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Abstract 1

Iterative methods for statistically-based reconstruction from projections are computationally
costly relative to convolution backprojection, but allow useful image reconstruction from sparse
and noisy data. We present a method for Bayesian reconstruction which relies on updates of single
pixel values, rather than the entire image, at each iteration. The technique is similar to Gauss-
Seidel (GS) iteration for the solution of differential equations on finite grids. The computational
cost per iteration of the GS approach is found to be approximately equal to that of gradient
methods. For continuously valued images, GS is found to have significantly better convergence at
modes representing high spatial frequencies. In addition, GS is well suited to segmentation when
the image is constrained to be discretely valued. We demonstrate that Bayesian segmentation
using GS iteration produces useful estimates at much lower signal-to-noise ratios than required
for continuously valued reconstruction. This paper includes analysis of the convergence properties
of gradient ascent and GS for reconstruction from integral projections, and simulations of both
maximum-likelihood and maximum a posteriori cases.
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1 Introduction

Image reconstruction from integral projections has been approached in a variety of ways, with

the method of choice dependent on the quality and character of the data set[1, 2]. Although

convolution backprojection (CBP) is the technique most frequently found in commercial

applications of X-ray computed tomography with relatively high signal-to-noise ratio and

complete data sets, special cases benefit from alternative algorithms. In many situations the

quality and/or quantity of data is inadequate for conventional CBP reconstruction. These

cases arise, for example, in low dosage medical imaging[3], nondestructive testing of materials

with widely varying densities[4], and applications with limited angle projections[5] or hollow

projections[6].

Iterative methods have dominated techniques for the inversion problem in sparse and

noisy data. Some deterministic iterative algorithms consist of alternately enforcing con-

straints imposed by consistency with data, and membership in sets of solutions possessing

specific characteristics. A familiar example is the algebraic reconstruction technique (ART),

which forces the candidate solution to satisfy one integral projection measurement at each

iteration. ART is one of a general class of algorithms known as projection onto convex sets[7],

with each set in ART described by the value of the given projection measurement. Other sets

can be described by qualities such as non-negativity or upper limits on absorptive densities.

The behavior of deterministic methods is often unsatisfactory if data is very noisy, and/or

the solution is underspecified by the observations and set memberships. The introduction of

regularization in the form of a cost function penalizing local irregularity of the reconstructed

surface may improve performance, at the cost of resolution in the final image[1].

Statistical methods of image reconstruction and restoration may be quite similar to other

iterative approaches in their implementation, but seek the solution which best matches the

probabilistic behavior of the data. Maximum-likelihood (ML) estimation selects the recon-

struction which most closely matches the data available, but may yield solutions which do

not have many of the properties expected in the original function[8]. Bayesian estimation

allows the introduction of a prior distribution which reflects knowledge or beliefs concerning

the types of images acceptable as estimates of the original cross-section. This prior distribu-

tion weights the likelihood function and may even impose hard constraints on the solutions.

In the preponderance of previous work on the problem, the overall cost function specified

by the log likelihood for either ML or Bayesian techniques has been assumed quadratic for

tomographic image reconstruction, allowing application of gradient methods. For example,
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both the prior distribution of the cross-section and the distribution of the projection mea-

surements conditioned on the underlying image function are assumed Gaussian in many

reports[9, 10].

In this paper, we develop a local update method to perform Bayesian reconstruction

from projections. Our approach is similar to Gauss-Seidel(GS) iterations employed in the

solution of differential equations on finite grids[11], and we will use the same terminology.

Each iteration of this method includes only the optimization with respect to a single pixel’s

value. Since this update strategy is local, it is well suited for use with typical prior models

for the cross-section. The computational cost of a single pass of local updates across the

entire image is approximately the same as that of a single iteration of the gradient approach.

In addition, as is illustrated in the analysis of Sec. 3, and the experimental work of Sec. 5,

the GS approach has faster convergence in high spatial frequencies for continuously-valued

images than either simple gradient ascent, or conjugate gradient.

If a cross-section is known to consist of only a few distinct densities, then accurate re-

construction is possible with very low SNR. Image estimation then consists of assigning each

pixel to one of the known densities. The resulting estimated cross-section is a segmentation

which separates the image into discrete regions. The cost functions which arise in this prob-

lem are generally nonconvex and nondifferentiable, and therefore not amenable to gradient

approaches, which rely on partial derivatives of the cost. However, the GS technique is

well-suited to this segmentation problem, and finds an estimate very quickly.

We avoid using a Gaussian approximation for the error in the projection measurements

by deriving a quadratic approximation to the log likelihood of the actual photon counts. This

approximation is shown to be reasonably accurate even for small photon counts (≈10). The

simplification is useful since it allows analysis of the convergence rate and reduces computa-

tion relative to the exact log likelihood. The resulting cost functional weights the residual

error for each projection in proportion to the count of photons reaching the corresponding

detector. In the limiting case of opaque projections, no photons are collected and the ob-

servation is given no weight. The algorithm is therefore applicable without modification to

the canonical missing-data problems, such as limited-angle reconstruction, and truncated or

hollow projections.
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Figure 1: Projection data for angle θ, resulting in the one-dimensional function p(θ, t).

2 Model of Physical System

The 2-D Radon transform maps a function of two variables, which we denote by f(x, y), into

a function indexed by (θ, t) according to

p(θ, t) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(t− x cos θ − y sin θ)dxdy (1)

where δ() is an impulse function. Fig. 1 illustrates the collection of projection data for a

single value of θ. The value of p(θ, t) represents the integral of some property of f(x, y) along

the ray at orientation θ+ π
2
, at a displacement t from the center of the field. By the Fourier

Slice Theorem[12], the Fourier transform of each 1-D set of projection data forms a sample

P (θ, ω) passing through the origin of the Fourier transform of f(x, y) at orientation θ.

