1.0000
1% layer | 53.107 | 28.722| 39.359 | 17.200
0" layer | 30.681 | 21.939 | 36.659 | 56.000

To evaluate the segmentation accuracy, we measured thenpesf missed detections and false
detections of segmentemmponents, denoted a® ;¢ andprc. More specifically,py;,c andprpc were
computed in the following manner. The text in ground truth ges\were manually segmented to produce

N,

4+ components. For each of these ground truth components, diresponding location in the test

segmentation was searched for a symbol of the same shaperéftiman 70% of the pixels matched in

the binary pattern, then the symbol was considered detetftelde total number of correctly detected
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components isVy, then we define that the fraction of missed components as

Ngt - Nd

v (17)

bymc =

Next, each correctly detected component was removed frams#égmentation, and the number of re-
maining false componentsy,, in the segmentation was counted. The fraction of false compis is
defined as

Niq

Prc = Nigt. (18)
We also measured the percent of missed detections and ftisetidns of individuapixels, denoted as

pyvp andprp. They were computed similarly to they, - and ppc defined above, except the number
of pixels in the missed detectionX {,;p) and false detectionsX(rp) were counted, and these numbers

were then divided by the total number of pixels in the groundht document X;,;q;)-

Xmp
— . 19
pPmP Xyoral ( )
Xrp
= 20
prp = (20)

Table Il shows the segmentation accuracy of our algorithmslt{scale-COS/CCC, COS/CCC, and
CQOS), the thresholding methods (Otsu and Tsai), an MRF-bagedtaim (multiscale-COS/CCC/Zheng),
and two commercial MRC document compression packages (BjMuLuraDocument). The values in the
Table Il were calculated from all of the available test imafi@m each scanner. Notice that multiscale-
COS/CCC exhibits quite low error rate in all categories, ahdvss the lowest error rate in the missed
component detection errgn,; <. For the missed pixel detectign,,p, both multiscale-COS/CCC/Zheng
and the multiscale-COS/CCC show the first and second lowest xtes. For the false detectiopgc
and prp, the thresholding methods such as Otsu and Tsai exhibit teetoor rates, however those
thresholding methods show a high missed detection errer Tdtis is because the thresholding methods
cannot separate text from background when there are nuiitiplors represented in the text.

For the internal comparisons among our algorithms, we osethat CCC substantially reduces
the ppc of the COS algorithm without increasing the,;c. The multiscale-COS/CCC segmentation
achieves further improvements and yields the smapegt among our methods. Note that the missed
pixel detection error rat@,;p in the multiscale-COS/CCC is particularly reduced compadcethe other
methods. This is due to the successful detection of largectaxponents along with small text detection
in the multiscale-COS/CCC. Large text influengegpr more than small text since each symbol has a

large number of pixels.
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In the comparison of multiscale-COS/CCC to commercial potellDjVu and LuraDocument, the
multiscale-COS/CCC exhibits a smaller missed detectioaraate in all categories. The difference is

most prominent in the false detection error ratesd, prp).

TABLE I
SEGMENTATION ACCURACY COMPARISON BETWEEN OUR ALGORITHMEMULTI-COS/CCC, COS/CCCyND COS),
THRESHOLDING ALGORITHMS(OTSU AND TSAI), AN MRF-BASED ALGORITHM (MULTISCALE-COS/CCC/AHENG), AND
TWO COMMERCIAL MRC DOCUMENT COMPRESSION PACKAGE$DJV U AND LURADOCUMENT). MISSED COMPONENT
ERROR parc, THE CORRESPONDING MISSED PIXEL ERRQRA P, FALSE COMPONENT ERRORpFrc, AND THE

