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Abstract

The Mixed Raster Content (MRC) standard (ITU-T T.44) specifies a framework for document

compression which can dramatically improve the compression/quality tradeoff as compared to traditional

lossy image compression algorithms. The key to MRC compression is the separation of the document

into foreground and background layers, represented as a binary mask. Therefore, the resulting quality

and compression ratio of a MRC document encoder is highly dependent on the segmentation algorithm

used to compute the binary mask.

In this paper, we propose a novel multiscale segmentation scheme for MRC document encoding based

on the sequential application of two algorithms. The first algorithm, cost optimized segmentation (COS),

is a blockwise segmentation algorithm formulated in a global cost optimization framework. The second

algorithm, connected component classification (CCC), refines the initial segmentation by classifying

feature vectors of connected components using an Markov random field (MRF) model. The combined

COS/CCC segmentation algorithms are then incorporated into a multiscale framework in order to improve

the segmentation accuracy of text with varying size. In comparisons to state-of-the-art commercial MRC

products and selected segmentation algorithms in the literature, we show that the new algorithm achieves

greater accuracy of text detection but with a lower false detection rate of non-text features. We also

demonstrate that the proposed segmentation algorithm can improve the quality of decoded documents

while simultaneously lowering the bit rate.
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Text Segmentation for MRC Document

Compression

I. I NTRODUCTION

With the wide use of networked equipment such as computers, scanners, printers and copiers, it has

become more important to efficiently compress, store, and transfer large document files. For example,

a typical color document scanned at 300 dpi requires approximately 24M bytes of storage without

compression. While JPEG and JPEG2000 are frequently used tools for natural image compression, they

are not very effective for the compression of raster scannedcompound documents which typically contain

a combination of text, graphics, and natural images. This is because the use of a fixed DCT or wavelet

transformation for all content typically results in severeringing distortion near edges and line-art.

The mixed raster content (MRC) standard is a framework for layer-based document compression defined

in the ITU-T T.44 [1] that enables the preservation of text detail while reducing the bitrate of encoded

raster documents. The most basic MRC approach, MRC mode 1, divides an image into three layers: a

binary mask layer, foreground layer, and background layer.The binary mask indicates the assignment of

each pixel to the foreground layer or the background layer bya “1” or “0” value, respectively. Typically,

text regions are classified as foreground while picture regions are classified as background. Each layer

is then encoded independently using an appropriate encoder. For example, foreground and background

layers may be encoded using traditional photographic compression such as JPEG or JPEG2000 while

the binary mask layer may be encoded using symbol-matching based compression such as JBIG or

JBIG2. Moreover, it is often the case that different compression ratios and subsampling rates are used for

foreground and background layers due to their different characteristics. Typically, the foreground layer

is more aggressively compressed than the background layer because the foreground layer requires lower

color and spatial resolution. Figure 1 shows an example of layers in an MRC mode 1 document.

Perhaps the most critical step in MRC encoding is the segmentation step, which creates a binary

mask that separates text and line-graphics from natural image and background regions in the document.

Segmentation influences both the quality and bitrate of an MRC document. For example, if a text

component is not properly detected by the binary mask layer,the text edges will be blurred by the

background layer encoder. Alternatively, if non-text is erroneously detected as text, this error can also

cause distortion through the introduction of false edge artifacts and the excessive smoothing of regions
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Fig. 1. Illustration of Mixed Raster Content (MRC) document compression standard mode 1 structure. An image is divided

into three layers: a binary mask layer, foreground layer, and background layer. The binary mask indicates the assignment of

each pixel to the foreground layer or the background layer by a “1” (black) or “0” (white), respectively. Typically, text regions

are classified as foreground while picture regions are classified as background. Each layer is then encoded independently using

an appropriate encoder.

assigned to the foreground layer. Furthermore, erroneouslydetected text can also increase the bit rate

required for symbol-based compression methods such as JBIG2. This is because erroneously detected

and unstructure non-text symbols are not be efficiently represented by JBIG2 symbol dictionaries.

Many segmentation algorithms have been proposed for accurate text extraction, typically with the

application of optical character recognition (OCR) in mind. One of the most popular top-down approaches

to document segmentation is the X-Y cut algorithm [2] which works by detecting white space using

horizontal and vertical projections. The run length smearing algorithm (RLSA) [3], [4] is a bottom-up

approach which basically uses region growing of charactersto detect text regions, and the Docstrum

algorithm proposed in [5] is another bottom-up method whichusesk-nearest neighbor clustering of

connected components. Chen et. al recently developed a multi-plane based segmentation method by

incorporating a thresholding method [6]. A summary of the algorithms for document segmentation can

be found in [7], [8], [9], [10], [11].

Perhaps the most traditional approach to text segmentationis Otsu’s method [12] which thresholds

pixels in an effort to divide the document’s histogram into objects and background. There are many

modified versions of Otsu’s method [13], [6]. While Otsu uses aglobal thresholding approach, Niblack

[14] and Sauvola [15] use a local thresholding approach. Kapur’s method [16] uses entropy information

for the global thresholding, and Tsai [17] uses a moment preserving approach. A comparison of the

algorithms for text segmentation can be found in [18].

In order to improve text extraction accuracy, some text segmentation approaches also use character
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properties such as size, stroke width, directions, and run-length histogram [19], [20], [21], [22]. Other

binarization approaches for document coding have used rate-distortion minimization as a criteria for

document binarization [23], [24].

Many recent approaches to text segmentation have been basedon statistical models. One of the best

commercial text segmentation algorithms, which is incorporated in the DjVu document encoder, uses

a hidden Markov model (HMM) [25], [26]. The DjVu software package is perhaps the most popular

MRC-based commercial document encoder. Although there areother MRC-based encoders such as

LuraDocument [27], we have found DjVu to be the most accurate and robust algorithm available for

document compression. However, as a commercial package, the full details of the DjVu algorithm are

not available. Zhenget al. [28] used an MRF model to exploit the contextual document information

for noise removal. Similarly, Kumar [29]et al. used an MRF model to refine the initial segmentation

generated by the wavelet analysis. J. G. Kuket al. and Caoet al. also developed a MAP-MRF text

segmentation framework which incorporates their proposedprior model [30], [31].

Recently, a conditional random field (CRF) model, originally proposed by Lafferty [32], has attracted

interest as an improved model for segmentation. The CRF modeldiffers from the traditional MRF models

in that it directly models the posterior distribution of labels given observations. For this reason, in the CRF

approach the interactions between labels are a function of both labels and observations. The CRF model

has been applied to different types of labeling problems including blockwise segmentaion of manmade

structures [33], natural image segmentation [34], and pixelwise text segmentation [35].