Given certain constraints on f(x, y)[13], the 2-D function p(θ, t) can be inverted by

f(x, y) =
1

2π

∫ π

0

∫ ∞
−∞

P (θ, ω) | ω | ejω(x cos θ+y sin θ)dωdθ. (2)

or

f(x, y) =
∫ π

0

∫ ∞
−∞

p(θ, t)h(x cos θ + y sin θ − t)dtdθ, (3)

where h(t) is a one-dimensional backprojection filter. The equality of (2) and (3) is due to

the relationship of convolution to multiplication of Fourier transforms[12]. The filter h(t) is

in practice a lowpass version of the inverse Fourier transform of |ω |, whose design is based on
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an estimated bandlimit for f(x, y) and the necessity for suppression of high-frequency noise

in the projection data. The above inversion techniques are known as filtered backprojection

(FBP) and convolution backprojection (CBP), respectively. “Convolution” refers to the

inner integral in (3), and “backprojection” refers to the outer integral. Most commercial

tomographic imaging systems employ CBP, with the choice of h the most important element

in the design of the reconstruction algorithm[14, 15].

In practice, reconstruction requires finite-dimensional representation of both the obser-

vations, p(θ, t), and the modeled image, f(x, y), as the finite-dimensional vectors p and f ,

respectively. In the case of CBP, a discrete approximation of (3) must be implemented. One

approach is to formulate the problem directly in a discrete domain. To achieve this, we may

represent f(x, y) as a sum of N local components, wi(x, y), each modulated by the local

pixel value fi[1].

f(x, y) =
∑
i∈S

fiwi(x, y)

In this notation, S denotes the set of N pixel locations, and i is the pixel index. Generally,

wi(x, y) will have the form

w(i1,i2)(x, y) = w(0,0)(x− i1T, y − i2T ) (4)

where T is the spatial sampling period, and i = (i1, i2) is the position in a 2-D lattice. The

projections may be discretized by computing them for only a finite set of M projection rays,

{(θj , tj)}Mj=0. The jth projection is then written as pj = p(θj , tj). The Radon transform

equations may now be written in the discrete form

p = Af

where A is a sparse MxN matrix of line integrals.

Aji =
∫ ∞
−∞

∫ ∞
−∞

wi(x, y)δ(tj − x cos θj − y sin θj)dxdy

If the wi(x, y) represent constant-valued pixels, Aji is simply the length of the intersection

of projection ray j with pixel i.

2.1 Statistical Analysis

In transmission tomography the projections, p, are not measured directly. Instead, raw

data are in the form of the number of photons detected after passing through an absorptive
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material. This situation is illustrated in Fig. 2. Input photon counts are Poisson-distributed

random variables. Calibration allows the input rate to be approximated well enough that

we will assume it to be known, and denote it by λT . Given this assumption, the photon

count, Λj, corresponding to projection j, is a Poisson distributed random variable with

mean and variance λT exp{−p(θj , tj)}. The random vector of photon counts at all angles

and displacements is denoted by the upper case Greek letter Λ. We will denote particular

realizations of this random vector by the lower case λ. Under the usual assumptions of

independence of photon counts among angles and displacements, the conditional distribution

of the photon counts Λ given f is

P (Λ = λ|f) =
M∏
j=1

(λj!)
−1 exp

(
−λT e

−Aj∗f
) (
λT e

−Aj∗f
)λj

(5)

where Aj∗ is the jth row of A. The log likelihood function reduces to

L(λ|f) = −
M∑
j=1

[λT e
−Aj∗f + λjAj∗f + log(λj!)] . (6)

Using this form, the maximum likelihood (ML) estimate may be computed by solving the

following optimization problem over the feasible set of solutions, Ω:

f̂ = arg max
f∈Ω

L(λ|f) (7)

The quality of the reconstruction can be improved by choosing the set Ω to constrain the

solution based on prior knowledge of feasible solutions.

The ML estimate does not incorporate reasonable prior information about the behavior

of the image. For instance, the ML estimator may contain excessive high frequency varia-

tion which we would not expect to exist in the original image. If the number of samples

taken is small relative to the number of unknown pixel values, the solution may also be

underdetermined.

These difficulties may be addressed by treating the original image as a random field, F ,

with prior distribution, g(f). Again, we use a lower case f to denote a particular realization

of the random vector F . The prior distribution regularizes the optimization problem so that

a unique solution always exists[16]. The logarithm of the a posteriori distribution of F given

Λ may be computed using Bayes’ formula.

Lp(f |λ)
4
= logP (F ∈ df |Λ = λ)

= L(λ|f) + log g(f)− logP (Λ = λ)
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Figure 2: Collection of photon count Λ(θ, t). λT is the input photon rate, given by calibration.

The maximum a posteriori (MAP) estimate is then the value of f̂ which maximizes the a

posteriori density given the observations λ.

f̂ = arg max
f∈Ω

Lp(f |λ) (8)

= arg max
f∈Ω
{L(λ|f) + log g(f)}

= arg max
f∈Ω
{L(λ, f)}

The last equation indicates that the MAP estimate also maximizes the log of the joint

distribution, L(λ, f) = logP (F ∈ df,Λ = λ). MAP estimation is computationally direct

and has experimentally been shown to work well in a variety of problems[17, 18, 19, 20, 21].

We will treat only the MAP estimation problem, since the ML estimate is the special case

of a constant prior distribution.

In order to simplify and extend the theoretical analysis of this paper, we will also intro-

duce a quadratic approximation to the log likelihood function given in (6). In Appendix A

we derive the approximation

L(λ|f) ≈ −
1

2
(p̂−Af)tD(p̂−Af) + c(λ) (9)

where p̂j and D are defined by

p̂j = log(λT/λj)

D = diag{λ1, λ2, · · · , λM} .
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Since c(λ) is independent of f , it may be ignored in the ML and MAP estimation of f . Note

that this does not constitute a Gaussian approximation of any of the densities involved. The

image f is equivalent to a parameter vector in this expression, and the log likelihood is of

interest simply as a function of f in our optimization. The entries of λ appear in both D

and p̂ of (9) as indicated above, making this approximation non-quadratic in λ.