CORRESPONDING FALSE PIXEL ERRORprp, ARE CALCULATED FOREPSON, HPAND SAMSUNG SCANNER OUTPUT

EPSON | Multi-cos/cce | mult-cosicCCizheng | Djvu [ LuraDoc | cosicce | owsuicce | Tsaicce | cos | owsu | Tsai
o 0.41% 0.95% 0.49% | 4.64% 0.60% 2.71% 329% | 0.53% | 4.47% | 4.84%
PP 0.33% 0.27% 047% | 0.75% 057% 0.55% 061% | 048% | 0.64% | 0.65%
pre 9.14% 9.79% 121% | 19.5% 9.10% 9.66% 870% | 201% | 253% | 40.7%
prp 0.45% 0.54% 1.05% | 6.64% 0.44% 1.60% 120% | 3.28% | 204% | 19.9%

HP Muli-COS/CCC | Multi-Cos/cCC/zheng | Djwu | Luraboc | cosicee | owsuwicec | Tsaicce | cos [ owsu [ Tsai
o 0.35% 1.67% 056% | 4.84% 0.44% 3.29% 417% | 047% | 4.94% | 5.07%
PP 0.20% 0.28% 048% | 0.68% 051% 057% 061% | 043% | 0.59% | 0.60%
pro 16.9% 16.8% 10.4% | 41.7% 16.9% 21.4% 10.5% | 452% | 91.6% | 141.2%
prp 0.70% 0.66% 119% | 6.33% 0.62% 1.35% 118% | 3.04% | 16.4% | 152 %

samsung | Mult-COS/CCC | Muli-COS/CCClzheng [ Divu | Luraboc | cosicce [ otsucee [ Tsaicce [ cos | otsu [ Tsai
o 0.44% 1.51% 061% | 450% 0.48% 3.05% 859% | 051% | 5.01% | 8.159%
PP 0.32% 0.35% 0.44% | 0.68% 0.53% 0.63% 078% | 0.48% | 0.66% | 0.73%
Pre 7.95% 8.10% 114% | 19.4% 7.95% 7.31% 6.67% | 17.5% | 20.2% | 36.1%
e 0.50% 0.51% 081% | 5.75% 0.33% 1.16% 0.67% | 2.76% | 10.0% | 17.6 %

Figure 9 shows the trade-off between missed detection ard t#tectionpy;c VS. prc andpasp VS.
prp, for the multiscale-COS/CCC, multiscale-COS/CCC/zheng, BjMu. All three methods employ
a statistical model such as an MRF or HMM for text detectionDjVu, the trade-off between missed
detection and false detection was controlled by adjustroésensitivity levels. In multiscale-COS/CCC
and multiscale-COS/CCC/Zheng method, the trade-off wasraibed by the value of;..: in (12), and
the ¢;..» was adjusted over the intervgt2, 5] for the finest layer. The results of Fig. 9 indicate that the
MRF model used by CCC results in more accurate classificatidexd. This is perhaps not surprising
since the CCC model incorporates additional informatiorubing component features to determine the
MRF cliqgue weights of Eq. (11).

We also compared the bitrate after compression of the binaagk layer generated by multiscale-
COS/CCC, multiscale-COS/CCC/Zheng, DjVu, and LuraDocumeiffalnie Ill. For the binary compres-

sion, we used JBIG2 [52], [53] encoding as implemented inShewBatch JBIG2 encoder, developed
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Fig. 9. Comparison of multiscale-COS/CCC, multiscale-COS/CCC/Zherdy,Dgviu in trade-off between missed detection

error vs. false detection error. (a) component-wise (b) pixel-wise

by Snowbound Softwafe using the default settings. JBIG2 is a symbol-matchingethasompression
algorithm that works particularly well for documents cantag repeated symbols such as text. Moreover,
JBIG2 binary image coder generally produces the best seatiien used in MRC Document compression.
Typically, if more components are detected in a binary malsg, bitrate after compression increases.
However, in the case of JBIG2, if only text components arectetd in a binary mask, then the bitrate
does not increase significantly because JBIG2 can storeasisyimbols efficiently.