In this paper, we present a robust multiscale segmentation algorithm for both detecting and segmenting

text in complex documents containing background gradations, varying text size, reversed contrast text,

and noisy backgrounds. While considerable research has been done in the area of text segmentation, our

approach differs in that it integrates a stochastic model oftext structure and context into a multiscale

framework in order to best meet the requirements of MRC document compression. Accordingly, our

method is designed to minimize false detections of unstructured non-text components (which can create

artifacts and increase bit-rate) while accurately segmenting true-text components of varying size and with

varying backgrounds. Using this approach, our algorithm can achieve higher decoded image quality at a

lower bit-rate than generic algorithms for document segmentation. We note that a preliminary version of

this approach, without the use of an MRF prior model, was presented in the conference paper of [36],

and that the source code for the method described in this paper is publicly available.1

1https://engineering.purdue.edu/˜bouman
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Our segmentation method is composed of two algorithms that are applied in sequence: the cost

optimized segmentation (COS) algorithm and the connected component classification (CCC) algorithm.

The COS algorithm is a blockwise segmentation algorithm based on cost optimization. The COS produces

a binary image from a gray level or color document; however, the resulting binary image typically contains

many false text detections. The CCC algorithm further processes the resulting binary image to improve

the accuracy of the segmentation. It does this by detecting non-text components (i.e. false text detections)

in a Bayesian framework which incorporates an Markov randomfield (MRF) model of the component

labels. One important innovation of our method is in the design of the MRF prior model used in the

CCC detection of text components. In particular, we design the energy terms in the MRF distribution so

that they adapt to attributes of the neighboring components’ relative locations and appearance. By doing

this, the MRF can enforce stronger dependencies between components which are more likely to have

come from related portions of the document.

The organization of this paper is as follows. In Section II and Section III, we describe COS and

CCC algorithms. We also describe the multiscale implementation in Section IV. Section V presents

experimental results, in both quantitative and qualitative ways.

II. COST OPTIMIZED SEGMENTATION (COS)

The Cost Optimized Segmentation (COS) algorithm is a block-based segmentation algorithm formulated

as a global cost optimization problem. The COS algorithm is comprised of two components: blockwise

segmentation and global segmentation. The blockwise segmentation divides the input image into over-

lapping blocks and produces an initial segmentation for each block. The global segmentation is then

computed from the initial segmented blocks so as to minimizea global cost function, which is carefully

designed to favor segmentations that capture text components. The parameters of the cost function are

optimized in an off-line training procedure. A block diagram for COS is shown in Fig. 2.

A. Blockwise Segmentation

Blockwise segmentation is performed by first dividing the image into overlapping blocks, where each

block containsm × m pixels, and adjacent blocks overlap bym/2 pixels in both the horizontal and

vertical directions. The blocks are denoted byOi,j for i = 1, .., M , andj = 1, .., N , whereM andN are

the number of the blocks in the vertical and horizontal directions, respectively. If the height and width

of the input image is not divisible bym, the image is padded with zeros. For each block, the color axis
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Fig. 2. The COS algorithm comprises two steps: blockwise segmentation andglobal segmentation. The parameters of the cost

function used in the global segmentation are optimized in an off-line training procedure.

having the largest variance over the block is selected and stored in a corresponding gray image block,

Õi,j .

The pixels in each block are segmented into foreground (“1”) or background (“0”) by the clustering

method of Cheng and Bouman [24]. The clustering method classifies each pixel inÕi,j by comparing

it to a thresholdt. This threshold is selected to minimize the total sub-class variance. More specifically,

the minimum value of the total sub-class variance is given by

γ2
i,j = min

t∈[0,255]

N0,i,j ∗ σ2
0,i,j + N1,i,j ∗ σ2

1,i,j

N0,i,j + N1,i,j
(1)

whereN0,i,j andN1,i,j are number of pixels classified as 0 and 1 inÕi,j by the thresholdt, andσ2
0,i,j

and σ2
1,i,j are the variances within each sub-class (See Fig. 3). Note thatthe sub-class variance can be

calculated efficiently. First, we create a histogram by counting the number of pixels which fall into each

value between 0 and 255. For each thresholdt ∈ [0, 255], we can recursively calculateσ2
0,i,j andσ2

1,i,j

from the values calculated for the previous threshold oft−1. The threshold that minimizes the sub-class

variance is then used to produce a binary segmentation of theblock denoted byCi,j ∈ {0, 1}m×m.

B. Global Segmentation

The global segmentation step integrates the individual segmentations of each block into a single

consistent segmentation of the page. To do this, we allow each block to be modified using a class
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Fig. 3. Illustration of a blockwise segmentation. The pixels in each block areseparated into foreground (“1”) or background

(“0”) by comparing each pixel with a thresholdt. The thresholdt is then selected to minimize the total sub-class variance.

assignment denoted by,si,j ∈ {0, 1, 2, 3}.

si,j = 0 ⇒ C̃i,j = Ci,j (Original)

si,j = 1 ⇒ C̃i,j = ¬Ci,j (Reversed)

si,j = 2 ⇒ C̃i,j = {0}m×m (All background)

si,j = 3 ⇒ C̃i,j = {1}m×m (All foreground)

(2)

Notice that for each block, the four possible values ofsi,j correspond to four possible changes in the

block’s segmentation: original, reversed, all background, or all foreground. If the block class is “original”,

then the original binary segmentation of the block is retained. If the block class is “reversed”, then the

assignment of each pixel in the block is reversed (i.e. 1 goesto 0, or 0 goes to 1). If the block class

is set to “all background” or “all foreground”, then the pixels in the block are set to all 0’s or all 1’s,

respectively. Figure 4 illustrates an example of the four possible classes where black indicates a label of

“1” (foreground) and white indicates a label of “0” (background).

Our objective is then to select the class assignments,si,j ∈ {0, 1, 2, 3}, so that the resulting binary

masks,C̃i,j , are consistent. We do this by minimizing the following global cost as a function of the class
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Fig. 4. Illustration of class definition for each block. Black indicates a labelof “1” (foreground) and white indicates a label of

“0” (background). Four segmentation result candidates are defined; original (class 0), reversed (class 1), all background (class

2), and all foreground (class 3). The final segmentation will be one ofthese candidates. In this example, block size ism = 6.

assignments,S = [si,j ] for all i, j,

f1(S) =
M
∑

i=1

N
∑

j=1

{E(si,j) + λ1V1(si,j , si,j+1) + λ2V2(si,j , si+1,j) + λ3V3(si,j)} . (3)

As it is shown, the cost function contains four terms, the firstterm representing the fit of the segmentation

to the image pixels, and the next three terms representing regularizing constraints on the segmentation. The

valuesλ1, λ2, andλ3 are then model parameters which can be adjusted to achieve the best segmentation

quality.

The first termE is the square root of the total sub-class variation within a block given the assumed

segmentation. More specifically,

E(si,j) =















γi,j if si,j = 0 or si,j = 1

σi,j if si,j = 2 or si,j = 3
(4)

whereσi,j is the standard deviation of all the pixels in the block. Sinceγi,j must always be less than

or equal toσi,j , the termE can always be reduced by choosing a finer segmentation corresponding to

si,j = 0 or 1 rather than smoother segmentation corresponding tosi,j = 2 or 3.