The key to the behavior of (9) is found in the matrix D. The matrix more heavily weights

errors corresponding to projections with large values of λi. These projections pass through

less dense objects, and consequently have higher signal-to-noise ratio. In the limit of opaque

projections where no photons pass through the material, the approximation simply applies no

weight to the measurement. All of the algorithms which will be derived in this paper may be

implemented using the more accurate likelihood function, (6), without dramatically changing

the computational requirements or analytical properties of the methods2. In particular, (6)

is convex so global convergence properties will be consistently retained. However, we will

use (9) because it is a good approximation for most realistic cases, and it will be used as

the basis of an analysis which gives significant insight into the problem. Figure 3 shows the

comparison of the actual log-likelihood function and the approximation over two orders of

magnitude in photon count.

2.2 Prior Distributions and Problem Constraints

As mentioned earlier, it is desirable and often necessary to apply prior distributions and hard

constraints in recovering the estimate f̂ . This prior information will have one of two forms,

depending on whether the goal is reconstruction of a continuously valued f or segmentation

of f into a discrete set of known densities. In either case, estimates benefit from prior

distributions which reflect the high correlation of spatially adjacent pixels. The Markov

random field (MRF) model[22] has proven very useful in image estimation problems such as

ours. The MRF is characterized by localization of pixel interactions, and consequent simple

optimization operations.

Under some weak technical conditions, a random field is a MRF if and only if it has a

probability distribution corresponding to a Gibbs distribution[22, 23]. This result, which is

known as the Hammersley-Clifford theorem, may be used to express the likelihood function

2Some minor differences in the following material are that the conjugate gradient method will no longer
converge in N iterations, and the GS update method will only strictly increase the posterior probability with
each update instead of maximizing it with respect to a pixel’s value.
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Figure 3: Plots of the log-likelihood as a function of a single projection across the recon-
structed image. The exact Poisson model (dashed lines) and the quadratic approximation
(solid lines) are each plotted for three values of λ. Each of these plots covers a confidence
interval of 0.99 for a maximum-likelihood estimate of the projection value.

log g(f). While the theory of MRF’s is quite extensive[24, 25, 26], we will restrict our

attention to a simple model based on at most an 8-point neighborhood. Similar models have

been successfully applied to image segmentation[18, 20, 21].

2.2.1 Gaussian Markov Priors

When F is continuously valued, we will generally assume that it is a Gaussian random vector,

and therefore has a log likelihood function with the quadratic form

log g(f) = −
γ

2
f tRf + c (10)

where R is symmetric, and 1
γ
R−1 is the covariance matrix for F . We will further assume

that R is equal to 1 on its diagonal, and that, ignoring boundary effects, multiplication by

R has the effect of convolution with a stationary kernel, r(i,j). The constant γ−1 is equal to

the prediction variance of a pixel given its neighbors in the prior model. This is equivalent to
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assuming that F is a Gaussian Markov random field (MRF) with 2-D power spectral density

given by

GF (ω) =
1

γR(ω)
(11)

where ω = (ω1, ω2), and R(ω) is the 2-D discrete time Fourier transform (DTFT) of r(i,j)[27,

22, 28]. In particular, we will make the common assumption that R has the form of a discrete

5-point approximation to a Laplacian:

r(i,j) =

{
1 if i = j = 0
1/4 if {i = 0 and j = ±1} or {i = ±1 and j = 0}

This results in the assumed power spectral density

GF (ω) =
1

γ(1− 1/2 cosω1 − 1/2 cosω2)
.

This prior distribution may be used in conjunction with the log likelihood of (9) to form the

MAP estimation criterion:

f̂ = arg max
f∈Ω

L(λ, f) (12)

= arg max
f∈Ω

{
−(p̂−Af)tD(p̂−Af)− γf tRf

}
When Ω = IRN , the solution to this optimization problem may be found by differentiating

with respect to f . The resulting equation has the form

b = (H + γR)f̂ (13)

where H = AtDA and b = AtDp̂. This equation will play a central role in our analysis.

2.2.2 Non-Gaussian Priors

A second distinct case results when Ω is a proper subset of IRN . This may occur due to a

variety of hard constraints on the solution’s form. An important special case occurs when this

set is convex. For example, it is often reasonable to assume that f must be a nonnegative

function. In this case, Ω is a convex set and there is a unique global maximum to (12).

The difficulty of enforcing such a convex constraint will vary with the type of optimization

technique used. By projecting solutions onto the convex feasible set, many algorithms may

be modified to enforce the constraint[7]. However, we will develop an algorithm in Section 3.1

which can more efficiently implement this type of convex constraint.
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Enforcing hard constraints becomes more difficult when the feasible set is not convex, as

is the case when each pixel is assumed to have one of a fixed number of densities. Recon-

struction then corresponds to choosing each pixel from a discrete and finite set, O, of possible

densities. This segmentation process can be performed more accurately than continuously

valued reconstruction when the signal-to-noise ratio (SNR) is low.

We choose a discrete MRF model for F which is often used in segmentation problems[17,

20, 31]. This model encourages neighboring pixel to have the same densities. To define the

model, we must first define two simple functions, t1(f) and t2(f). t1(f) is the number of

horizontally and vertically neighboring pixel pairs with different different densities in f , and

t2(f) is the number of diagonally neighboring pixel pairs with different densities in f . The

discrete density function for f ∈ ON is then assumed to be of the form

log g(f) = −γ

(
t1(f) +

t2(f)
√

2

)
+ log(Z) (14)

where Z is a constant. Substituting this form into (8), we obtain the optimization criterion

f̂ = arg max
f∈ON

{
−(p̂−Af)tD(p̂−Af)− γ

(
t1(f) +

t2(f)
√

2

)}
. (15)

3 Optimization Techniques

The objective of this section is the development of a new iterative reconstruction technique,

based on local Gauss-Seidel (GS) updates, for efficiently solving the optimization problems of

(12) and (15). We show that this method can efficiently solve the quadratic problem of (12),

and a wide variety of problems that incorporate hard constraints on Ω. This is particularly

important in the segmentation problem of (15) since the gradient-based algorithms implicitly

require that Ω be a continuous convex set. We analyze the convergence performance of GS

for the case of the Gaussian prior, and compare it to two well-known numerical optimization

techniques, gradient ascent (GA) and conjugate gradient (CG), which are directly applicable

to quadratic optimization of (12). These comparisons also include computational expense

per iteration of each method.
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3.1 Gauss-Seidel

Gauss-Seidel iteration is a well-known technique for solving partial differential equations

(PDE) using finite element methods[11]. The strategy of GS iterations in PDE’s is to se-

quentially enforce the conditions of the differential equation at points in the solution. Each

pixel update is chosen in sequence to minimize a global cost function. This is in contrast to

methods such as gradient ascent(GA), which update all points simultaneously. We will use

the local minimization interpretation as the basis for our development of GS.

