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A Document Image Model and Estimation

Algorithm for Optimized JPEG Decompression
Tak-Shing Wong, Charles A. Bouman, Ilya Pollak, and Zhigang Fan

Abstract

The JPEG standard is one of the most prevalent image compression schemes in use today. While JPEG

was designed for use with natural images, it is also widely used for the encoding of raster documents.

Unfortunately, JPEG’s characteristic blocking and ringing artifacts can severely degrade the quality of text

and graphics in complex documents.

We propose a JPEG decompression algorithm which is designedto produce substantially higher quality

images from the same standard JPEG encodings. The method works by incorporating a document image

model into the decoding process which accounts for the wide variety of content in modern complex color

documents. The method works by first segmenting the JPEG encoded document into regions corresponding

to background, text, and picture content. The regions corresponding to text and background are then decoded

usingmaximum a posteriori (MAP) estimation. Most importantly, the MAP reconstruction of the text regions

uses a model which accounts for the spatial characteristicsof text and graphics. Our experimental comparisons

to the baseline JPEG decoding as well as to three other decoding schemes, demonstrate that our method

substantially improves the quality of decoded images, bothvisually and as measured by PSNR.

I. I NTRODUCTION

Baseline JPEG [1], [2] is still perhaps the most widely used lossy image compression algorithm. It has

a simple structure, and efficient hardware and software implementations of JPEG are widely available.

Although JPEG was first developed for natural image compression, in practice, it is also commonly used for

encoding document images. However, document images encoded by the JPEG algorithm exhibit undesirable

blocking and ringing artifacts [3]. In particular, ringingartifacts significantly reduce the sharpness and clarity

of the text and graphics in the decoded image.
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In recent years, several more advanced schemes have been developed for document image compression.

For examples, DjVu [4] and approaches based on the mixed raster content (MRC) model [5] are designed

specifically for the compression of compound documents containing text, graphics and natural images.

These multilayer schemes can dramatically improve on the quality and bit-rate trade-off of baseline JPEG

compression. However, the encoding processes of these advanced schemes are also substantially more

complicated than the JPEG algorithm. The simplicity of the JPEG algorithm allows many high performance

and memory efficient JPEG encoders to be implemented. The existence of such encoders facilitate the use

of JPEG in many document compression applications, especially in certain firmware based systems.

Many schemes have been proposed to improve on the quality of JPEG encoded images. One approach

is to adjust the bit usage of the image blocks during encoding[6]–[8]. In this approach, the bit rate is

adjusted in accordance to the content of the blocks so as to achieve better rate-distortion characteristics.

However, although this approach usually improves the PSNR of the decoded image, it does not address the

JPEG artifacts directly. Images which have been compressed also cannot take advantage of these schemes.

Alternatively, another approach applies post-processingsteps in the decoding process to suppress JPEG

artifacts [9]–[15]. The schemes in [9], [10] reduce blockingartifacts by methods derived from projections

onto convex sets (POCS). In [11], [12], prior knowledge of the original image is introduced in the decoding

process with a Markov random field (MRF). The decoded image is then formed by computing themaximum

a posteriori (MAP) estimate of the original image given the JPEG compressed image. Adaptive post-filtering

techniques are suggested in [13]–[15] to reduce blocking and/or ringing artifacts in the decoded image. Filter

kernels are chosen based on the amount of detail in the neighborhood of the targeted pixel to suppress JPEG

artifacts without over-blurring details. A review of post-processing techniques can be found in [16]. Still

another approach requires modifications to both the encoder and the decoder. An example is given by the

scheme in [17] which applies the local cosine transform to reduce blocking artifacts. Despite much work that

has been done to improve the JPEG decoding quality, however, most of the schemes proposed are designed

primarily for natural images rather than documents.

In this paper, we propose a JPEG decompression scheme which substantially improves the decoded

image quality for document images compressed by a conventional JPEG encoder. Our scheme works by

first segmenting the image into blocks of three classes: background, text, and picture. Image blocks of each

class are then decompressed by an algorithm designed specifically for that class, in order to achieve a high

quality decoded image. In particular, one important contribution of our work is the introduction of a novel
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text model that is used to decode the text blocks. Our text model captures the bimodal distribution of text

pixels by representing each pixel as a continuous combination of a foreground and background color. During

the decoding process, the foreground and background colorsare adaptively estimated for each block. As

demonstrated in Section VII, the text regions decoded with this text model are essentially free from ringing

artifacts even when images are compressed at a relatively low bit rate.

The three classes of blocks used in our scheme have different characteristics and they suffer differently

from JPEG artifacts. The background blocks correspond to the background of the document and smooth

regions of natural images. Due to the smoothness of the background blocks, they are susceptible to the

blocking artifacts. The text blocks are comprised of the textand graphic regions of the image. These blocks

contain many sharp edges and they suffer most severely from the ringing artifacts. The remaining picture

blocks consist of irregular regions of natural images. They suffer from both ringing and blocking artifacts.

As noted in [18], the high-frequency content in these highlytextured blocks makes the JPEG artifacts less

noticeable. Thus, we simply use the conventional JPEG decodingto decode the picture blocks.

We describe the structure of our decoding scheme in Section II. For the luminance component, we then

present the prior models used to decode the background blocks and the text blocks in Section III, and the

MAP reconstruction algorithms in Section IV. We introduce our block based segmentation algorithm in

Section V. Following this, in Section VI, we extend the decoding scheme to the chrominance components

to address the low signal-to-noise ratio and low resolutioncommonly seen in the encoded chrominance

components. Finally in Section VII, we present the experimental results and compare our scheme with three

other existing JPEG decoding algorithms.

II. OVERVIEW OF THE PROPOSEDSCHEME

Under the JPEG encoding scheme, a color image is first converted to theYCbCr color space [19], [20], and

the chrominance components are optionally subsampled. After this preprocessing, each color component is

partitioned into non-overlapping8×8 blocks, and each block from the components undergoes the three steps

of forward discrete cosine transform (DCT) [21], quantization, and entropy encoding. For an achromatic

image, the preprocessing stage is omitted. The problem of JPEG decoding is to reconstruct the original

image from the encoded DCT coefficients.

Fig. 1 shows the block diagram of our approach to JPEG decoding. First, the segmentation algorithm

classifies the image blocks from the luminance component intothree classes corresponding to background,

text, and picture. Next, the color components of the JPEG imageare decoded. For each color component,
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Fig. 1. Overview of the proposed scheme. The luminance component isused to segment the JPEG compressed image into three
classes of image blocks. The segmentation map is then used to determine theclass of each block and to select the algorithm used
to decode the block.

the segmentation map is used to determine the class of each block contained in the color component. Each

block is then decoded with an algorithm designed to achieve the best quality for the given block class. After

decoding the color components, the chrominance componentsare interpolated to the original resolution if

they have been subsampled. Finally, the image inYCbCr color space is transformed to the desired output

color space, usually sRGB [22].