The termsV1 and V2 regularize the segmentation by penalizing excessive spatial variation in the

segmentation. To compute the termV1, the number of segmentation mismatches between pixels in the

overlapping region between block̃Ci,j and the horizontally adjacent block̃Ci,j+1 is counted. The termV1

is then calculated as the number of the segmentation mismatches divided by the total number of pixels in

the overlapping region. AlsoV2 is similarly defined for vertical mismatches. By minimizing these terms,
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the segmentation of each block is made consistent with neighboring blocks.

The termV3 denotes the number of the pixels classified as foreground (i.e. “1”) in C̃i,j divided by

the total number of pixels in the block. This cost is used to ensure that most of the area of image is

classified as background.

For computational tractability, the cost minimization is iteratively performed on individual rows of

blocks, using a dynamic programming approach [37]. Note that row-wise approach does not generally

minimize the global cost function in one pass through the image. Therefore, multiple iterations are

performed from top to bottom in order to adequately incorporate the vertical consistency term. In the

first iteration, the optimization ofith row incorporates theV2 term containing only thei − 1th row.

Starting from the second iteration,V2 terms for both thei − 1th row andi + 1th row are included. The

optimization stops when no changes occur to any of the block classes. Experimentally, the sequence of

updates typically converges within 20 iterations.

The cost optimization produces a set of classes for overlapping blocks. Since the output segmentation

for each pixel is ambiguous due to the block overlap, the final COS segmentation output is specified by

the m
2 × m

2 center region of eachm × m overlapping block.

The weighting coefficientsλ1,λ2, and λ3 were found by minimizing the weighted error between

segmentation results of training images and correspondingground truth segmentations. A ground truth

segmentation was generated manually by creating a mask thatindicates the text in the image. The weighted

error criteria which we minimized is given by

εweighted = (1 − ω)Nmissed detection + ωNfalse detection (5)

where ω ∈ [0, 1], and the termsNmissed detection and Nfalse detection are the number of pixels in the

missed detection and false detection categories, respectively. For our application, the missed detections

are generally more serious than false detections, so we useda value ofω = 0.09 which more heavily

weighted miss detections. In the next section, we will show how the resulting false detections can be

effectively reduced.

III. CONNECTEDCOMPONENTCLASSIFICATION (CCC)

The connected component classification (CCC) algorithm refinesthe segmentation produced by COS by

removing many of the erroneously detected non-text components. The CCC algorithm proceeds in three

steps: connected component extraction, component inversion, and component classification. The connected

component extraction step identifies all connected components in the COS binary segmentation using a
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4-point neighborhood. In this case, connected components less than six pixels were ignored because they

are nearly invisible at 300 dpi resolution. The component inversion step corrects text segmentation errors

that sometimes occur in COS segmentation when text is locally embedded in a highlighted region (See

Fig. 5 (a)). Figure 5 (b) illustrates this type of error where text is initially segmented as background.

Notice the text “100 Years of Engineering Excellence” is initially segmented as background due to the red

surrounding region. In order to correct these errors, we firstdetect foreground components that contain

more than eight interior background components (holes). Ineach case, if the total number of interior

background pixels is less than half of the surrounding foreground pixels, the foreground and background

assignments are inverted. Figure 5 (c) shows the result of this inversion process. Note that this type of

error is a rare occurrence in the COS segmentation.

The final step of component classification is performed by extracting a feature vector for each compo-

nent, and then computing a MAP estimate of the component label. The feature vector,yi, is calculated

for each connected component,CCi, in the COS segmentation. Eachyi is a 4 dimensional feature vector

which describes aspects of theith connected component including edge depth and color uniformity.

Finally, the feature vectoryi is used to determine the class label,xi, which takes a value of 0 for

non-text and 1 for text.

(a) Original image

(b) Initial segmentation

(c) Preprocessed segmentation

Fig. 5. Illustration of how the component inversion step can correct erroneous segmentations of text. (a) Original document

before segmentation, (b) Result of COS binary segmentation, (c) Corrected segmentation after component inversion.
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The Bayesian segmentation model used for the CCC algorithm isshown in Fig. 6. The conditional

distribution of the feature vectoryi given xi is modeled by a multivariate Gaussian mixture while the

underlying true segmentation labels are modeled by a Markovrandom field (MRF). Using this model,

we classify each component by calculating the MAP estimate of the labels,xi, given the feature vectors,

yi. In order to do this, we first determine which components are neighbors in the MRF. This is done

based on the geometric distance between components on the page.

X1

X2

X3

X4

Y1

Y2

Y3

Y4

Y={Y1, Y2, …YN }
~ Observed data (feature vectors)

CC1

CC2

CC3

CC4

Neighbors

Bayesian segmentation model

X={X1, X2, …XN }
~ Classification of CC {0,1}N

X1

X2

X3

X4

Y1

Y2

Y3

Y4

Y={Y1, Y2, …YN }
~ Observed data (feature vectors)

CC1

CC2

CC3

CC4

Neighbors

Bayesian segmentation model

X={X1, X2, …XN }
~ Classification of CC {0,1}N

Fig. 6. Illustration of a Bayesian segmentation model. Line segments indicatedependency between random variables. Each

componentCCi has an observed feature vector,yi, and a class label,xi ∈ {0, 1}. Neighboring pairs are indicated by thick line

segments.

A. Statistical model

Here, we describe more details of the statistical model usedfor the CCC algorithm. The feature

vectors for “text” and “non-text” groups are modeled asD-dimensional multivariate Gaussian mixture

distributions,

p(yi|xi) =

Mxi
−1

∑

m=0

axi,m

(2π)D/2
|Rxi,m|−1/2 exp

{

−
1

2
(yi − µxi,m)tR−1

xi,m(yi − µxi,m)

}

, (6)

wherexi ∈ {0, 1} is a class label of non-text or text for theith connected component. TheM0 andM1

are the number of clusters in each Gaussian mixture distribution, and theµxi,m, Rxi,m, andaxi,m are

the mean, covariance matrix, and weighting coefficient of themth cluster in each distribution. In order

to simplify the data model, we also assume that the valuesYi are conditionally independent given the

associated valuesXi.

p(y|x) =
N
∏

i=1

p(yi|xi) (7)
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The components of the feature vectorsyi include measurements of edge depth and external color unifor-

mity of the ith connected component. The edge depth is defined as the Euclidean distance between RGB

values of neighboring pixels across the component boundary(defined in the initial COS segmentation).

The color uniformity is associated with the variation of the pixels outside the boundary. In this experiment,

we defined a feature vector with four components,yi = [y1i y2i y3i y4i]
T , where the first two are mean

and variance of the edge depth and the last two are the variance and range of external pixel values. More

details are provided in the Appendix.