Our objective in the case of the Gaussian prior is to pick the value of a single pixel, fi,

which minimizes the posterior log likelihood function of (12) as a 1-D function of the single

entry, given the current state of the remainder of f . The updates are most simply viewed in

terms of the Radon transform domain error. Changing the value of f at the point i by the

amount ∆fi, changes the projection error p̂−Af in the following way:

ê = e−A∗i∆fi (16)

where A∗i is the ith column of A and ê is the new value of the projected error. Therefore,

the equation for the new log likelihood is

L(λ|f̂) = L(λ|f) + θ1∆fi −
θ2

2
(∆fi)

2 (17)

where f̂i = fi + ∆fi and the values θ1, θ2 are defined by

θ1 = At
∗iDe (18)

θ2 = At
∗iDA∗i . (19)

We can now add the log likelihood for the prior distribution to the expression of (17). If we

use a Gaussian prior distribution, the optimum value for ∆fi is given by

∆fi =
θ1 − γRi∗f

θ2 + γRii

. (20)

The complete update equations for the point at position i are given in Fig. 4.

The GS method will also be used to solve the segmentation problem of (15). For this

discrete problem gradient-based methods are not applicable. However, the GS method may

still be applied by choosing each pixel’s value to minimize the a posteriori probability. Since

the log of the prior distribution (14) depends only on the number of neighboring pixels with
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Precompute:

θ2(i) = At
∗iDA∗i

θ1 = At
∗iDe

∆fi =
θ1 − γRi∗f

θ2(i) + γRii

f̂i = fi + ∆fi

ê = e−A∗i∆fi

Figure 4: The equations for the Gauss-Seidel update of the pixel at location i. The values
θ1 and ∆fi are temporary constants. f̂ and ê are the updated values of state vectors.

differing density, the best choice for pixel i will depend only on the neighbors of fi, which

we denote f∂i. Specifically, the updated value is chosen using the formula

f̂j = arg max
x∈O

{
θ1(x−fj)−

θ2
2

(x−fj)
2 − γ

(
v1(x, f∂j) +

v2(x, f∂j)√
2

)}
(21)

where O is the set of feasible densities for a pixel, v1(x, f∂j) counts the number of horizontal

and vertical neighbors of fj which do not have density x, and v2(x, f∂j) counts the number

of diagonal neighbors of fj which do not have density x. Since Ω = ON is not convex,

determining a global maximum will generally not be possible. However, it is possible to

guarantee convergence to a local minimum by changing the density of a pixel only when it

strictly reduces the value of (21).

For the discrete problem, the GS algorithm is essentially the same as the iterated con-

ditional modes (ICM) method proposed by Besag[20]. The only difference is that the ICM

method uses the ML estimate as the initial starting point of the algorithm, while we use

the pointwise segmentation of the thresholded CBP, since it generally gives a good initial

starting point. Of course, the GS update algorithm of (21) is still essential, since it gives a

specific method of implementing ICM (for the transmission tomography problem) which we

will show is computationally efficient. Similarly, this same update algorithm can be used to

implement stochastic optimization techniques such as simulated annealing. These methods

can improve the quality of the reconstruction by determining a solution closer to the global

optimum. Unfortunately, this improvement is at the cost of additional computation[19, 30].

Deterministic multiscale optimization methods may also be adaptable to this problem[21, 31]

and have been shown to reduce computation and improve performance.
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f (1) = CBP

∇(1) = ∇fL(λ, f (1))

d(1) = ∇(1)

d̃(1) = (H + γR)d(1)

α(1) =
||∇(1)||2

(d(1))td̃(1)

∇(n+1) = ∇(n) − α(n)d̃(n)

β(n+1) =
||∇(n+1)||2

||∇(n)||2

d(n+1) = ∇(n+1) + β(n+1)d(n)

d̃(n+1) = (H + γR)d(n+1)

α(n+1) =
||∇(n+1)||2

(d(n+1))td̃(n+1)

f (n+1) = f (n) + α(n)d(n)

Figure 5: The equations for conjugate gradient search using the quadratic approximation.

3.2 Gradient Methods

Gradient ascent (GA) is an iterative scheme in which successive values of the reconstruction

are given by

f (n+1) = f (n) + α∇fLp(f
(n), λ) (22)

= f (n) − α
(
AtD(Af (n)−p̂) + γRf (n)

)
.

This method is closely related to the numerical method of weighted Jacobi iterations (also

known as the simultaneous overrelaxation method or JOR) used in solving finite element

approximations to partial differential equations[11].

Conjugate gradient (CG) is a general method for maximizing differentiable functions. It

is closely related to GA since it uses the computed gradient to determine the direction of

change at each iteration. The critical difference is that CG requires d(n+1), the direction of

minimization in iteration n + 1, to be conjugate to the previous direction of minimization

under the H + γR inner product[32, 33].

(d(n+1))t(H + γR)d(n) = 0

CG generally converges much faster than GA because successive corrections do not interfere

with one another. The update and initialization equations for CG are given in Fig. 5.
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3.3 Computational Costs

At this point, it is not clear that individual GS iterations may be performed with reasonable

computation. To compare relative computational cost of the methods, we will determine

the number of multiplies required for one complete iteration of GS, GA and CG. Table 1

summarizes the results and indicates that one iteration of any of the three methods has

computational complexity on the order of a single application of convolution backprojection.

The computational requirements of projection and backprojection (represented by Af

and Atp, respectively), are equal since multiplication by At and A have equivalent complex-

ity. If we assume that no computation is required in evaluating the elements Aji (look-up

tables may be used), then the number of multiplies required to compute Af is M0N , where

M0 is the average number of projections which pass through a single pixel, and N is the

number of pixels.