We introduce our notation by briefly reviewing the achromaticJPEG codec. We denote random variables

and vectors by uppercase letters, and their realizations bylowercase letters. LetXs be a column vector

containing the 64 intensity values of thes-th block. Then the DCT coefficients for this block are given by

Ys = DXs, whereD is the 64×64 orthogonal DCT transformation matrix. The JPEG encoder computes

the quantized DCT coefficients as̃Ys,i = Qi round
[

Ys,i

Qi

]

, whereQi is a set of quantization step sizes. A

typical JPEG decoder takes the inverse DCT of the quantized coefficients to form an8×8 block of pixels

X̃s = D−1Ỹs. We also useT (·) to denote the quantization operation so thatỸs = T (Ys) = T (DXs).

In our scheme, JPEG decoding is posed as an inverse problem in a Bayesian framework. This inverse

problem is ill-posed because JPEG quantization is a many-to-one transform, i.e. many possible blocksXs

can produce the same quantized DCT coefficientsỸs. We regularize the decoding problem by developing a

prior model for the original image and computing the maximuma posteriori probability (MAP) estimate [23]

of the original image from the decoded DCT coefficients.

Specifically, for a particular preprocessed color component,the conditional probability mass function1 of

1Here and in the rest of the paper, we simplify notation by denoting all probability mass and density functions byp, whenever
the random variables that they describe can be inferred from their arguments. Whenever an ambiguity may arise, we denote the
probability mass or density function of the random variableV by pV .
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Ỹs given Xs is determined from the structure of the JPEG encoder as

p(ỹs|xs) =

{

1, if T (Dxs) = ỹs

0, otherwise.
(1)

Let X be the vector concatenatingXs of every blocks from the color component, and let̃Y be the vector

of the corresponding quantized DCT coefficients. Then the probability of Ỹ given X is given by

p(ỹ|x) =
∏

s

p(ỹs|xs) =

{

1, if T (Dxs) = ỹs for all s

0, otherwise.
(2)

This forward model simply reflects the fact that for every blocks, the quantized DCT coefficients̃Ys = ỹs

can be calculated deterministically given a specific set of pixel valuesXs = xs. If, moreover,X has the

prior probability densityp(x), the MAP estimate forX based on observing̃Y = ỹ is then given by

x̂ = arg min
x

{

− log p(ỹ|x)− log p(x)
}

.

Referring to (2), we see that the first term in the function we are minimizing,− log p(ỹ|x), is either zero

or ∞. Thus, we must ensure that the first term is zero in order to obtain a minimum. According to (2),

this is accomplished by enforcing the constraintsT (Dxs) = ỹs for all s. In other words, our MAP solution

must be consistent with the observed quantized coefficients.Therefore, the MAP estimate ofX given Ỹ is

the solution to the constrained optimization problem

x̂ = arg min
x

[− log p(x) ] subject toT (Dxs) = ỹs for all s. (3)

In practice, we solve the optimization problem (3) separately for the three classes of blocks. LetXb,

Xt, and Xp be the vectors of all pixels from the background, text, and picture blocks, respectively. The

optimization problem for each class uses a prior model specific to the class. For the text blocks, we use

a prior distributionp(xt|φ) parameterized by a vector of hyperparametersφ, and compute the joint MAP

estimate forXt andφ by maximizing their joint probability densityp(xt, φ) = p(xt|φ)p(φ). The optimization

sub-problems for the background and text blocks are respectively given by

x̂b = arg min
xb

[− log p(xb) ] (4)

subject toT (Dxs) = ỹs for all background blockss, and

(x̂t, φ̂) = arg min
xt,φ

[− log p(xt, φ) ] (5)
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subject toT (Dxs) = ỹs for all text blockss. For the picture blocks, we simply adopt the conventional JPEG

decoding algorithm.

III. PRIOR MODELS FOR THELUMINANCE BLOCKS

A. Prior Model for the Luminance Background Blocks

To enforce smoothness across the boundaries of neighboringbackground blocks, we model the average

intensities of the background blocks as a Gaussian Markov random field (GMRF) [24], [25]. We use an

eight-point neighborhood system and assume only pairwise interactions between neighboring background

blocks specified by the set of cliquesKbb =
{

{r, s} : r ands are neighbor background blocks
}

. Let Xb be

the vector of all pixels from the background blocks of the luminance component. The Gibbs distribution of

the GMRF is then given by

p(xb) =
1

const
exp







−
1

2σ2
B

∑

{r,s}∈Kbb

hr,s(µr − µs)
2







, (6)

whereσ2
B

andhr,s are the parameters of the distribution, andµs = 1
64

∑63
i=0 xs,i is the average intensity of

the blocks. The parametershr,s are chosen ashr,s = 1
6 if r ands are horizontal or vertical neighbors, and

hr,s = 1
12 if r ands are diagonal neighbors.

B. Prior Model for the Luminance Text Blocks

We choose the prior model for the text blocks of the luminancecomponent to reflect the observation that

text blocks are typically two-color blocks, i.e. most pixelvalues in such a block are concentrated around

the foreground intensity and the background intensity. Foreach text blocks, we model its two predominant

intensities as independent random variablesC1,s andC2,s. To accommodate smooth transitions between the

two intensities and other variations, we model each pixel within block s as a convex combination ofC1,s

andC2,s plus additive white Gaussian noise denoted byWs,i. With this model, thei-th pixel in blocks is

given by

Xs,i = αs,iC1,s + (1− αs,i)C2,s + Ws,i , (7)

where the two gray levels,C1,s and C2,s, are mixed together byαs,i which plays a role similar to the

alpha channel [26] in computer graphics. The random variables Ws,i are mutually independent, zero-mean

Gaussian random variables with a common varianceσ2
W

.

Let αs be the vector containing the alpha values of the pixels in thetext block s, and let α be the

vector concatenatingαs for all the text blocks. Further, letC1 and C2 be the vectors of allC1,s and
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Fig. 2. The marginal probability density function of an alpha valueαs,i, for ν = 12. As the alpha value controls the proportion
of the two intensitiesC1,s andC2,s present in a text pixel value, the density function’s support is[0, 1]. The bimodal nature of the
density function with peaks at 0 and 1 models the clustering of the text pixel values aroundC1,s andC2,s.