To use an Markov random field model (MRF), we must define a neighborhood system. To do this, we

first find the pixel location at the center of mass for each connected component. Then for each component

we search outward in a spiral pattern until thek nearest neighbors are found. The numberk is determined

in an off-line training process along with other model parameters. We will use the symbol∂s to denote

the set of neighbors of connected components. To ensure all neighbors are mutual (which is required

for an MRF), if components is a neighbor of componentr (i.e. s ∈ ∂r), we add componentr to the

neighbor list of components (i.e. r ∈ ∂s) if this is not already the case.

In order to specify the distribution of the MRF, we first define augmented feature vectors. The aug-

mented feature vector,zi, for the ith connected component consists of the feature vectoryi concatenated

with the horizontal and vertical pixel location of the connected component’s center. We found the location

of connected components to be extremely valuable contextual information for text detection. For more

details of the augmented feature vector, see Appendix.

Next, we define a measure of dissimilarity between connected components in terms of the Mahalanobis

distance of the augmented feature vectors given by

di,j =
√

(zi − zj)T Σ−1(zi − zj) (8)

whereΣ is the covariance matrix of the augmented feature vectors ontraining data. Next, the Mahalanobis

distance,di,j , is normalized using the equations,

Di,j =
di,j

1
2(d̄i,∂i + d̄j,∂j)

d̄i,∂i =
1

|∂i|

∑

k∈∂i

di,k

d̄j,∂j =
1

|∂j|

∑

k∈∂j

dj,k

(9)

whered̄i,∂i is averaged distance between theith connected component and all of its neighbors, andd̄j,∂j

is similarly defined. This normalized distance satisfies the symmetry property, that isDi,j = Dj,i.
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Using the defined neighborhood system, we adopted an MRF modelwith pair-wise cliques. LetP be

the set of all(i, j) wherei andj denote neighboring connected components. Then, theXi are assumed

to be distributed as

p(x) =
1

Z
exp







−
∑

{i,j}∈P

wi,jδ(xi 6= xj)







(10)

wi,j =
b

Dp
i,j + a

(11)

whereδ(·) is an indicator function taking the value 0 or 1, anda, b, andp are scalar parameters of the

MRF model. As we can see, the classification probability is penalized by the number of neighboring

pairs which have different classes. This number is also weighted by the termwi,j . If there exists a

similar neighbor close to a given component, the termwi,j becomes large sinceDi,j is small. This favors

increasing the probability that the two similar neighbors have the same class.

Figure 7 illustrates the classification probability ofxi given a single neighborxj as a function of

the distance between the two componentsDi,j . Here, we assume the classification ofxj is given. The

solid line shows a graph of the probabilityp(xi 6= xj |xj) while the dashed line shows a graph of the

probability p(xi = xj |xj). Note that the parameterp controls the roll-off of the function, anda and b

control the minimum and transition point for the function. The actual parameters,φ = [p, a, b]T , are

optimized in an off-line training procedure (See sec. III-B).

With the MRF model defined above, we can compute a maximum a posteriori (MAP) estimate to find

the optimal set of classification labelsx = [x1 x2 . . . xN ]T . The MAP estimate is given by,

x̂MAP = argmin
x∈{0,1}N







−
∑

i∈S

log p(yi|xi) +
∑

{i,j}∈P

wi,jδ(xi 6= xj) − ctextδ(xi = 1)







. (12)

We introduced a termctext to control the trade-off between missed and false detections. The termctext

may take a positive or negative value. Ifctext is positive, both text detections and false detections increase.

If it is negative, false and missed detections are reduced.

To find an approximate solution of (12), we use iterative conditional modes (ICM) which sequentially

minimizes the local posterior probabilities [38], [39]. Theclassification labels,{xi| i ∈ S}, are initialized

with their maximum likelihood (ML) estimates, and then the ICM procedure iterates through the set of

classification labels until a stable solution is reached.

B. Parameter estimation

In our statistical model, there are two sets of parameters tobe estimated by a training process. The

first set of parameters comes from theD-dimensional multivariate Gaussian mixture distributions given
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Fig. 7. Illustration of classification probability ofxi given a single neighborxj as a function of the distance between the

two components. The solid line shows a graph ofp(xi 6= xj |xj) while the dashed line shows a graph ofp(xi = xj |xj). The

parameters are set toa = 0.1 andb = 1.0.

by Eq. (6) which models the feature vectors from text and non-text classes. The second set of parameters,

φ = [p, a, b]T , controls the MRF model of Eq. (11). All parameters are estimated in an off-line

procedure using a training image set and their ground truth segmentations. The training images were

first segmented using the COS algorithm. All foreground connected components were extracted from

the resulting segmentations, and then each connected component was labeled as text or non-text by

matching to the components on the ground truth segmentations. The corresponding feature vectors were

also calculated from the original training images.

The parameters of the Gaussian mixture distribution were estimated using the EM algorithm [40].

The number of clusters in each Gaussian mixture for text and non-text were also determined using the

minimum description length (MDL) estimator [41].

The prior model parametersφ = [p, a, b]T were independently estimated using pseudolikelihood

maximization [42], [43], [44]. In order to apply pseudolikelihood estimation, we must first calculate the

conditional probability of a classification label given its neighboring components’ labels,

p(xi|x∂i) =
1

Zi
exp







−
∑

j∈∂i

wi,jδ(xi 6= xj)







(13)
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where the normalization factorZi is defined by

Zi =
∑

xi∈{0,1}

exp







−
∑

j∈∂i

wi,jδ(xi 6= xj)







. (14)

Therefore, the pseudolikelihood parameter estimation for our case is,

φ̂ = argmax
φ

∏

i∈S

p(xi|x∂i)

= argmax
φ

∏

i∈S

1

Zi
exp







−
∑

j∈∂i

wi,jδ(xi 6= xj)







= argmin
φ

∑

i∈S







log Zi +
∑

j∈∂i

wi,jδ(xi 6= xj)







.

(15)

IV. M ULTISCALE-COS/CCCSEGMENTATION SCHEME

In order to improve accuracy in the detection of text with varying size, we incorporated a multiscale

framework into the COS/CCC segmentation algorithm. The multiscale framework allows us to detect both

large and small components by combining results from different resolutions [45], [46], [47]. Since the

COS algorithm uses a single block size (i.e. single scale), we found that large blocks are typically better

suited for detecting large text, and small blocks are bettersuited for small text. In order to improve the

detection of both large and small text, we use a multiscale segmentation scheme which uses the results

of coarse-scale segmentations to guide segmentation on finerscales. Note that both COS and CCC

segmentations are performed on each scale, however, only COS is adapted to the multiscale scheme.