If the length of the filter in CBP is denoted Nh, the number of multiplies required for

filtering is MNh. Backprojection of the filtered data in CBP normally involves averaging or

interpolation, with cost approximately equal to that of the product Atp. This results in a

total of M0N +NhM multiplies for CBP, with the first term usually the larger.

The basic operation of the GS method is the computation of ∆fi using (20). The com-

putational cost of this operation is dominated by the evaluation of θ1 and θ2. θ2 does not

depend on ∆fi so it may be precomputed for each pixel. Since an average column of A

contains M0 nonzero elements, the number of multiplies required to compute θ1 is either

M0 or 2M0, depending on whether we assume that At
∗iD is computed or stored in a table.

The update of the projected error vector in (16) requires M0 multiplies, and computation

of ∆fi requires a single divide and NR multiplies, where NR is the number of points in each

neighborhood of the MRF represented by R. Therefore, the total number of multiplies and

divides for a complete update of the GS method is (2M0 + NR + 1)N if a lookup table is

used and (3M0 +NR + 1)N otherwise.

Each iteration of GA as given in (22) requires the computation of a projection, a backpro-

jection and multiplication by the matrices D and R. This yields a total of (2M0+NR)N+M

multiplies. The computational requirements of CG are comparable to those of GA. Opera-

tions are dominated by the projection and backprojection required in multiplication by H.

As in the case of GA, this requires (2M0 +NR)N +M multiplies. In addition, 6N multiplies

are needed for computing inner products and scaling vectors. Therefore, the total number
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Convolution Backprojection M0N +NhM

Gradient Ascent (2M0 +NR)N +M

Conjugate Gradient (2M0 +NR)N +M

Gauss-Seidel (3M0 +NR + 1)N

Table 1: Number of multiplies and divides required for one iteration of each method. N
is the number of points in the image, M is the number of projections, M0 is the average
number of projections passing through a pixel in the image, Nh is the number of points in the
CBP filter and NR is the number of points in the regularizing kernel. The iterative methods
assume the use of a Gaussian prior distribution.

of multiplies per iteration of CG is given by (2M0 +NR + 6)N +M .

Table 1 summarizes the computational requirements of CBP and the three iterative

reconstruction methods. Assuming that M0 >> NR, the GS update method requires more

multiplies than GA and CG for a single full update (assuming that a second lookup table

is not available). However, we have found that the computational cost is largely governed

by the communications and indexing associated with a single pass through the projected

data set. In this less quantitative sense, the three methods are equivalent since the gradient

based methods require a projection and then back projection operation and the GS method

requires the computation of θ1 and then an update of the projection error. In practice, we

have found that a single iteration of GS runs as fast as GA and CG on a general purpose

serial computer.

4 Convergence Analysis

To make the comparison of computational expenses meaningful, we must ascertain good

convergence behavior for GS. Both GS and GA are amenable to analysis, and we compare

their convergence performance in terms of spatial frequencies. Analysis is difficult in the

general case, but we will gain insight into the problem by studying convergence when D =

σ−2I (i.e. the variances of all projections are equal) and the projections are uniformly spaced

in both θ and t. CG is not so tractable, but is compared to GS and GA experimentally.
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4.1 Gauss-Seidel

In Section 3.1, we addressed the choice of each pixel fi for GS in the Radon transform domain

in terms of errors in projection estimates, for the sake of simple update operations. This can

also be done by setting the derivative of the log-likelihood with respect to fi equal to zero.

0 =
dL(λ, f)

dfi
= (∇fL(λ, f))i

= bi − (H + γR)i∗f

The notation (H+γR)i∗ denotes the ith row of the matrix. We may use this single equation

to specify the best value of fi in terms of the remaining values of f .

A sequential update of all the pixels can be formulated in a matrix expression. For this

purpose, the matrix H+γR must be separated into its lower triangular, diagonal and upper

triangular parts which we denote by L, K and U respectively. Assuming that the points are

replaced in the order of their index i, the update equation for the pixel fi has the form

bi = Li∗f
(n+1) + Ki∗f

(n+1) + Ui∗f
(n) (23)

where f (n) is the nth complete update. This equation holds for all values of i, so the complete

update equation may be written as

f (n+1) = −(K + L)−1Uf (n) + (K + L)−1b . (24)

The update equation (24) has the form of a discrete time system where n indexes time. It is

well known that the convergence behavior of such a system is determined by the eigenvalues

of the update matrix, (K + L)−1U.

To extend this analysis, we must first make some observations about the matrix H =

σ−2AtA from which the update matrix is derived. In Appendix B, we show that H is

approximately Toeplitz-block-Toeplitz (if f is indexed in raster order, and both θ and t are

sampled uniformly). This means that each row of H represents a spatially shifted version of

a single kernel h(i,j). In general, we will refer to the function which specifies the rows of a

Toeplitz-block-Toeplitz matrix as the kernel of the matrix. Therefore, multiplication of f (n)

by H is equivalent to convolving the function f (n) with the 2-D kernel h(−i,−j) and retaining

the result in the finite spatial window corresponding to the pixel lattice S. Multiplication by

a Toeplitz-block-Toeplitz matrix is then approximately equivalent to convolution with the

corresponding spatially reversed kernel.
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Figure 6: The causal kernel of the Toeplitz-block-Toeplitz matrix L. The kernel was measured
from projection and backprojection of a point.

The form of H indicates it is symmetric and positive semidefinite. This implies that the

function h(i,j) will be symmetric and, ignoring boundary effects, will be real and positive

semidefinite (i.e. have a nonnegative Fourier transform). In fact, we can experimentally

measure the function h(i,j) by computing the projections of a single point and then back-

projecting the result. Since we can only do this over a finite window, we apply a Barlett

weighting to our measured kernel to retain the positive semidefinite property.

If R is chosen to be Toeplitz-block-Toeplitz, L, K and U will have the same property.