C2,s random variables for all text blocks, respectively. We assume that the following three objects are

mutually independent: the additive Gaussian noise,α, and the pair{C1, C2}. It then follows from (7) that

the conditional probability density function of the vectorXt of all the pixel values of the text blocks, given

C1, C2 andα, is given by the Gaussian density

p(xt|c1, c2, α) =
1

const
exp

{

−
1

2σ2
W

∑

s text block

‖xs − αsc1,s − (1− αs)c2,s‖
2

}

, (8)

where1 is a 64-dimensional column vector with all entries equal to1.

Sinceαs,i models the proportion of the two intensitiesC1,s and C2,s present inXs,i, we impose that

0 ≤ αs,i ≤ 1 with probability one. The fact that most pixel values in a textblock tend to cluster around

the two predominant intensities is captured by modelingαs,i with a bimodal distribution having peaks at

0 and 1. We model the components ofα as independent and identically distributed random variables, with

the joint probability density function

p(α) =















1

const
exp

{

ν
∑

s text block

‖αs −
1
21‖

2

}

, 0 ≤ αs,i ≤ 1 for all s, i

0, otherwise.

(9)

As shown in Fig. 2, the marginal density for eachαs,i has support on[0, 1] and peaks at0 and 1.

The parameterν > 0 controls the sharpness of the peaks, and therefore affects the smoothness of the

foreground/background transition in the decoded text.
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To enforce smoothness of colors in nearby blocks, we model spatial variation of the two predominant

intensities of text blocks as two Markov random fields (MRF’s) [24], [25]. We use an eight-point neighbor-

hood system and assume only pairwise interactions between neighboring blocks for the MRF’s. In addition,

in the case of a text block,s, neighboring to a background block,r, one of the two predominant intensities

of the text block is typically similar to the predominant intensity of the background block. Therefore,

the MRF’s also capture the pairwise interaction of every suchpair {s, r}. For a background blockr, we

estimate its predominant intensity bŷµr obtained from the background block decoding algorithm described

in Section IV-A. Then, our model forC1 andC2 is expressed by the Gibbs distribution

p(c1, c2) =
1

const
exp







−
1

2σ2
C

∑

{s,r}∈Ktt

(

ρ(c1,s − c1,r) + ρ(c2,s − c2,r)
)







× exp







−
1

2σ2
C

∑

{s,r}∈Ktb

ρ
(

min(|c1,s − µ̂r|, |c2,s − µ̂r|)
)







, (10)

where Ktt =
{

{s, r} : s andr are neighboring text blocks
}

, Ktb =
{

{s, r} : s is a text block,r is a

background block,s and r are neighbors
}

, and ρ(x) = min(x2, τ2), where τ is a threshold parameter,

as depicted in Fig. 3. The first exponential function of (10) describes the pairwise interactions between

every pair{s, r} of neighboring text blocks in the clique setKtt. For each such pair, the potential function

ρ encourages the similarity ofc1,r, and c1,s and the similarity ofc2,r and c2,s. The second exponential

function of (10) captures the pairwise interactions of every pair {s, r} of neighboring blocks such thats is

a text block andr is a background block. For each such pair, the value ofc1,s or c2,s which is closer tôµr

is driven towardµ̂r by the potential functionρ. In the potential functionρ, the thresholdτ is used to avoid

excessively penalizing large intensity differences whichmay arise when two neighboring blocks are from

two different text regions with distinct background and/orforeground intensities.

From (8), (9) and (10), the prior model for text blocks of the luminance component is given by

− log p(xt, c1, c2, α) =
1

2σ2
W

∑

s text block

‖xs − αsc1,s − (1− αs)c2,s‖
2

+
1

2σ2
C

∑

{s,r}∈Ktt

(

ρ(c1,s − c1,r) + ρ(c2,s − c2,r)
)

+
1

2σ2
C

∑

{s,r}∈Ktb

ρ(min(|c1,s − µ̂r|, |c2,s − µ̂r|))

−ν
∑

s text block

‖αs −
1
2 1‖2 + const. (11)
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Fig. 3. The potential functionρ(x) = min(x2, τ2), τ = 20, of the Markov random fields used to characterize the spatial variation
of the predominant colorsC1,s and C2,s. The threshold parameterτ ensures that we avoid excessively penalizing large intensity
difference between the two corresponding predominant colors of two neighboring blocks.

IV. OPTIMIZATION FOR DECODING THELUMINANCE COMPONENT

To decode the luminance component, we need to solve the optimization problems (4) and (5) with the

specific prior models (6) for the background blocks and (11) for the text blocks. We use iterative optimization

algorithms to solve the two problems. For each problem, we minimize the cost function iteratively through

a series of simple local updates. Each update minimizes the cost function with respect to one or a few

variables, while the remaining variables remain unchanged. One full iteration of the algorithm consists of

updating every variable of the cost function once. These iterations are repeated until the change in the cost

between two successive iterations is smaller than a predetermined threshold.

A. Optimization for Decoding the Luminance Background Blocks

To decode the luminance background blocks, we minimize− log p(xb) of (6) subject to the constraints

T (Dxs) = ỹs for every background blocks. We solve this minimization problem in the frequency domain.

For the vectorys containing the DCT coefficients of the blocks, we adopt the convention that the first

elementys,0 is the DC coefficient of the block. Then, we can express the average intensity of the blocks

asµs = ys,0/8, and the original cost function,− log p(xb), becomes

C(yb) =
1

128σ2
B

∑

{r,s}∈Kbb

hr,s(yr,0 − ys,0)
2, (12)
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whereyb is the vector containing the DCT coefficientsys of all the background blocks. We minimize the

cost function (12) subject to the transformed constraintsT (ys) = ỹs for every background blocks.

To perform the minimization, we first initializeys by the quantized DCT coefficients̃ys for each back-

ground blocks. The algorithm then iteratively minimizes the cost functionC(yb) with respect to one variable

at a time. We first obtain the unconstrained minimizer forys,0 by setting the partial derivative of the cost

function with respect toys,0 to zero. Then, we clip the unconstrained minimizer to the quantization range

which ys,0 must fall in, and updateys,0 by

ys,0 ← clip

(
∑

r:{r,s}∈Kbb
hr,s yr,0

∑

r:{r,s}∈Kbb
hr,s

,

[

ỹs,0 −
Q0

2
, ỹs,0 +

Q0

2

]

)

, (13)

whereclip(·, [min, max]) is the clipping operator which clips the first argument to the range[min, max].

Because the cost function is independent of the AC coefficients, the AC coefficients remain unchanged.