Figure 8 shows the overview of our multiscale-COS/CCC scheme.In the multiscale scheme, segmen-

tation progresses from coarse to fine scales, where the coarser scales use larger block sizes, and finer

scales use smaller block sizes. Each scale is numbered fromL − 1 to 0, whereL − 1 is the coarsest

scale and0 is the finest scale. The COS algorithm is modified to use differentblock sizes for each scale

(denoted asm(n)), and incorporates the previous coarser segmentation result by adding a new term to

the cost function.

The new cost function for the multiscale scheme is shown in Eq. (16). It is a function of the class

assignments on both thenth andn + 1th scale.

f
(n)
2 (S(n)) =

M
∑

i=1

N
∑

j=1

{

f
(n)
1 (S(n)) + λ

(n)
4 V4(s

(n)
i,j , x

(n+1)
Bi,j

)
}

(16)

where (·)(n) denotes the term for thenth scale, andS(n) is the set of class assignments for the scale,

that is S = [s
(n)
i,j ] for all i, j. The termBi,j is a set of pixels in a block at the position(i, j), and the

term xBi,j
is the segmentation result for the block.
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Fig. 8. Illustration of a multiscale-COS/CCC algorithm. Segmentation progresses from coarse to fine scales, incorporating the

segmentation result from the previous coarser scale. Both COS and CCCare performed on each scale, however only COS was

adapted to the multiscale scheme.

As it is shown in the equation, this modified cost function incorporates a new termV4 that makes

the segmentation consistent with the previous coarser scale. The termV4, is defined as the number of

mismatched pixels within the blockBi,j between the current scale segmentationx
(n)
Bi,j

and the previous

coarser scale segmentationx
(n+1)
Bi,j

. The exception is that only the pixels that switch from “1” (foreground)

to “0” (background) are counted whens(n)
i,j = 0 or s

(n)
i,j = 1. This term encourages a more detailed

segmentation as we proceed to finer scales. TheV4 term is normalized by dividing by the block size on

the current scale. Note that theV4 term is ignored for the coarsest scale. Using the new cost function,

we find the class assignments,si,j ∈ {0, 1, 2, 3}, for each scale.

The parameter estimation of the cost functionf
(n)
2 for n ∈ {0, . . . L−1} is performed in an off-line task.

The goal is to find the optimal parameter setΘ(n) = {λ
(n)
1 . . . λ

(n)
4 } for n ∈ {0, . . . L − 1}. To simplify

the optimization process, we first performed single scale optimization to findΘ′(n) = {λ
(n)
1 . . . λ

(n)
3 } for

each scale. Then, we found the optimal set ofΘ′′ = {λ
(0)
4 . . . λ

(L−2)
4 } given the{Θ′(0) . . .Θ′(L−1)}. The

error to be minimized was the number of mismatched pixels compared to ground truth segmentations,

as shown in (5). Theω, the weighting factor of the error for false detection, was fixed to 0.5 for the

multiscale-COS/CCC training process.

V. RESULTS

In this section, we compare the multiscale-COS/CCC, COS/CCC,and COS segmentation results with

the results of two popular thresholding methods, an MRF-based segmentation method, and two existing

commercial software packages which implement MRC documentcompression. The thresholding methods
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used for the comparison in this study are Otsu [12] and Tsai [17] methods. These algorithms showed the

best segmentation results among the thresholding methods in [12], [14], [15], [16], and [17]. In the actual

comparison, the sRGB color image was first converted to a luma grayscale image, then each thresholding

method was applied. For ‘Otsu/CCC” and “Tsai/CCC”, the CCC algorithm was combined with the Otsu

and Tsai binarization algorithms to remove false detections. In this way, we can compare the end result

of the COS algorithm to alternative thresholding approaches.

The MRF-based binary segmentation used for the comparison is based on the MRF statistical model

developed by Zheng and Doermann [28]. The purpose of their algorithm is to classify each component as

either noise, hand-written text, or machine printed text from binary image inputs. Due to the complexity

of implementation, we used a modified version of the CCC algorithm incorporating their MRF model by

simply replacing our MRF classification model by their MRF noise classification model. The multiscale

COS algorithm was applied without any change. The clique frequencies of their model were calculated

through off-line training using a training data set. Other parameters were set as proposed in the paper.

We also used two commercial software packages for the comparison. The first package is the DjVu

implementation contained in Document Express Enterprise version 5.1 [48]. DjVu is commonly used

software for MRC compression and produces excellent segmentation results with efficient computation.

By our observation, version 5.1 produces the best segmentation quality among the currently available

DjVu packages. The second package is LuraDocument PDF Compressor, Desktop Version [27]. Both

software packages extract text to create a binary mask for layered document compression.

The performance comparisons are based primarily on two aspects: the segmentation accuracy and

the bitrate resulting from JBIG2 compression of the binary segmentation mask. We show samples of

segmentation output and MRC decoded images using each method for a complex test image. Finally, we

list the computational run times for each method.

A. Preprocessing

For consistency all scanner outputs were converted to sRGB color coordinates [49] and descreened [50]

before segmentation. The scanned RGB values were first converted to an intermediate device-independent

color space, CIE XYZ, then transformed to sRGB [51]. Then, Resolution Synthesis-based Denoising

(RSD) [50] was applied. This descreening procedure was applied to all of the training and test images.

For a fair comparison, the test images which were fed to othercommercial segmentation software packages

were also descreened by the same procedure.

December 4, 2010 DRAFT



SUBMITTED TO IEEE TRANSCATIONS ON IMAGE PROCESSING 17

B. Segmentation accuracy and bitrate

To measure the segmentation accuracy of each algorithm, we used a set of scanned documents

along with corresponding “ground truth” segmentations. First, 38 documents were chosen from different

document types, including flyers, newspapers, and magazines. The documents were separated into 17

training images and 21 test images, and then each document was scanned at 300 dots per inch (dpi)

resolution on the EPSON STYLUS PHOTO RX700 scanner. After manually segmenting each of the

scanned documents into text and non-text to create ground truth segmentations, we used the training

images to train the algorithms, as described in the previoussections. The remaining test images were

used to verify the segmentation quality. We also scanned thetest documents on two additional scanners:

the HP Photosmart 3300 All-in-One series and Samsung SCX-5530FN. These test images were used to

examine the robustness of the algorithms to scanner variations.

The parameter values used in our results are as follows. The optimal parameter values for the multiscale-

COS/CCC were shown in the Table I. Three layers were used for multiscale-COS/CCC algorithm, and

the block sizes were36 × 36, 72 × 72, and 144 × 144. The parameters for the CCC algorithm were

p = 7.806, a = 0.609, b = 0.692. The number of neighbors in thek-NN search was 6. In DjVu, the

segmentation threshold was set to the default value while LuraDocument had no adjustable segmentation

parameters.

TABLE I

PARAMETER SETTINGS FOR THECOSALGORITHM IN MULTISCALE -COS/CCC.