Since K is diagonal, K = K0I. The interpretation for L is that its kernel will be the causal

part of the kernel of H+γR minus the origin. Fig. 6 shows the kernel of the experimentally

measured matrix L when γ = 0. Notice that it is nonzero only at points occurring before

the origin in raster scan order. Similarly, the kernel of U will include only points after the

origin.

Since the matricies in (24) are Toeplitz-block-Toeplitz, they are approximately equivalent

to linear spatially invariant filters. Therefore, we may apply frequency analysis methods by
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taking the 2-D DTFT of the matrix update equation,

f (n+1)(ω) =
−L∗(ω)

K0 + L(ω)
f (n)(ω) +

−1

K0 + L(ω)
b(ω) (25)

where L(ω) is the DTFT of the spatially reversed kernel for L, and U(ω) = L∗(ω) by the

time reversing property of the DTFT.

We may draw some immediate conclusions about the properties of the convergence rate

P (ω) =
−L∗(ω)

K0 + L(ω)

by applying the local minimization interpretation. With each pixel replacement, (12) is

reduced (unless f is at the global minimum). If the kernel of H + γR is positive definite,

then the norm of the difference between the current and the MAP estimate may not increase

indefinitely. This implies that |P (ω)| ≤ 1 for all ω. Since the solution of the MAP estimation

problem is unique if and only if the kernel of H+γR is positive definite, we see that a positive

definite kernel implies that |P (ω)| ≤ 1.

Fig. 7 shows the two dimensional function |P (ω)| when γ = 0. (The convergence is gen-

erally better for larger values of γ.) It is not surprising that the function is anisotropic since

the order of the pixel updates gives an orientation to the convergence behavior. The function

has a wide but flat main lobe. This means that a narrow band of spatial frequencies will not

converge rapidly. In practice this is not a serious problem, since complete updates may alter-

nate between horizontal and vertical raster ordering. Fig. 8 shows two one-dimensional plots

of the maximum of |P (ω)| along the ω1 and ω2 dimensions. Fig. 9 shows the corresponding

maximum number of iterations required to achieve 99% reduction of error energy at each

frequency. Fig. 10 show experimental results and theoretical predictions for the convergence

of 2-D sinusoids (with a Bartlett window to localize frequency content). This was done by

initializing the photon counts to be λj = λT , and measuring number of iterations required

for the sinusoid to decay. In the scanning direction, the experimental and theoretical results

agree well. The direction perpendicular to the scan is, as mentioned above, less critical.

These plots indicate that the convergence is rapid for the high spatial frequencies.
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Figure 7: The two dimensional convergence rate |P (ω)| when no regularization is used
(γ = 0). The raster scanning is assumed to occur along rows in the ω1 direction.
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Figure 8: The two one-dimensional convergence rate functions maxω1 |P (ω1, ω2)| and
maxω2 |P (ω1, ω2)| when no regularization is used (γ = 0). The best convergence occurs
along the ω1 direction since this corresponds to the direction of the updates. The large
values in the ω2 direction are caused by the thin main lobe.
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Figure 9: The maximum number of iterations required for 99% error reduction when no
regularization is used (γ = 0). The best convergence occurs along the ω1 direction since this
corresponds to the direction of the updates. The large values in the ω2 direction are caused
by the thin main lobe. This poorer convergence rate may easily be corrected by alternating
the direction of updates.

4.2 Gradient Ascent

In order to understand the convergence properties of GA, we rewrite the update equation

(22) in the form of a discrete time system.

f (n+1) =
[
I − α(AtDA + γR)

]
f (n) + αAtDp̂ (26)

= [I − α(H + γR)] f (n) + αb.

The convergence of this equation depends on the eigenvalues of the matrix multiplying f (n),

which in turn depend on the eigenvalues of the matrix H+γR.

As noted above, mutiplication by H is approximately equivalent to convolution when

D = σ−2I. If the pixel lattice is large, the effect of convolution may be approximated by

multiplication in the spatial frequency domain. The 2-D DTFT of (26) yields the frequency

domain equation

f (n+1)(ω) = [1− α(H(ω) + γR(ω))] f (n)(ω) + αb(ω), (27)

where H(ω) is the 2-D DTFT of the spatially kernel for H, and R(ω) is as in (11). The

convergence properties of (27) are clear. Error in f corresponding to spatial frequency ω will
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Figure 10: Experimental measurements of the number of iterations required for 99% error
reduction when no regularization is used (γ = 0). Symbols indicate experimental convergence
along (*) and perpendicular to (+) scanning direction. Continuous plots are theoretically
predicted convergence.

be attenuated or amplified by the factor

P (ω) = 1− α(H(ω) + γR(ω))

with each iteration. Again, H(ω) and R(ω) must be positive functions of ω since they

correspond to positive semidefinite matrices.

We may derive an approximate form for P (ω) by using a second result of Appendix B.

The kernel of H is approximately proportional to a filtered and sampled version of the

function β/d where d is the distance of a pixel from the origin and β is a constant defined

in Appendix B. Since the Fourier transform of 1/d is 1/||ω||, the DTFT of the kernel of H

will also be approximately β/||ω||. This implies that rate of convergence at frequency ω will

be approximately given by

P (ω) ≈ 1− α

(
β

||ω||
+ γ(1− 1/2 cosω1 − 1/2 cosω2)

)
. (28)

Fig. 11 shows the DTFT of the experimentally measured kernel. Its form corresponds well

to the predicted 1/||ω|| shape. The value at ω = 0 is theoretically infinite, but is limited by

the size of the window (in this case 128x128).

¿From (27), we see that stable convergence requires that |P (ω)| ≤ 1 for all ω. This
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Figure 11: Fourier transform of Bartlett weighted kernel resulting from projection and back-
projection of a point. The shape corresponds to the theoretically expected shape of 1/||ω||.

implies that

0 < α < 2
(
max
ω
{H(ω) + γR(ω)}

)−1

.

Since for large windows the value of maxωH(ω) is large, a small value of α will be needed

to insure stability and convergence. However, small values of α will cause the convergence

to be slow for large values of ||ω|| since the corresponding values of P (ω) will be close to 1.

The conclusion is that the convergence of GA is poor at high spatial frequencies.