B. Optimization for Decoding the Luminance Text Blocks

In order to decode the luminance text blocks, we must minimize the cost function of (11) subject to the

constraint thatT (Dxs) = ỹs for every text blocks. We perform this task using iterative optimization, where

each full iteration consists of a single update of each block, s. The update of each blocks is performed

in three steps: 1) First, we minimize the cost with respect to the alpha channel,αs; 2) we then minimize

with respect to the two colors,(c1,s, c2,s); 3) and finally we minimize with respect to the pixel values,xs.

These full iterations are repeated until the desired level ofconvergence is reached. We now describe the

procedures used for each of these three required updates fora particular blocks.

The block update ofαs is computed by successively minimizing the cost with respect to αs,i at each pixel

location i. For a particularαs,i, we can rewrite the cost function as a quadratic function ofαs,i in the form

aα2
s,i + bαs,i + d, where

a =
(c2,s − c1,s)

2

2σ2
W

− ν, (14)

b =
(c2,s − c1,s)(xs,i − c2,s)

σ2
W

+ ν. (15)

If a 6= 0, this quadratic function has the unique unconstrained extremum at

α∗
s,i = −

b

2a
=

νσ2
W

+ (c2,s − c1,s)(xs,i − c2,s)

2νσ2
W
− (c2,s − c1,s)2

. (16)

If a > 0, the quadratic function is convex and the constrained minimizer for αs,i is α∗
s,i clipped to the
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interval [0, 1]. If a < 0, the quadratic function is concave and the constrained minimizer for αs,i is either0

or 1, depending on whetherα∗
s,i > 1

2 or α∗
s,i ≤ 1/2. In the case whena = 0, the quadratic function reduces

to a linear function ofαs,i with slopeb, and the constrained minimizer forαs,i is either 0 or 1, depending

on the sign of b. Thus, the update formula for this particularαs,i is

αs,i ←















clip(α∗
s,i , [0, 1]), if a > 0

step(1
2 − α∗

s,i), if a < 0

step(−b), if a = 0

(17)

wherestep(·) is the unit step function.

The block update of the two colors,(c1,s, c2,s) requires the minimization of the cost function

F (c1,s, c2,s) =
1

2σ2
W

‖xs − αsc1,s − (1− αs)c2,s‖
2 +

1

2σ2
C

∑

r∈∂s

fr(c1,s, c2,s), (18)

where∂s is the set of the non-picture neighbor blocks ofs, andfr(c1,s, c2,s) is given by

fr(c1,s, c2,s) =

{

ρ(c1,s − c1,r) + ρ(c2,s − c2,r), if r is a text block

ρ(min(|c1,s − µ̂r|, |c2,s − µ̂r|)), if r is a background block.
(19)

Unfortunately,fr(c1,s, c2,s) is a non-convex function of(c1,s, c2,s); however, the optimization problem can

be simplified by using functional substitution methods to compute an approximate solution to the original

problem [27], [28]. Using functional substitution, we replace thefr(c1,s, c2,s) by

f̃r(c1,s, c2,s) = a1,r|c1,s − b1,r|
2 + a2,r|c2,s − b2,r|

2, (20)

whereb1,r = c1,r and b2,r = c2,r if r is a text block, andb1,r = b2,r = µ̂r if r is a background block. The

coefficientsa1,r anda2,r are chosen as

a1,r =

{

step(τ − |c′1,s − c1,r|), if r is a text block

step(τ − |c′1,s − µ̂r|) step(|c′2,s − µ̂r| − |c
′
1,s − µ̂r|), if r is a background block

(21)

a2,r =

{

step(τ − |c′2,s − c2,r|), if r is a text block

step(τ − |c′2,s − µ̂r|) step(|c′1,s − µ̂r| − |c
′
2,s − µ̂r|), if r is a background block

(22)

where the primed quantities,c′1,s andc′2,s, denote the values of the colors before updating. Each step function

of the form step(A−B) simply captures the inequality testA > B.

Using this substitute function results in the quadratic cost function given by

F̃ (c1,s, c2,s) =
1

2σ2
W

‖xs − αsc1,s − (1− αs)c2,s‖
2 +

1

2σ2
C

∑

r∈∂s

f̃r(c1,s, c2,s) . (23)
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Since this cost is quadratic, the update can be computed in closed form as the solution to

(c1,s, c2,s)← arg min
c1,s,c2,s

F̃ (c1,s, c2,s). (24)

The block update of the pixelsxs requires that the cost function‖xs−αsc1,s−(1−αs)c2,s‖
2 be minimized

subject to the constraint thatT (Dxs) = ỹs. The solution to this constrained minimization problem can be

computed using the following three steps.

ys ← D(αsc1,s + (1− αs)c2,s) (25)

ys,i ← clip

(

ys,i,

[

ỹs,i −
Qi

2
, ỹs,i +

Qi

2

])

for i = 0, . . . , 63 (26)

xs ← D−1ys. (27)

The quantityαsc1,s + (1 − αs)cs,2 is first transformed to the DCT domain in (25) . Then (26) clips these

DCT coefficients to the respective ranges they are known to be within. Finally in (27), these clipped DCT

coefficients are transformed back to the space domain to form the updated pixels,xs. Because the DCT is

orthogonal, these three steps compute the correct constrained minimizer forxs. Since we need to estimate

c1,s andc2,s in the spatial domain and enforce the forward model constraint in the DCT domain, each block

update must include a forward DCT and a backward DCT.

Fig. 4 gives the pseudo-code for the update iterations of the text blocks. Since all the update formulas

reduce the cost function monotonically, convergence of thealgorithm is ensured.

Lastly, we briefly describe the initialization of the algorithm. For each text blocks, we initialize the

intensity valuesxs by the values̃xs decoded by conventional JPEG. Forc1,s andc2,s, we first identify the

pixels decoded by conventional JPEG and located within the16×16 window centered at the blocks, and

we cluster the pixels into two groups usingk-means clustering [29]. We then initializec1,s by the smaller

of the two cluster means, and initializec2,s by the larger mean. The alpha values require no initialization.

V. BLOCK-BASED SEGMENTATION

Our segmentation algorithm classifies each luminance block as one of three classes: background, text, and

picture. Fig. 5 shows the block diagram of the segmentation algorithm.