λ1 λ2 λ3 λ4

2nd layer 20.484 8.9107 17.778 1.0000

1st layer 53.107 28.722 39.359 17.200

0th layer 30.681 21.939 36.659 56.000

To evaluate the segmentation accuracy, we measured the percent of missed detections and false

detections of segmentedcomponents, denoted aspMC andpFC . More specifically,pMC andpFC were

computed in the following manner. The text in ground truth images were manually segmented to produce

Ngt components. For each of these ground truth components, the corresponding location in the test

segmentation was searched for a symbol of the same shape. If more than 70% of the pixels matched in

the binary pattern, then the symbol was considered detected. If the total number of correctly detected
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components isNd, then we define that the fraction of missed components as

pMC =
Ngt − Nd

Ngt
. (17)

Next, each correctly detected component was removed from the segmentation, and the number of re-

maining false components,Nfa, in the segmentation was counted. The fraction of false components is

defined as

pFC =
Nfa

Ngt
. (18)

We also measured the percent of missed detections and false detections of individualpixels, denoted as

pMP and pFP . They were computed similarly to thepMC and pFC defined above, except the number

of pixels in the missed detections (XMP ) and false detections (XFP ) were counted, and these numbers

were then divided by the total number of pixels in the ground truth document (Xtotal).

pMP =
XMP

Xtotal
. (19)

pFP =
XFP

Xtotal
. (20)

Table II shows the segmentation accuracy of our algorithms (multiscale-COS/CCC, COS/CCC, and

COS), the thresholding methods (Otsu and Tsai), an MRF-based algorithm (multiscale-COS/CCC/Zheng),

and two commercial MRC document compression packages (DjVuand LuraDocument). The values in the

Table II were calculated from all of the available test images from each scanner. Notice that multiscale-

COS/CCC exhibits quite low error rate in all categories, and shows the lowest error rate in the missed

component detection errorpMC . For the missed pixel detectionpMP , both multiscale-COS/CCC/Zheng

and the multiscale-COS/CCC show the first and second lowest error rates. For the false detectionspFC

and pFP , the thresholding methods such as Otsu and Tsai exhibit the low error rates, however those

thresholding methods show a high missed detection error rate. This is because the thresholding methods

cannot separate text from background when there are multiple colors represented in the text.

For the internal comparisons among our algorithms, we observed that CCC substantially reduces

the pFC of the COS algorithm without increasing thepMC . The multiscale-COS/CCC segmentation

achieves further improvements and yields the smallestpMC among our methods. Note that the missed

pixel detection error ratepMP in the multiscale-COS/CCC is particularly reduced comparedto the other

methods. This is due to the successful detection of large textcomponents along with small text detection

in the multiscale-COS/CCC. Large text influencespMP more than small text since each symbol has a

large number of pixels.
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In the comparison of multiscale-COS/CCC to commercial products DjVu and LuraDocument, the

multiscale-COS/CCC exhibits a smaller missed detection error rate in all categories. The difference is

most prominent in the false detection error rates (pFC , pFP ).

TABLE II

SEGMENTATION ACCURACY COMPARISON BETWEEN OUR ALGORITHMS(MULTI -COS/CCC, COS/CCC,AND COS),

THRESHOLDING ALGORITHMS(OTSU AND TSAI), AN MRF-BASED ALGORITHM (MULTISCALE-COS/CCC/ZHENG), AND

TWO COMMERCIAL MRC DOCUMENT COMPRESSION PACKAGES(DJVU AND LURADOCUMENT). M ISSED COMPONENT

ERROR, pMC , THE CORRESPONDING MISSED PIXEL ERROR, pMP , FALSE COMPONENT ERROR, pFC , AND THE

CORRESPONDING FALSE PIXEL ERROR, pFP , ARE CALCULATED FOR EPSON, HP,AND SAMSUNG SCANNER OUTPUT.

EPSON Multi-COS/CCC Multi-COS/CCC/Zheng DjVu LuraDoc COS/CCC Otsu/CCC Tsai/CCC COS Otsu Tsai

pMC 0.41% 0.95% 0.49% 4.64% 0.60% 2.71% 3.29% 0.53 % 4.47% 4.84%

pMP 0.33% 0.27% 0.47% 0.75% 0.57% 0.55% 0.61% 0.48 % 0.64% 0.65%

pF C 9.14% 9.79% 12.1% 19.5% 9.10% 9.66% 8.70% 20.1 % 25.3% 40.7%

pF P 0.45% 0.54% 1.05% 6.64% 0.44% 1.60% 1.20% 3.28 % 20.4% 19.9%

HP Multi-COS/CCC Multi-COS/CCC/Zheng DjVu LuraDoc COS/CCC Otsu/CCC Tsai/CCC COS Otsu Tsai

pMC 0.35% 1.67% 0.56% 4.84% 0.44% 3.29% 4.17% 0.47% 4.94% 5.07%

pMP 0.20% 0.28% 0.48% 0.68% 0.51% 0.57% 0.61% 0.43% 0.59% 0.60%

pF C 16.9% 16.8% 19.4% 41.7% 16.9% 21.4% 19.5% 45.2% 91.6% 141.2%

pF P 0.70% 0.66% 1.19% 6.33% 0.62% 1.35% 1.18% 3.04% 16.4% 15.2 %

Samsung Multi-COS/CCC Multi-COS/CCC/Zheng DjVu LuraDoc COS/CCC Otsu/CCC Tsai/CCC COS Otsu Tsai

pMC 0.44% 1.51% 0.61% 4.50% 0.48% 3.05% 8.59% 0.51% 5.01% 8.15 %

pMP 0.32% 0.35% 0.44% 0.68% 0.53% 0.63% 0.78% 0.48% 0.66% 0.73 %

pF C 7.95% 8.10% 11.4% 19.4% 7.95% 7.31% 6.67% 17.5% 20.2% 36.1 %

pF P 0.50% 0.51% 0.81% 5.75% 0.33% 1.16% 0.67% 2.76% 19.0% 17.6 %

Figure 9 shows the trade-off between missed detection and false detection,pMC vs. pFC andpMP vs.

pFP , for the multiscale-COS/CCC, multiscale-COS/CCC/Zheng, andDjVu. All three methods employ

a statistical model such as an MRF or HMM for text detection. In DjVu, the trade-off between missed

detection and false detection was controlled by adjustmentof sensitivity levels. In multiscale-COS/CCC

and multiscale-COS/CCC/Zheng method, the trade-off was controlled by the value ofctext in (12), and

the ctext was adjusted over the interval[−2, 5] for the finest layer. The results of Fig. 9 indicate that the

MRF model used by CCC results in more accurate classification of text. This is perhaps not surprising

since the CCC model incorporates additional information byusing component features to determine the

MRF clique weights of Eq. (11).