5 Experimental Results

We have applied the methods discussed in Sec. 3 to synthetic phantoms with parameters

corresponding to sizes and densities within the range encountered in medical X-ray tomo-

graphic imaging. This choice is intended only to attach some physical significance to the

function f(x, y), not to suggest primary applications are likely to be medical diagnostics.

Experimental data presented here result from very low photon dosages relative to most sys-

tems. The input photon rate (λT ) for each ray in our trials was 2000, orders of magnitude
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Figure 12: Original phantom at 128× 128 resolution. Increasing brightness corresponds to
higher X-ray absorptivity.

below dosages of commercial medical CT scanners[1]. Our goals in terms of reconstructed

image quality, however, are also much more modest.

We are principally concerned with reconstruction/segmentation from a set of projections

uniformly spaced in both θ and t. A CBP reconstruction will serve as a good initial starting

point in most cases. Since all the algorithms we will analyze involve iterative computation

of projections and/or backprojections, the relative computational expense of CBP is small.

The residual error left by the CBP algorithm often has substantial high frequency content.

This is a good match for the GS update method, which is shown above to be particularly

effective at suppressing high frequency error components.

The phantom is shown in Fig. 12, and contains only two non-zero densities. The back-

ground is of absorptivity 0.2cm−1, while the four high-density regions are 0.48cm−1. The

physical diameter of the phantom is 20cm. At the given photon dosages, rays passing through

the larger high-density regions are essentially blocked, making the given trials similar to hol-

low projection reconstruction. In each case, the number of raysums collected per angle was

128, making ∆t equal to the dimension of a pixel. The lowpass filter incorporated into CBP
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Figure 13: Convergence comparison for constant weighting matrix D

was a raised cosine rolloff in frequency response, with the cutoff frequency chosen for the

best visual quality. We chose a single value for α in (22) for all applications of GA, based

on the best experimental convergence across the set of simulations. All reconstructions will

be presented at a resolution of 128× 128 pixels.

Initial trials were used to verify the analysis of Sec. 3, and were therefore performed with

γ = 0cm2 in (12), corresponding to ML estimation. Fig. 13 illustrates convergence in terms

of log likelihood as expressed in (9), with D diagonal, corresponding to an assumption of

stationarity in photon counting noise. In order to avoid slow convergence of the frequencies

represented by the ridge in Fig. 7, the orientation of the GS update scan alternated between

vertical and horizontal patterns. CG and GS are comparable in convergence rates, with

GS showing an appreciable advantage. Nearly 50 iterations are required for the two to

reach the same log likelihood value. Both are much faster than GA. Our analysis predicted

this behavior for high frequencies in the difference between the CBP starting point and the

Bayesian estimate. The error image was of predominantly high frequency spectral content

in this case.

When the diagonal of D is filled with photon counts, similar behavior is observed, with
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Figure 14: Convergence comparison for real projection weighting matrix D

convergence taking place significantly more slowly (Fig. 14). The slower convergence is

likely due to the fact that with wide variation in the entries of D, eigenvalues of AtDA have

similarly greater range, and large differences in the convergence rates among various modes.

Here, GS shows an advantage over CG which is not erased after 50 iterations, and both

again perform better than GA. This behavior agrees qualitatively with expectations from

the analytical results in light of the error, which was again relatively high frequency.

The above simulations support the analysis of the comparative properties of the three

iterative approaches. GS appears more useful than the gradient methods for problems where

the difference between the starting state and the optimal estimate is dominated by high

frequencies. Detail enhancement at higher SNR[34], for example, is a candidate application.

But it is the high frequency characteristic in the evolution of the ML estimate which makes

it questionable in some settings. ML estimates often have excessive high frequency content,

in contrast to the images typical of most ensembles of practical interest. The ML estimate

images whose convergence was discussed above, in fact, are of very poor visual quality.

Regularization both speeds convergence, and prevents excessive oscillation in the esti-

mate. Typical convergence rates are shown in Fig. 15 for MAP estimation with the same
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Figure 15: Convergence comparison for real projection weighting matrixD and regularization
using a Gaussian prior.

optimization methods and γ = 100cm2. (This corresponds to a standard deviation of a pixel

given its neighbors of 0.1cm−1, which is consistent with densities ranging from 0.2cm−1 to

0.48cm−1.) The associated error spectrum has substantial energy at very low frequencies,

plus an approximately flat spectral content across the higher frequencies. Here CG enjoys a

slight advantage in convergence rate, and both CG and GS are essentially completely con-

verged at fewer than 15 iterations. GA is much slower, as expected. Trials with larger γ

yielded still faster convergence, but very similar relationships among the three techniques.

Fig. 16 shows the images resulting from the Bayesian enhancement of the CBP reconstruc-

tion. The artifacts of 16(a) are ameliorated substantially, with varying degrees of smoothing

according to the choice of γ. Note that we have applied a particularly simple prior here

(4-point neighborhood); improvement is possible with more accurate choices.

Useful tomographic estimates can be achieved from still lower SNR if we can use more

restrictive priors on f(x, y). If an object is known to consist of only a few distinct densities,

we can perform an approximate MAP segmentation as an enhancement of the CBP starting

point. As discussed earlier, this case presents the problem of non-convexity in the log likeli-
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Figure 16: (a) CBP reconstruction from 128× 128 noisy projections. (b) Bayesian estimate
with γ = 100. (c) γ = 200. (d) γ = 500.

hood function, making true MAP estimation by known methods impractical. The gradient

methods are not directly applicable to this problem.

