Distributed Signal Decorrelation in WSNs Using the Sparse Matrix Transform (SMT)

Leonardo Bachega1, Srikanth Hariharan2, Charles Bouman1, and Ness Shroff2

1. Purdue University
2. Ohio State University
Distributed Anomaly Detection

Anomaly detection is
- **Important:** Central to Detection theory
- **Ubiquitous:** Many applications in security-related areas
 - Remote Sensing, Surveillance, Network Intrusion Detection, etc...

Wireless Network of Cameras
- Collectively monitor the environment
- Each outputs image (*vector*) from own viewpoint

Goal: detect anomalies based on *joint* measurements from *all cameras*

Decorrelation requires:
- $O(p^2)$ computation/communication
- $N \gg p$ samples to design transform

Big problems
Approach: Sparse Matrix Transform (SMT)

- Allows covariance to be estimated when $n<<p$
 - Imposes sparsity constraint in non-linear manifold
 - Maintains full rank of covariance estimate

- Results in a fast decorrelating transformation
 - Computation of transform is $O(p)$
 - Generalization of FFT and orthonormal wavelet transform

- **Problem:** Requires lots of communications between sensors

In this paper: The Vector SMT

- Improvement on original SMT
- Suitable for implementation in a network of sensors
 - Distributed *in network* implementation
 - Restrict communication between pairs of sensors
Covariance Estimation Framework

• **Data:** We observe \(n \) independent \(N(0,R) \) vectors, each of dimension \(p \).

\[
Y = [y_1, \cdots, y_n]
\]

• **Sample Covariance:**

\[
S = \frac{1}{n} YY^t
\]

• **Model:** Covariance can be represented by

\[
R = E[S] = E\Lambda E^t \quad E - \text{eigen transform} \\
\Lambda - \text{eigenvalues}
\]

• **Maximum Likelihood (ML) Estimate:**

\[
\hat{E} = \arg \min_{E \in \Omega_K} \left\{ \| \text{diag}(E^t SE) \| \right\} \\
\hat{\Lambda} = \text{diag}(\hat{E}^t S\hat{E})
\]

Unconstrained minimization \(\longrightarrow \) PCA of \(S \)

Big Idea: Constrain \(\Omega_K \) \(\longrightarrow \) SMT of order \(K \)
The Sparse Matrix Transform (SMT)

- An SMT is a product of Givens rotations
 \[E = \prod_{k=1}^{K} E_k = E_1 \cdots E_K \], where \(E_k = \cos \theta_k - \sin \theta_k \) and \(K = r \cdot p \), where \(r \) is typically a small constant

- SMT is a generalization of the FFT

- SMT is also a generalization of the orthonormal (paraunitary) wavelet transform
Design of SMT using Cost Optimization

- Cost optimization problem:
- Greedy optimization algorithm:
 - Decorrelating transform, $K = rp \Rightarrow O(p)$ computation
The Vector SMT

Decorrelates $2h$-dimensional vector, $\begin{bmatrix} x^{(1)} \\ x^{(2)} \end{bmatrix}$

Sensor Node 1
h-dimensional output

Sensor Node 2
h-dimensional output

Sensor Node 3
h-dimensional output

Sensor Node L
h-dimensional output

Correlated aggregated vector

Decorrelated aggregated vector
Vector SMT Design in Data Domain

\[\text{maximize } \Delta \text{Likelihood} \]

\[p = hL \]

\[n \text{ random vectors} \]

\[T_1 \]

\[T_2 \]

\[x^{(L)} \]

\[x^{(1)} \]

\[x^{(2)} \]

\[x^{(3)} \]

\[\ldots \]

\[x^{(L)} \]

\[x'^{(1)} \]

\[x'^{(2)} \]

\[x'^{(3)} \]

\[\ldots \]

\[x''^{(2)} \]

\[x^{(L)} \]

\[x''^{(L)} \]
Anomaly Detection with the Vector SMT

- Vector SMT: models parent distribution of typical data
- Anomaly Detection: significance test against parent distribution
- Gaussian with covariance R

 - Measure of anomalousness: $x^T R^{-1} x$

Metric for detection accuracy:

Volume of ellipsoid: $x^T R^{-1} x \leq \eta^2$

- Proxy for missed detection rate
 - Minimum volume desired

Computed by:

$$V(R, \eta) = \frac{\pi^{p/2}}{\Gamma\left(1 + \frac{p}{2}\right)} \eta^p \sqrt{|R|}$$

η: Controls probability of false alarm
Simulations Setup

We consider two scenarios:
1 – Assume sensor measurements are independent
2 – Assume sensor measurements are correlated – use vector SMT for decorrelation

10-dimensional vectors (h=10)
Monitoring a Moving Sphere

“Typical” trajectory

“Anomalous” trajectory

Side view

Top view
Moving Sphere Anomaly Detection

ROC analysis

Log-Volume

Ellipsoid Log-Volume

- Independent Processing
- Joint Processing
Eigen-Images

Under Independent sensor measurements assumption

Under correlated sensor measurements assumption
Relative Sensitivity of the Two Detectors

Relative sensitivity given by the ratio:

\[
\frac{x^t R_2^{-1} x}{x^t R_1^{-1} x}
\]

Covariance matrices:

- \(R_1 \) - sensor independence assumption
- \(R_2 \) - correlated sensor measurements assumption

Generalized Eigen-decomposition:

Transform \(H \):

\[
HH^t = R_1
\]

\[
H \tilde{\Lambda}_2 H^t = R_2
\]

The ratio becomes a weighted sum of independent components:

\[
\frac{x^t R_2^{-1} x}{x^t R_1^{-1} x} \quad \tilde{x} = H^t x \quad \sum_{k=1}^{p} \frac{1}{[\tilde{\Lambda}_2]_{kk}} \tilde{x}_k^2
\]

Relative sensitivity of generalized coordinate \(k \).
Generalized Eigenvalues/Eigen-Images

Dimensions with largest relative sensitivity
Goal: Monitor the clouds of 30 spheres scene using 14 cameras and decide whether
(1) it is a typical configuration (hollow cloud)
(2) OR it is an anomalous configuration (dense cloud)
Cloud Sample – Camera Views 1-14

Sample with typical configuration: Hollow cloud

Sample with anomalous configuration: Dense cloud
Sphere Cloud - Detection

ROC analysis

Ellipsoid Log-Volume

- Independent Processing
- Joint Processing
Conclusions and Future Work

• Vector SMT framework
 – Based on the SMT
 – Decorrelates vector measurements across multiple sensors in a WSN
 – One pair of sensors per iteration

• Simulation results suggest
 – Great potential for use in distributed monitoring applications
 – Multi-view detection of visual anomalies

• Future
 – Analysis of communication costs
 – Comparison with other methods
Thank You