We first compute the AC energy of each blocks by Es =
∑63

i=1 ỹ2
s,i, whereỹs,i is thei-th quantized DCT

coefficient of the block. IfEs is smaller than the thresholdǫac, the blocks is classified as a background

block.
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Update iterations for text block decoding

do {

for each text blocks {

/* update alpha valuesαs */

for i = 0, . . . , 63

updateαs,i by (17)

/* updatec1,s andc2,s */

for eachr ∈ ∂s

determinef̃r(c1,s, c2,s) by (20)-(22)

(c1,s, c2,s)← arg min
c1,s,c2,s

F̃ (c1,s, c2,s)

/* update pixelsxs */

ys ← D(αsc1,s + (1− αs)c2,s)

for i = 0, . . . , 63

ys,i ← clip(ys,i, [ỹs,i −
Qi

2
, ỹs,i + Qi

2
])

xs ← D−1ys

}

} while change in cost function> threshold

Fig. 4. Pseudo-code of the update iterations for text block decoding. One full iteration consists of updating every text block once.

Each text blocks is updated in three steps which minimize the cost with respect to: 1) the alpha values inαs; 2) the predominant

intensities (c1,s, c2,s); and 3) the pixel intensities inxs.

Luminance blocks

feature vector
Compute 2−D

Background
blocks

segmentation
SMAP

Picture blocks

Text blocks

Pre−trained
text model
(GMM)

Pre−trained

(GMM)
picture model

Feature vectors
of all blocks

YES

Text/picture blocks

NO

Compute
AC energy Es

Es < ǫac ?

[Ds,1, Ds,2]

Fig. 5. Block-based segmentation. The background blocks are first identified by AC energy thresholding. A 2-D feature vector is
then computed for each block. Two Gaussian mixture models are obtainedfrom supervised training: one for the text class and one
for the picture class. With these two models, the feature vector image is segmented using the SMAP segmentation algorithm. The
result is combined with the detected background blocks to form the final segmentation map.



14

Next, we compute a two-dimensional feature vector for each block in order to classify the remaining blocks

into the text and picture classes. The first feature component is based on the encoding length proposed in [8],

[30]. The encoding length of a block is defined as the number of bits in the JPEG stream used to encode the

block. Typically, the encoding lengths for text blocks are longer than for non-text blocks due to the presence

of high contrast edges in the text blocks. However, the encoding length also depends on the quantization

matrix: the larger the quantization steps, the smaller the encoding length. To make the feature component

more robust to different quantization matrices, we multiply the encoding length by a factor determined from

the quantization matrix. SupposeQ∗
i are the default luminance quantization step sizes as defined in Table K.1

in [2], andQi are the quantization step sizes used to encode the luminancecomponent. We use the quantity

λ =
∑

i Q
∗
i Qi/

∑

i Q
∗
i Q

∗
i as a measure of the coarseness of the quantization step sizesQi as compared to

the default. Larger quantization step sizesQi correspond to larger values ofλ. We define the first feature

component of the blocks by

Ds,1 = λγ × encoding length of blocks, (28)

where the parameterγ = 0.5 is determined from training. The second feature component,Ds,2, measures

how close a block is to being a two-color block: the smallerDs,2, the closer the blocks is to being a

two-color block. We take the luminance component decoded bythe convectional JPEG decoder and use

k-means clustering to separate the pixels in a16×16 window centered at the blocks into two groups. Let

θ1,s andθ2,s denote the two cluster means. Ifθ1,s 6= θ2,s, the second feature component is computed by

Ds,2 =

∑63
i=0 min

{

|x̃s,i − θ1,s|
2, |x̃s,i − θ2,s|

2
}

|θ1,s − θ2,s|2
. (29)

If θ1,s = θ2,s, we defineDs,2 = 0.

We characterize the feature vectors of the text blocks and those of the picture blocks by two Gaussian

mixture models. We use these two Gaussian mixture models with the SMAP segmentation algorithm [31]

to segment the feature vector image. The result is combined with the background blocks detected by AC

thresholding to produce the final segmentation map.

Lastly, we describe the training process which determines the parameterγ in (28) and the two Gaussian

mixture models of the text and picture classes. In the training process, we use a set of training images

consisting of 54 digital and scanned images. Each image is manually segmented and JPEG encoded with 9

different quantization matrices, corresponding toλj with j = 1, . . . , 9. For thei-th image encoded by thej-th
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Luminance blocks corresponding

a picture block?

Is any block
a text block?

Yes

Yes

No

No

s is a background block

s is a picture block

s is a text block

to the chrominance block s

Is any block

Fig. 6. Classification rule for a chrominance block in a subsampled chrominance component. Each chrominance blocks corresponds
to several luminance blocks which cover the same area of the image. If these luminance blocks contain a picture block, blocks
is labeled as a picture block. Otherwise, if the luminance blocks contain a textblock, blocks is labeled as a text block. If all the
corresponding luminance blocks are background blocks, blocks is labeled as a background block.

quantization matrix, we first compute the average encoding lengths of the text blocks and the picture blocks,

denoted byui,j andvi,j respectively. The parameterγ is then determined from the following optimization

problem:

γ̂ = arg min
γ

min
u,v

54
∑

i=1

9
∑

j=1

[

(λγ
j ui,j − u)2 + (λγ

j vi,j − v)2
]

. (30)

Next, we obtain the Gaussian mixture model for the text classby applying the EM algorithm to the feature

vectors of the text blocks of the JPEG encoded images, using theimplementation in [32]. To reduce

computation, only 2% of the text blocks from each JPEG encoded image are used to perform training.

By the same procedure, we obtain the Gaussian mixture model for the picture class using the feature vectors

of the picture blocks.

VI. D ECODING OF THE CHROMINANCE COMPONENTS

In this section, we explain how to extend the luminance decoding scheme to the chrominance compo-

nents. To decode a particular chrominance component, we firstsegment the chrominance blocks into the

background, text, and picture classes based on the classification of the luminance blocks. If the chrominance

and luminance components have the same resolution, we labeleach chrominance block by the class of

the corresponding luminance block. However, if the chrominance component has been subsampled, then

each chrominance block corresponds to several luminance blocks. In this case, we determine the class of

each chrominance block based on the classification of the corresponding luminance blocks according to the

procedure in Fig. 6.

The background and picture blocks of the chrominance component are decoded using the same methods
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as are used for their luminance counterparts. However, chrominance text blocks are decoded using the

alpha channel calculated from the corresponding luminanceblocks. If the chrominance component and the

luminance component have the same resolution, the luminance alpha channel is used as the chrominance

alpha channel. However, if the chrominance component has been subsampled, then the chrominance alpha

channel is obtained by decimating the luminance alpha channel using block averaging. The only problem

when the chrominance component has been subsampled is that the corresponding luminance blocks may

include background blocks. For these luminance backgroundblocks, we must determine the alpha channel

in order to perform the decimation. For such a luminance background blockr, we can create the missing

alpha channel by comparing its average intensityµ̂r to the average values of the two predominant intensities

of its neighboring text blocks. If̂µr is closer to the average value ofĉ1,s, the alpha values of the pixels in

the blockr are set to 1. Otherwise, the alpha values of the background pixels are set to 0.