Table 1l lists the sample mean and standard deviation (STDhefbitrates (in bits per pixel) of
multiscale-COS/CCC, multiscale-COS/CCC/Zheng, DjVu, Luraldoent, Otsu/CCC, and Tsai/CCC after
compression. Notice that the bitrates of our proposed suadte-COS/CCC method are similar or lower
than DjVu, and substantially lower than LuraDocument, eveugh the multiscale-COS/CCC algorithm
detects more text. This is likely due to the fact that the mattie-COS/CCC segmentation has fewer
false components than the other algorithms, thereby raedutie number of symbols to be encoded. The
bitrates of the multiscale-COS/CCC and multiscale-COS/@B&ng methods are very similar while The
bitrates of the Otsu/CCC and Tsai/CCC are low because mahgdexponents are missing in the binary

mask.

2http://www.snowbound.com/
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TABLE Il
COMPARISON OF BITRATE BETWEEN MULTISCALECOS/CCC MULTISCALE-COS/CCC/AHENG, DJVU, LURADOCUMENT,
OTsuU/CCC,AND TsAI/CCCFORJBIG2COMPRESSED BINARY MASK LAYER FOR IMAGES SCANNED ONEPSON, HPAND
SAMSUNG SCANNERS

Multi-COS/CCC Multi-COS/CCC/Zheng DjVu LuraDoc Otsu/CCC Tsai/CCC ground truth
average | STD average STD average [ STD average | STD average STD average | STD average STD
EPSON (bits/pxl) 0.037 0.014 0.037 0.014 0.040 0.014 0.046 0.016 0.037 0.016 0.036 0.016 0.037 0.014
HP (bits/pxl) 0.040 0.015 0.040 0.015 0.041 0.015 0.052 0.019 0.040 0.016 0.040 0.016 0.039 0.016
Samsung (bits/pxl) |  0.035 0.015 0.035 0.015 0.036 0.015 0.041 0.016 0.035 0.016 0.034 0.017 0.036 0.016

C. Computation time

Table IV shows the computation time in seconds for multis€2DS/CCC with 3 layers, multiscale-
COS/CCC with 2 layers, COS/CCC, COS, and multiscale-COS/CC@&h#&e evaluated the computa-
tion time using an Intel Xeon CPU (3.20GHz), and the numberseeraged on 21 test images. The block
size on the finest resolution layer is set to 32. Notice thattmputation time of multiscale segmentation
grows almost linearly as the number of layers increases. Tdrapatation time of our multiscale-
COS/CCC and multiscale-COS/CCC/Zheng are almost same. Wdaaiad that the computation time

for Otsu and Tsai thresholding methods are 0.02 seconds|fof #ie test images.

TABLE IV
COMPUTATION TIME OF MULTISCALE-COS/CCCALGORITHMS WITH 3 LAYERS, 2 LAYERS, COS-CCC, COSAND
MULTISCALE-COS/CCC/HENG.

Multi-COS/CCC cos/ccc COS Multi-COS/CCC/Zheng
3 layers | 2 layers 3 layers
Average | 23.89 sec| 16.32 sec| 8.73 sec | 5.39 sec 23.91 sec
STD 3.16 sec| 2.12sec| 1.15sec | 0.39 sec 3.19 sec

D. Qualitative Results

Figure 10 illustrates segmentations generated by Otsu/@@@jscale-COS/CCC/zZheng, DjVu, Lu-
raDocument, COS, COS/CCC, and multiscale-COS/CCC for a 30Gedpiimage. The ground truth
segmentation is also shown. This test image contains manplearfeatures such as different color text,
light-color text on a dark background, and various sizesegf.tAs it is shown, COS accurately detects

most text components but the number of false detectionsite targe. However, COS/CCC eliminates
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most of these false detections without significantly sacnfjctext detection. In addition, multiscale-
COS/CCC generally detects both large and small text withmmaihifalse component detection. Otsu/CCC
method misses many text detections. LuraDocument is vewsitsento sharp edges embedded in picture
regions and detects a large number of false components. &lpdudetects some false components but the
error is less severe than LuraDocument. Multiscale-COS/Z8€&ig’s result is similar to our multiscale-
COS/CCC result but our text detection error is slightly less.