We also compared the bitrate after compression of the binarymask layer generated by multiscale-

COS/CCC, multiscale-COS/CCC/Zheng, DjVu, and LuraDocument inTable III. For the binary compres-

sion, we used JBIG2 [52], [53] encoding as implemented in theSnowBatch JBIG2 encoder, developed
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Fig. 9. Comparison of multiscale-COS/CCC, multiscale-COS/CCC/Zheng, and DjVu in trade-off between missed detection

error vs. false detection error. (a) component-wise (b) pixel-wise

by Snowbound Software2, using the default settings. JBIG2 is a symbol-matching based compression

algorithm that works particularly well for documents containing repeated symbols such as text. Moreover,

JBIG2 binary image coder generally produces the best results when used in MRC Document compression.

Typically, if more components are detected in a binary mask,the bitrate after compression increases.

However, in the case of JBIG2, if only text components are detected in a binary mask, then the bitrate

does not increase significantly because JBIG2 can store similar symbols efficiently.

Table III lists the sample mean and standard deviation (STD) ofthe bitrates (in bits per pixel) of

multiscale-COS/CCC, multiscale-COS/CCC/Zheng, DjVu, LuraDocument, Otsu/CCC, and Tsai/CCC after

compression. Notice that the bitrates of our proposed multiscale-COS/CCC method are similar or lower

than DjVu, and substantially lower than LuraDocument, even though the multiscale-COS/CCC algorithm

detects more text. This is likely due to the fact that the multiscale-COS/CCC segmentation has fewer

false components than the other algorithms, thereby reducing the number of symbols to be encoded. The

bitrates of the multiscale-COS/CCC and multiscale-COS/CCC/Zheng methods are very similar while The

bitrates of the Otsu/CCC and Tsai/CCC are low because many text components are missing in the binary

mask.

2http://www.snowbound.com/

December 4, 2010 DRAFT



SUBMITTED TO IEEE TRANSCATIONS ON IMAGE PROCESSING 21

TABLE III

COMPARISON OF BITRATE BETWEEN MULTISCALE-COS/CCC,MULTISCALE-COS/CCC/ZHENG, DJVU, LURADOCUMENT,

OTSU/CCC,AND TSAI/CCC FOR JBIG2COMPRESSED BINARY MASK LAYER FOR IMAGES SCANNED ONEPSON, HP,AND

SAMSUNG SCANNERS.

Multi-COS/CCC Multi-COS/CCC/Zheng DjVu LuraDoc Otsu/CCC Tsai/CCC ground truth

average STD average STD average STD average STD average STD average STD average STD

EPSON (bits/pxl) 0.037 0.014 0.037 0.014 0.040 0.014 0.046 0.016 0.037 0.016 0.036 0.016 0.037 0.014

HP (bits/pxl) 0.040 0.015 0.040 0.015 0.041 0.015 0.052 0.019 0.040 0.016 0.040 0.016 0.039 0.016

Samsung (bits/pxl) 0.035 0.015 0.035 0.015 0.036 0.015 0.041 0.016 0.035 0.016 0.034 0.017 0.036 0.016

C. Computation time

Table IV shows the computation time in seconds for multiscale-COS/CCC with 3 layers, multiscale-

COS/CCC with 2 layers, COS/CCC, COS, and multiscale-COS/CCC/Zheng. We evaluated the computa-

tion time using an Intel Xeon CPU (3.20GHz), and the numbers are averaged on 21 test images. The block

size on the finest resolution layer is set to 32. Notice that thecomputation time of multiscale segmentation

grows almost linearly as the number of layers increases. The computation time of our multiscale-

COS/CCC and multiscale-COS/CCC/Zheng are almost same. We alsofound that the computation time

for Otsu and Tsai thresholding methods are 0.02 seconds for all of the test images.

TABLE IV

COMPUTATION TIME OF MULTISCALE-COS/CCCALGORITHMS WITH 3 LAYERS, 2 LAYERS, COS-CCC, COS,AND

MULTISCALE-COS/CCC/ZHENG.

Multi-COS/CCC COS/CCC COS Multi-COS/CCC/Zheng

3 layers 2 layers 3 layers

Average 23.89 sec 16.32 sec 8.73 sec 5.39 sec 23.91 sec

STD 3.16 sec 2.12 sec 1.15 sec 0.39 sec 3.19 sec

D. Qualitative Results

Figure 10 illustrates segmentations generated by Otsu/CCC,multiscale-COS/CCC/Zheng, DjVu, Lu-

raDocument, COS, COS/CCC, and multiscale-COS/CCC for a 300 dpitest image. The ground truth

segmentation is also shown. This test image contains many complex features such as different color text,

light-color text on a dark background, and various sizes of text. As it is shown, COS accurately detects

most text components but the number of false detections is quite large. However, COS/CCC eliminates
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most of these false detections without significantly sacrificing text detection. In addition, multiscale-

COS/CCC generally detects both large and small text with minimal false component detection. Otsu/CCC

method misses many text detections. LuraDocument is very sensitive to sharp edges embedded in picture

regions and detects a large number of false components. DjVualso detects some false components but the

error is less severe than LuraDocument. Multiscale-COS/CCC/Zheng’s result is similar to our multiscale-

COS/CCC result but our text detection error is slightly less.

Figure 11 and 12 show a close up of text regions and picture regions from the same test image. In the

text regions, our algorithms (COS, COS/CCC, and multiscale-COS/CCC), multiscale-COS/CCC/Zheng,

and Otsu/CCC provided detailed text detection while DjVu and LuraDocument missed sections of these

text components. In the picture regions, while our COS algorithm contains many false detections, COS/CCC

and multiscale-COS/CCC algorithms are much less susceptible to these false detections. The false detec-

tions by COS/CCC and multiscale-COS/CCC are also less than DjVu, LuraDocument, and multiscale-

COS/CCC/Zheng.

Figure 13 and Fig. 14 show MRC decoded images when the encodingsrelied on segmentations

from Ground truth, Otsu/CCC, multiscale-COS/CCC/Zheng, DjVu, LuraDocument, COS, COS/CCC, and

multiscale-COS/CCC. The examples from text and picture regions illustrate how segmentation accuracy

affects the decoded image quality. Note that the MRC encoding method used after segmentation is different

for each package, and MRC encoders used in DjVu and LuraDocument are not open source, therefore

we developed our own MRC encoding scheme. This comparison is not strictly limited to segmentation

effects, but it provides an illustration of how missed components and false component detection affects

the decoded images.

As shown in Fig. 13, all of the text from COS, COS/CCC, multiscale-COS/CCC, and multiscale-

COS/CCC/Zheng is clearly represented. Some text in the decodedimages from Otsu/CCC, DjVu, and

LuraDocument are blurred because missed detection placed these components in the background. In the

picture region, our methods classify most of the parts as background so there is little visible distortion

due to mis-segmentation. On the other hand, the falsely detected components in DjVu and LuraDocument

generate artifacts in the decoded images. This is because thetext-detected regions are represented in the

foreground layer, therefore the image in those locations isencoded at a much lower spatial resolution.