The optimization for decoding the chrominance text blocks issimilar to the algorithm described in

Section IV-B except for the following changes. First, we initialize the two predominant intensitiesc1,s

andc2,s for each chrominance text blocks using their MMSE estimates

(c1,s, c2,s) = arg min
c1,s,c2,s

‖x̃s − α̂sc1,s − (1− α̂s)c2,s‖
2, (31)

wherex̃s contains the pixel values of the block decoded by the conventional JPEG decoder, and̂αs is the

alpha channel of the block computed from the luminance alphachannel. Second, since the value of the alpha

channel is computed from the luminance component, the step of updating the alpha channel is skipped in

the algorithm of Fig. 4.

Lastly, for a subsampled chrominance component, we need to interpolate the component to restore its

original resolution. We apply linear interpolation to the background blocks and the picture blocks. For the

text blocks, we perform the interpolation by combining the decoded chrominance component with the high

resolution luminance alpha channel. We explain this interpolation scheme in Fig. 7 for the case when the

chrominance component has been subsampled by 2 in both vertical and horizontal directions. For each of

the interpolated chrominance pixels, we use the corresponding luminance alpha value as its alpha value, and

offset the decoded pixel valuexk by the difference in alpha valuesαk − αk,i scaled by the rangec2 − c1.

The scheme can easily be generalized to other subsampling factors. Using this interpolation scheme, the

resulting text regions are sharper than they are when using linear interpolation.
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luminance interpolated chrominance  component

component
decoded chrominance 

alpha channel
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xk,i = xk + (αk − αk,i)(c2 − c1)
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Fig. 7. Interpolation of chrominance text pixels when the chrominance component has been subsampled by 2 in both vertical and
horizontal directions. For the text pixel at position(m, n) of the decoded chrominance component, suppose its decoded value is
xk, its alpha value isαk, and the two predominant intensities arec1 and c2. We first identify the corresponding luminance pixels
at positions(2m, 2n), (2m, 2n + 1), (2m + 1, 2n), and (2m + 1, 2n + 1). Using the alpha values of these luminance pixels, we
then compute the corresponding pixels of the interpolated chrominance component byxk,i = xk + (αk − αk,i)(c2 − c1), where
αk,i is the estimated luminance alpha value.

VII. E XPERIMENTAL RESULTS

We now present the results of several image decoding experiments. We demonstrate that our proposed

algorithm significantly outperforms the conventional JPEG decoding algorithm and three other existing JPEG

decoding schemes. Table I summarizes the parameter values chosen for the proposed algorithm. In decoding

the background blocks, the parameterσ2
B

in the cost function (12) is a positive multiplicative constant whose

value is irrelevant in determining the minimizer. Therefore, it is omitted from Table I.

To evaluate the performance of the proposed algorithm, we use 60 test document images: 30 digital

images converted from soft copies, and 30 scanned images obtained using an Epson Expression 10000XL

scanner and descreened by [33]. Each of the 60 images containssome text and/or graphics. Since our focus

is document images, we do not consider images that are purelypictures. Six of the 30 digital images and

11 of the 30 scanned images are purely text/graphics with no pictures. None of the test images were used

for training our segmentation algorithm. We discuss and demonstrate the visual quality of the decoded

images using three example images shown in Fig. 8. Both Image 1and Image 2 are digital images, and

Image 3 is a scanned image. They are all JPEG encoded with2 : 1 chrominance subsampling in both

vertical and horizontal directions. We use high compression ratios to compress the images in order to show
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TABLE I
PARAMETER VALUES SELECTED FOR THE PROPOSED ALGORITHM.

Parameter Value Defined in

hr,s 1/6 if r, s are immediate neighbor blocks

1/12 if r, s are diagonal neighbor blocks

Eq. (6)

σW 5 Eq. (8)

ν 12 Eq. (9)

σC 3.5 Eq. (10)

ǫac 200 Section V

τ 20 ρ in Section III-B

the improvement in the decoded images more clearly.

We apply our segmentation algorithm, described in Section V,to the JPEG encoded images. Fig. 9 shows

that the corresponding segmentation results are generallyaccurate. It should be noted that in the smooth

regions of natural images, many image blocks are classified asbackground blocks. This classification is

appropriate since it then allows our decoding algorithm to reduce the blocking artifacts in these regions.

Fig. 10 and Fig. 11 demonstrate the improvement in text block decoding using the proposed algorithm.

Fig. 10(a) shows the luminance component of a small text region computed from Image 1. A small region

within Fig. 10(a) is further enlarged in Fig. 10(b) to show the fine details. Fig. 10(c) and (d) show the region

of the JPEG encoded image decoded by the conventional JPEG decoder. The decoded region contains obvious

ringing artifacts around the text. Fig. 10(e) and (f) show thesame region decoded by our scheme. Compared

to Fig. 10(c) and (d), the region decoded by our scheme is essentially free from ringing artifacts and has a

much more uniform foreground and background. In addition, the foreground and background intensities are

also faithfully recovered.

Fig. 11(a) shows the chrominance componentCr for the region in Fig. 10(a). The result decoded by

the conventional JPEG decoder and interpolated by pixel replication is shown in Fig. 11(b). The decoded

region is highly distorted due to chrominance subsampling.Fig. 11(c) shows the region decoded by the

proposed scheme. Since the decoding is aided by the luminancealpha channel, the visual quality of the

decoded region is much higher than that decoded by the conventional JPEG decoder. To demonstrate the

effect of interpolation of the chrominance components, Fig.11(d) shows the result decoded by our scheme

but interpolated by pixel replication. The text region decoded by our scheme in Fig. 11(c) is much clearer
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(a) Image 1 (b) Image 2 (c) Image 3

2550×3300 pixels, 300dpi 3193×4174 pixels, 400dpi 2336×3215 pixels, 300dpi

Fig. 8. Thumbnails of the original test images. The corresponding JPEGencoded images have bit rates 0.43 bits per pixel (bpp),
0.53 bpp, and 0.32 bpp respectively. All the three images were compressed with2 : 1 chrominance subsampling in both vertical
and horizontal directions.

(a) (b) (c)

Fig. 9. Segmentation maps of (a) Image 1, (b) Image 2, and (c) Image3. White: background blocks; red: text blocks; blue: picture
blocks.
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. Luminance component of a text region of Image 1. (a), (b) Original. (c), (d) Conventional JPEG decoding. (e), (f) The
proposed scheme. (b), (d), and (f) are enlargements of a small region of (a), (c), and (e) respectively.