Figure 11 and 12 show a close up of text regions and picturemegrom the same test image. In the
text regions, our algorithms (COS, COS/CCC, and multiscal&sCCC), multiscale-COS/CCC/Zheng,
and Otsu/CCC provided detailed text detection while DjVd &mraDocument missed sections of these
text components. In the picture regions, while our COS dtligar contains many false detections, COS/CCC
and multiscale-COS/CCC algorithms are much less susceptlthese false detections. The false detec-
tions by COS/CCC and multiscale-COS/CCC are also less thawo,RjiMraDocument, and multiscale-
COS/CCC/zZheng.

Figure 13 and Fig. 14 show MRC decoded images when the encodaligsl on segmentations
from Ground truth, Otsu/CCC, multiscale-COS/CCC/Zheng, DjMiraDocument, COS, COS/CCC, and
multiscale-COS/CCC. The examples from text and picture regibbustrate how segmentation accuracy
affects the decoded image quality. Note that the MRC encpaiiethod used after segmentation is different
for each package, and MRC encoders used in DjVu and LuraDaduare not open source, therefore
we developed our own MRC encoding scheme. This comparisontistrictly limited to segmentation
effects, but it provides an illustration of how missed comgats and false component detection affects
the decoded images.

As shown in Fig. 13, all of the text from COS, COS/CCC, multis€a@S/CCC, and multiscale-
COS/CCC/zZheng is clearly represented. Some text in the decodeges from Otsu/CCC, DjVu, and
LuraDocument are blurred because missed detection plaese tomponents in the background. In the
picture region, our methods classify most of the parts agkdracnd so there is little visible distortion
due to mis-segmentation. On the other hand, the falselctbeteomponents in DjVu and LuraDocument
generate artifacts in the decoded images. This is becaudexthdetected regions are represented in the

foreground layer, therefore the image in those locationsnisoded at a much lower spatial resolution.

E. Prior Model Evaluation

In this section, we will evaluate our selected prior modek Wsed the initial segmentation result

generated by COS with a single block sz x 32. Then we performed the CCC segmentation with the
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same parameter set described in the previous section. Figushows the local conditional probability
of each connected component given its neighbors’ classesvintest images. The colored components
indicate the foreground regions segmented by the COS #igoriThe yellowish or redish components
were classified as text by the CCC algorithm, whereas thetbkosnponents were classified as non-text.
The brightness of each connected component indicates thesity of the conditional probability which
is described as’(z;|xs;). As shown, the conditional probability of assigned clasaifan are close to 1
for most components. We observed that the components ordbdes between text and non-text regions
take slightly smaller values but overall this local coratital probability map shows that the contextual

model fits the test data well, and that the prior term contdbub an accurate classification.

VI. CONCLUSION

We presented a novel segmentation algorithm for the corsjmmesof raster documents. While the
COS algorithm generates consistent initial segmentatitnes CCC algorithm substantially reduces false
detections through the use of a component-wise MRF contexten The MRF model uses a pair-wise
Gibbs distribution which more heavily weights nearby comgats with similar features. We showed that
the multiscale-COS/CCC algorithm achieves greater texdddiein accuracy with a lower false detection
rate, as compared to state-of-the-art commercial MRC prizdiBuch text-only segmentations are also

potentially useful for document processing applicationshsas OCR.

APPENDIX

FEATURE VECTOR FORCCC

The feature vector for the connected componerdt€’) extracted in the CCC algorithm is a 4-
dimensional vector and denoted @s= [y; y2 3 y4]7. Two of the components describe edge depth
information, while the other two describe pixel value umifity.