E. Prior Model Evaluation

In this section, we will evaluate our selected prior model. We used the initial segmentation result

generated by COS with a single block size32× 32. Then we performed the CCC segmentation with the
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same parameter set described in the previous section. Figure15 shows the local conditional probability

of each connected component given its neighbors’ classes for two test images. The colored components

indicate the foreground regions segmented by the COS algorithm. The yellowish or redish components

were classified as text by the CCC algorithm, whereas the bluish components were classified as non-text.

The brightness of each connected component indicates the intensity of the conditional probability which

is described asP (xi|x∂i). As shown, the conditional probability of assigned classification are close to 1

for most components. We observed that the components on boundaries between text and non-text regions

take slightly smaller values but overall this local conditional probability map shows that the contextual

model fits the test data well, and that the prior term contributes to an accurate classification.

VI. CONCLUSION

We presented a novel segmentation algorithm for the compression of raster documents. While the

COS algorithm generates consistent initial segmentations, the CCC algorithm substantially reduces false

detections through the use of a component-wise MRF context model. The MRF model uses a pair-wise

Gibbs distribution which more heavily weights nearby components with similar features. We showed that

the multiscale-COS/CCC algorithm achieves greater text detection accuracy with a lower false detection

rate, as compared to state-of-the-art commercial MRC products. Such text-only segmentations are also

potentially useful for document processing applications such as OCR.

APPENDIX

FEATURE VECTOR FORCCC

The feature vector for the connected components (CC) extracted in the CCC algorithm is a 4-

dimensional vector and denoted asy = [y1 y2 y3 y4]
T . Two of the components describe edge depth

information, while the other two describe pixel value uniformity.

More specifically, an inner pixel and an outer pixel are first defined to be the two neighboring pixels

across the boundary for each boundary segmentk ∈ {1, . . . , N}, whereN is the length of the boundary.

Note that the inner pixel is a foreground pixel and the outer pixel is a background pixel. The inner pixel

values are defined asXin(k) = [Rin(k), Gin(k), Bin(k)], whereas the outer pixel values are defined as

Xout(k) = [Rout(k), Gout(k), Bout(k)]. Using these definitions, the edge depth is defined as

edge(k) =
√

||Xin(k) − Xout(k)||2.

Then, the termsy1 andy2 are defined as,

y1
def
= Sample mean ofedge(k), k = 1, 2, . . . , N
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y2
def
= Standard deviation ofedge(k), k = 1, 2, . . . , N .

The termsy3 and y4 describe uniformity of the outer pixels. The uniformity is defined by the range

and standard deviation of the outer pixel values, that is

y3
def
= max{O(k)} − min{O(k)}, k = 1, 2, . . . , N

y4
def
= Standard deviation ofO(k), k = 1, 2, . . . , N

where

O(k) =
√

Rout(k)2 + Gout(k)2 + Bout(k)2.

In an actual calculation, the95th percentile and the5th percentile are used instead of the maximum

and minimum values to eliminate outliers. Note that only outer pixel values were examined for the

uniformness because we found that inner pixel values of the connected components extracted by COS

are mostly uniform even for non-text components.

The augmented feature vector of CCC algorithm contains the four components described above concate-

nated with two additional components corresponding the horizontal and vertical position of the connected

component’s center in 300 dpi, that isz = [y1 y2 y3 y4 a1 a2]
T .

a1
def
= horizontal pixel location of a connected component’s center

a2
def
= vertical pixel location of a connected component’s center
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(a) Original (b) Ground Truth (c) Otsu/CCC

(d) Multi-COS/CCC/Zheng (e) DjVu (f) LuraDocument

(g) COS (h) COS/CCC (i) multiscale-COS/CCC

Fig. 10. Binary masks generated from Otsu/CCC, multiscale-COS/CCC/Zheng, DjVu, LuraDocument, COS, COS/CCC, and

multiscale-COS/CCC. (a) Original test image (b) Ground truth segmentation(c) Otsu/CCC (d) Multiscale-COS/CCC/Zheng (e)

DjVu (f) LuraDocument (g) COS (h) COS/CCC (i) Multiscale-COS/CCC
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(a) Original (b) Ground truth (c) Otsu/CCC

(d) Multi-COS/CCC/Zheng (e) DjVu (f) LuraDocument

(g) COS (h) COS/CCC (i) multiscale-COS/CCC

Fig. 11. Text regions in the binary mask. The region is 165× 370 pixels at 400 dpi, which corresponds to 1.04 cm× 2.34 cm.

(a) Original test image (b) Ground truth segmentation (c) Otsu/CCC (d) Multiscale-COS/CCC/Zheng (e) DjVu (f) LuraDocument

(g) COS (h) COS/CCC (i) Multiscale-COS/CCC
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(a) Original (b) Ground truth (c) Otsu/CCC

(d) Multi-COS/CCC/Zheng (e) DjVu (f) LuraDocument

(g) COS (h) COS/CCC (i) multiscale-COS/CCC

Fig. 12. Picture regions in the binary mask. Picture region is 1516× 1003 pixels at 400 dpi, which corresponds to 9.63 cm

× 6.35 cm. (a) Original test image (b) Ground truth segmentation (c) Otsu/CCC (d) Multiscale-COS/CCC/Zheng (e) DjVu (f)

LuraDocument (g) COS (h) COS/CCC (i) Multiscale-COS/CCC
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(a) Original (b) Ground Truth (c) Otsu/CCC

(d) Multiscale-COS/CCC/Zheng (e) DjVu (f) LuraDocument

(g) COS (h) COS/CCC (i) multiscale-COS/CCC

Fig. 13. Decoded MRC image of text regions (400 dpi). (a) Original testimage (b) Ground truth (300:1 compression) (c)

Otsu/CCC (311:1 compression) (d) Multiscale-COS/CCC/Zheng (295:1) (e) DjVu (281:1) (f) LuraDocument (242:1) (g) COS

(244:1) (h) COS/CCC (300:1) (i) Multiscale-COS/CCC (289:1).
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(a) Original (b) Ground Truth (c) Otsu/CCC

(d) Multi-COS/CCC/Zheng (e) DjVu (f) LuraDocument

(g) COS (h) COS/CCC (i) multiscale-COS/CCC

Fig. 14. Decoded MRC image of picture regions (400 dpi). (a) Original test image (b) Ground truth (300:1 compression) (c)

Otsu/CCC (311:1 compression) (d) Multiscale-COS/CCC/Zheng (295:1) (e) DjVu (281:1) (f) LuraDocument (242:1) (g) COS

(244:1) (h) COS/CCC (300:1) (i) Multiscale-COS/CCC (289:1).
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(a) An original training image (b) Local probabilities

(d) An original test image (e) Local probabilities

Fig. 15. The yellowish or redish components were classified as text by theCCC algorithm, whereas the bluish components

were classified as non-text. The brightness of each connected component indicates the intensity of the conditional probability

which is described asP (xi|x∂i).
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