(a) (b)

(c) (d)

Fig. 11. Chrominance component (Cr) of the region shown in Fig. 10. (a) Original. (b) Decoded by conventional JPEG decoding
and interpolated by pixel replication. (c) Decoded by our scheme. (d) Decoded by our scheme but interpolated by pixel replication.
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(a) (b)

(c) (d)

(e) (f)

Fig. 12. A text region from Image 1. (a) Original. (b) Conventional JPEG decoding. (c) The proposed algorithm. (d) Algorithm I [11].
(e) Algorithm II [34]. (f) Algorithm III [3].

and sharper as compared to Fig. 11(d).

Fig. 12(c) shows the region completely decoded using our scheme. A comparison with the same region

decoded by the conventional JPEG decoder in Fig. 12(b) reveals that the proposed algorithm significantly

improves the quality of the decoded regions. Additional results for text regions in Figs. 13(c), 14(c), and

15(c) show that the proposed algorithm consistently decodes the text regions at high quality.

We also compare our results with three existing JPEG decoding algorithms: Algorithm I proposed in [11],

Algorithm II proposed in [34], and Algorithm III proposed in[3]. Algorithm I is a MAP reconstruction

scheme. Both Algorithm II and Algorithm III are segmentation based decoding schemes.

Algorithm I uses a Markov random field as the prior model for thewhole image. The scheme employs

the Huber function as the potential function of the MRF. Using gradient descent optimization, the scheme

performs JPEG decoding by computing the MAP estimate of the original image given the encoded DCT

coefficients. Figs. 12(d), 13(d), 14(d), and 15(d) show the decoding results for the text regions. Algorithm I
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(a) (b) (c)

(d) (e)

Fig. 13. Another text region from Image 1. (a) Original. (b) Conventional JPEG decoding. (c) The proposed algorithm.
(d) Algorithm I [11]. (e) Algorithm II [34].

significantly reduces the ringing artifacts in the text regions. However, because the prior model was not

designed specifically for text, the decoded regions are generally not as sharp as those decoded by our scheme.

Also, because the color components are decoded independently, the chrominance components decoded by

Algorithm I are of low quality.

Algorithm II uses the segmentation algorithm of [8] to classify each image block as background, text or

picture. However, in principle, Algorithm II can be used in conjunction with any preprocessing segmentation

procedure that labels each block as background, text, or picture. Since our main objective is to evaluate the

decoding methods rather than the preprocessing methods, weuse our segmentation maps with Algorithm II.

Algorithm II uses stochastic models for the DCT coefficients of the text blocks and of the picture blocks,

and replaces each DCT coefficient with its Bayes least-squares estimate. The algorithm estimates the model

parameters from the encoded DCT coefficients. The conventional JPEG decoded background blocks are left

unchanged by Algorithm II.

The text decoding results of Algorithm II, shown in Figs. 12(e), 13(e), 14(e), and 15(e), are only marginally
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(a) (b) (c)

(d) (e)

Fig. 14. A text region from Image 2. (a) Original. (b) Conventional JPEG decoding. (c) The proposed algorithm. (d) Algorithm I [11].
(e) Algorithm II [34].

improved over the conventional JPEG decoding. During JPEG encoding, many of the high-frequency DCT

coefficients are quantized to zero, which is a main cause of theringing artifacts in the decoded text blocks.

However, due to the symmetry of the Gaussian distributions assumed for the text blocks by Algorithm II,

the zero DCT coefficients are not altered at all by Algorithm II. Therefore, the prior model imposed by

Algorithm II is insufficient to effectively restore the characteristics of the text.

Algorithm III assumes that the image has been segmented intotext blocks and picture blocks. It furthermore

assumes that the text parts have been segmented into regionseach of which has a uniform background and

a uniform foreground. For each text region, Algorithm III first uses the intensity histogram to estimate the

background color, and applies a simple thresholding schemefollowed by morphological erosion to identify

the background pixels. The scheme then replaces the intensity of each background pixel with the estimated

background color. Finally, if any DCT coefficient falls outside the original quantization interval as a result of

this processing, it is changed to the closest quantization cut-off value of its correct quantization interval. For

the picture blocks, Algorithm III smooths out blocking artifacts by applying a sigma filter to the non-edge

pixels on the boundaries of picture blocks, as identified by anedge detection algorithm.
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(a) (b) (c)

(d) (e) (f)

Fig. 15. A text region from Image 3. (a) Original. (b) Conventional JPEG decoding (c) The proposed algorithm. (d) Algorithm I [11].
(e) Algorithm II [34]. (f) Algorithm III [3]. For (f), only the text in redis decoded by the text decoding scheme of Algorithm III.
The portion of the document corresponding to the letter “W” is decoded aspicture by Algorithm III.

There is a difficulty that prevents a direct comparison of our algorithm to Algorithm III. The difficulty

stems from the assumption that the text portions of the imagehave been pre-segmented into regions with

uniform background and uniform foreground. Without such a segmentation procedure, the scheme is not

directly applicable to images in which text regions have varying background and/or foreground colors, such

as our three test images. Therefore, in order to compare our algorithm to Algorithm III, we manually select

from Image 1 a single text region which has a uniform foreground color and a uniform background color—

specifically, the entire rectangular region with red background. We then process the entire Image 1 with

Algorithm III: the blocks in the manually selected text region are processed as text blocks, and the rest

of the image is processed as picture blocks. We show a portionof the selected text region in Fig. 12(a),

and the result of decoding it with Algorithm III in Fig. 12(f).Since Algorithm III only smoothes out the

background pixels, ringing artifacts are still strong in the foreground and near the background/foreground

transition areas. In addition, due to the low resolution andlow signal-to-noise ratio in the chrominance
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components, the computed chrominance background masks have low accuracy. This leads to color bleeding

in the decoded text. In Fig. 15(f), similar results are obtained for Image 3 in which we select the region

with red text on white background in the upper right portion of the document as the only text region to

apply Algorithm III.

(a) (b) (c)

(d) (e) (f)

Fig. 16. A smooth region from Image 1. The image blocks corresponding to the blue sky are mostly labeled as background blocks
by our segmentation algorithm, and the remaining blocks are labeled as picture blocks. (a) Original. (b) Conventional JPEG decoder.
(c) The proposed algorithm. (d) Algorithm I [11]. (e) Algorithm II [34]. (f) Algorithm III [3].