More specifically, an inner pixel and an outer pixel are first defimo be the two neighboring pixels
across the boundary for each boundary segment{1,..., N}, whereN is the length of the boundary.
Note that the inner pixel is a foreground pixel and the outgelgs a background pixel. The inner pixel
values are defined a%;,, (k) = [Rin(k), Gin(k), Bin(k)], whereas the outer pixel values are defined as
Xout (k) = [Rout(k), Gout(k), Bout(k)]. Using these definitions, the edge depth is defined as

edge(k) = /|| Xn (k) = Xour (k)]

Then, the termg; andy, are defined as,

y1 % sample mean ofdge(k), k=1,2,...,N
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Y2 4 Standard deviation ofdge(k), k=1,2,...,N.

The termsys and y, describe uniformity of the outer pixels. The uniformity isfided by the range
and standard deviation of the outer pixel values, that is
ys & max{O(k)} —min{O(k)}, k=1,2,...,N
Y4 4 Standard deviation ob(k), k=1,2,...,N
where

O(k) = \/Rout(k)? + Gout(k)? + Boui ()2,

In an actual calculation, the5"" percentile and the&" percentile are used instead of the maximum
and minimum values to eliminate outliers. Note that onlyeoupixel values were examined for the
uniformness because we found that inner pixel values of tmected components extracted by COS
are mostly uniform even for non-text components.

The augmented feature vector of CCC algorithm contains thedomponents described above concate-
nated with two additional components corresponding thézbatal and vertical position of the connected
component's center in 300 dpi, thatds= [y1 y2 y3 y4 a1 as]”.

a1 & horizontal pixel location of a connected component’s cente

def , , . ,
as = vertical pixel location of a connected component’s center
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Binary masks generated from Otsu/CCC, multiscale-COS/CC@¢Zizj\Vu, LuraDocument, COS, COS/CCC, and
multiscale-COS/CCC. (a) Original test image (b) Ground truth segmentét)oDtsu/CCC (d) Multiscale-COS/CCC/Zheng (e)
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Fig. 11. Text regions in the binary mask. The region is 26370 pixels at 400 dpi, which corresponds to 1.04 gn2.34 cm.
(a) Original test image (b) Ground truth segmentation (c) Otsu/CCC (dfiddale-COS/CCC/Zheng (e) DjVu (f) LuraDocument
(g) COS (h) COS/CCC (i) Multiscale-COS/CCC
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Fig. 12. Picture regions in the binary mask. Picture region is 1518003 pixels at 400 dpi, which corresponds to 9.63 cm
x 6.35 cm. (a) Original test image (b) Ground truth segmentation (c) O&0/@l) Multiscale-COS/CCC/Zheng (e) DjVu (f)
LuraDocument (g) COS (h) COS/CCC (i) Multiscale-COS/CCC
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Fig. 13. Decoded MRC image of text regions (400 dpi). (a) Original itesige (b) Ground truth (300:1 compression) (c)
Otsu/CCC (311:1 compression) (d) Multiscale-COS/CCC/Zheng (295)1Djieu (281:1) (f) LuraDocument (242:1) (g) COS
(244:1) (h) COS/CCC (300:1) (i) Multiscale-COS/CCC (289:1).
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(g) COS (h) cos/ccc (i) multiscale-COS/CCC

Fig. 14. Decoded MRC image of picture regions (400 dpi). (a) Origirgtl itmage (b) Ground truth (300:1 compression) (c)
Otsu/CCC (311:1 compression) (d) Multiscale-COS/CCC/zZheng (295)1Djieu (281:1) (f) LuraDocument (242:1) (g) COS
(244:1) (h) COS/CCC (300:1) (i) Multiscale-COS/CCC (289:1).
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Smoothing the Path to Graduation Smoothing the Path to Graduation

(d) An original test image (e) Local probabilities

Fig. 15. The yellowish or redish components were classified as text b @@ algorithm, whereas the bluish components

were classified as non-text. The brightness of each connected centpodicates the intensity of the conditional probability

which is described a®(x;|za;).
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