Fig. 16 compares the decoding results for a region containingmostly background blocks. In this region,

most of the image blocks corresponding to the blue sky are classified as background, while most of the

remaining blocks corresponding to the clouds are classified as picture blocks. Fig. 16(b) shows the region

decoded by the conventional JPEG decoder. The decoded region exhibits obvious contouring as a result of

quantization. Algorithm I, Fig. 16(d), significantly reducesthe blocking artifacts, but contouring in the blue

sky is still apparent. Algorithm II uses the conventional JPEGdecoded blocks for the background blocks, so

contouring in the blue sky is not improved at all. As Algorithm III applies the sigma filter only to the block

boundary pixels, contouring is only slightly improved in Fig. 16(f). With our scheme, Fig. 16(c), contouring
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(a) (b) (c)

(d) (e) (f)

Fig. 17. A region from Image 3 containing mostly picture blocks. The imageblocks corresponding to the face and shoulder are
mostly labeled as picture blocks, and the remaining blocks are labeled as background blocks. (a) Original. (b) Conventional JPEG
decoder. (c) The proposed algorithm. (d) Algorithm I [11]. (e) Algorithm II [34]. (f) Algorithm III [3].

and blocking artifacts are largely eliminated. The blue sky in the decoded image looks smooth and natural.

Although our scheme decodes the picture blocks with the conventional JPEG decoder, JPEG artifacts in these

blocks are less revealing due to the significant presence of high-frequency components in these blocks. We

should also point out that the original image in Fig. 16(a), ifexamined closely, also exhibits a small amount

of blocking artifacts. This is typical in all the real world test images we collected, and is likely due to the

lossy compression commonly employed by image capture devices. Because we used a high compression

ratio to JPEG encode the original image in our experiment, noneof the decoding schemes in Fig. 16 can

accurately restore the artifacts.

Fig. 17 shows a region from Image 3 with most blocks classified aspicture blocks. Among the five

decoding schemes, Algorithm I in Fig. 17(d) has the best performance as far as reducing blocking artifacts

is concerned. However, the smoothing due to the use of the MRFin Algorithm I also causes loss of detail

in the decoded image. The problem is more pronounced in the highly textured picture blocks like those
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(a) (b) (c) (d)

Fig. 18. Robustness of the proposed algorithm. (a), (b) Image patch where text blocks contain non-uniform background: (a)
conventional JPEG decoder, (b) the proposed algorithm. (c), (d) Image patch where our segmentation algorithm misclassifies some
of the picture blocks as text blocks: (c) conventional JPEG decoder, (d) the proposed algorithm.

in the hair, moustache, and shoulder. The region decoded by Algorithm II in Fig. 17(e) looks very similar

to that decoded by the conventional JPEG decoder in Fig. 17(b). In Fig. 17(f), Algorithm III reduces the

blocking artifacts in the picture blocks without significantloss of detail. However, the sigma filter employed

by Algorithm III is insufficient to reduce the blocking artifacts in the dark background. The region decoded

by our scheme in Fig. 17(c) smooths out the blocking artifactsin the dark background blocks only, while

the remaining picture blocks are decoded by the conventional JPEG decoder.

We now discuss the robustness of our algorithm with respect to various model assumptions and parameters.

First, for some text blocks, the bi-level assumption of our text model may be violated, as in Fig. 18 (a) and (b).

In this case, the forward model [formulated in (2) and implemented through (25)–(27)] ensures that the

decoded block is consistent with the encoded DCT coefficients. Because of this, we avoid decoding such

an image block as a two-color block. This is demonstrated in Fig. 18 (b).

Additionally, our algorithm is robust to segmentation errors. First, misclassification of image blocks to

the background class does not cause significant artifacts. This is because processing of background blocks

is unlikely to introduce artifacts since only the DC coefficient of background blocks is adjusted. Moreover,

Fig. 18 (c) and (d) show that even the misclassification of picture blocks to the text class does not typically

result in significant artifacts. This is because such misclassified picture blocks typically contain image details

with sharp edge transitions, so the decoded image still accurately represents the original image.

We also verify the robustness of the proposed algorithm to the variation of the parameters. In this

experiment, we use a subset of 4 images from the 60 test images. Each image is JPEG encoded at 4

different bit rates, resulting to totally 16 encoded images. In each test, we vary one of the parameters in

Table I (excepthr,s) over a±10% interval and compute the average PSNR for the 16 decoded images. The
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TABLE II
MAXIMUM VARIATION IN PSNRWHEN EACH PARAMETER IS VARIED OVER

A ±10% INTERVAL .

Parameter Range of values Max. variation in PSNR

σW 4.5 – 5.5, increment of 0.2 0.08 dB

ν 10.8 – 13.2, increment of 0.4 0.03 dB

σC 3.0 – 4.0, increment of 0.2 0.01 dB

ǫac 180 – 220, increment of 10 0.00 dB

τ 18 – 22, increment of 1 0.001 dB
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Fig. 19. Average PSNR versus average bit rate computed for 30 digitalimages in (a), and another 30 scanned images in (b).

maximum variation in the average PSNR, tabulated in Table II, shows that the algorithm is not sensitive

to the choices of parameter values. Additionally, we have found no visually noticeable differences in the

decoded images.

Fig. 19 shows the rate-distortion curves for our algorithm and compares them to the Algorithms I and

II and the conventional JPEG. For a range of different compression ratios, the figure shows average peak

signal-to-noise ratio (PSNR) versus the average bit rates computed for our test set of 30 digital images in

(a), and for the test set of 30 scanned images in (b). For the digital images, the proposed algorithm has a

much better rate-distortion performance than the other three algorithms. Based on the segmentation results

of the images encoded at the highest bit rate, 69%, 16%, and 15% of the image blocks are respectively

labeled as background, text, and picture. For the set of scanned images, the rate-distortion performance of

the proposed scheme is still better than that of the other three algorithms; however, the differences are less

significant. In these images, the text regions contain scanning noise and other distortions. The removal of
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the scanning image noise by the proposed scheme can actuallyincrease the mean squared error, despite of

the improved visual quality. In the set of scanned images, 53%, 23%, and 24% of the blocks are respectively

labeled as background, blocks, and picture.

VIII. C ONCLUSIONS

We focused on the class of document images, and proposed a JPEG decoding scheme based on image

segmentation. A major contribution of our research is on theuse of a novel text model to improve the

decoding quality of the text regions. From the results presented in Section VII, images decoded by our

scheme are significantly improved, both visually and quantitatively, over the baseline JPEG decoding as

well as three other approaches. In particular, the text regions decoded by our scheme are essentially free

from ringing artifacts even when images are compressed withrelatively low bit rate. The adaptive nature

of the text model allows the foreground color and the background color to be estimated accurately without

obvious color shift. Blocking artifacts in smooth regions are also largely eliminated.
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