The GS algorithm is well-suited to this problem. With a binary-valued prior for f(x, y),

evaluation of (21) is particularly simple. Because lexicographic updates produce directional

dependencies, we implement GS in the discrete-valued reconstruction case with a scan con-

sisting of four interlaced 2 × 2 decimated patterns. Experimental results for a projection

data set consisting of 128 rays at each of 16 equally spaced angles appear in the images of

Fig. 17. The phantom and dosage per ray are the same as in the previous simulations. The

CBP reconstruction using a raised cosine filter with a roll-off factor of 1.0 is shown in 17(b),

with the result of thresholding midway between the two known densities in 17(c). After

less than 3 full iterations, GS produced the segmentation of 17(d). Nearly all the artifacts

resulting from the radio-opaque regions of the object are removed.
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Figure 17: (a) Original phantom. (b) CBP reconstruction from 16×128 noisy projections. (c)
Threshold segmentation of CBP image. (d) Gauss-Seidel approximation of MAP estimate.
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6 Conclusion

We have proposed, analyzed, and simulated the application of a Gauss-Seidel algorithm for

the iterative image reconstruction from projections using Bayesian criteria. We applied the

GS method to the problems of reconstructing both continuously valued images and images

which were constrained to have discrete values. This latter problem is equivalent to the direct

segmentation of the image using the projected data. This paper also includes results, both

analytic and experimental, concerning the gradient methods for CT reconstruction which to

our knowledge were not previously available.

The GS method shows very good convergence properties, and is applicable to a broad

class of optimization problems. In the case of continuously valued reconstruction, these

convergence advantages are due to its excellent suppression of high frequency error. The GS

method did not show the fastest convergence in all cases, but an important augmentation

of the process awaits investigation. Lower frequency components can be forced to converge

much more quickly by multi-grid implementation[35]. Solving the same optimization problem

on a coarser resolution image will effectively shift lower frequencies upward. The interpolated

lower resolution image can then serve as a starting point on a finer grid. We envision a

similar generalization of the discrete-valued version of GS. Performing greedy minimization at

multiple resolutions has shown promise in other applications to image segmentation[21, 31],

in terms of both computational efficiency and quality of segmentation. We are also currently

investigating the use of a more general classes of statistical models which offer possible

improvements in reconstruction quality[36].

A Appendix

The quadratic approximation to (6) may be obtained by expanding each term of the sum in

a second order Taylor series. This is done using the relation pj = Aj∗f , and expanding each

term about the value p̂j = log(λT/λj).

L(λ|f) = −
M∑
j=1

[λT e
−Aj∗f + λjAj∗f + log(λj!)]

= −
M∑
j=1

[λT e
−pj + λjpj + log(λj!)]
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≈ −
M∑
j=1

[λj(1 + p̂j) + log(λj!) +
λj

2
(pj − p̂j)

2]

= −
M∑
j=1

[λj(1 + p̂j) + log(λj!) +
λj
2

(p̂j −Aj∗f)2]

= −
1

2
||p̂−Af ||2D −

M∑
j=1

[λj(1 + p̂j) + log(λj!)]

where D = diag{λ1, λ2, · · · , λM}.

B Appendix

The continuous-variable mapping from Radon transform space into image space analogous

to the matrix operator At, is the backprojection operation given by

g(u, v) =
∫ π

0

∫ ∞
−∞

p(θ, t)δ(t− u cos θ − v sin θ)dtdθ

=
∫ π

0

∫ ∞
−∞

p(θ, t)h(θ, t, u, v)dtdθ .

The function h(θ, t, u, v) is the kernel of both the projection and backprojection transforma-

tions. The kernel for the combined projection, backprojection operation may be computed

as

k(x, y, u, v) =
∫ π

0

∫ ∞
−∞

h(θ, t, x, y)h(θ, t, u, v)dtdθ (29)

=
∫ π

0

∫ ∞
−∞

δ(t− x cos θ − y sin θ) δ(t− u cos θ − v sin θ)dtdθ

=
∫ π

0

∫ ∞
−∞

δ(t− (x−u) cos θ − (y−v) sin θ) δ(t)dtdθ

=
∫ π

0
δ((x−u) cos θ + (y−v) sin θ)dθ

=
∫ π

0
δ(d cos(φ− θ))dθ

=
1

d

where (x−u) = d cosφ and (y− v) = d sinφ. Gilbert[37] derived a similar result with

frequency-domain methods.

Given this result, we would expect that the matrix AtA should have an approximately

Toeplitz-block-Toeplitz form with a kernel proportional to 1/d. Specifically, if {θi}
M1
i=1 and

{tj}
M2
j=1 are the values of angle and displacement for which the projections are computed,
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then the components of A may be written A(i, j,m, n) where i and j are the angle and

displacement index for the projections of pixel (m,n). (Note the difference between the

present use of subscripts i and j, and that in the main text.) We will also assume that

the sampling in both θ and t is uniform with periods ∆θ and ∆t respectively, and that the

spatial sampling period is T .

AtA =
M1∑
i=1

M2∑
j=1

A(i, j,m, n)A(i, j, k, l)

=
M1∑
i=1

M2∑
j=1

∫
IR2
w(m,n)(x, y)h(θi, tj, x, y)dxdy

∫
IR2
w(k,l)(s, u)h(θi, tj, s, u)dsdu

≈
1

∆θ ∆t

∫ π

0

∫
IR

∫
IR2
w(m,n)(x, y)h(θ, t, x, y)dxdy

∫
IR2
w(k,l)(s, u)h(θ, t, s, u)dsdudtdθ

=
1

∆θ ∆t

∫
IR2

∫
IR2
w(m,n)(x, y)w(k,l)(s, u)

∫ π

0

∫
IR
h(θ, t, x, y)h(θ, t, s, u)dtdθdxdydsdu

=
1

∆θ ∆t

∫
IR2

∫
IR2
w(m,n)(x, y)w(k,l)(s, u)

1√
(x−s)2 + (y−u)2

dxdydsdu

The third equation approximates the sums by integrals, and the last equation uses the result

of (29).

To establish that this form of AtA is Toeplitz-block-Toeplitz, we must use the fact of (4)

that the functions w(m,n)(x, y) are simply shifted versions of a single kernel. Then writing√
(x−s)2 + (y−u)2 as d we have

AtA ≈
1

∆θ ∆t

∫
IR2

∫
IR2
w(0,0)(x−mT, y−nT )w(0,0)(s−kT, u−lT )

1

d
dxdydsdu

=
1

∆θ ∆t

∫
IR2

∫
IR2
w(0,0)(x, y)w(0,0)(s−(k−m)T, u−(l−n)T )

1

d
dxdydsdu

The last integral has the form of two 2-D convolutions. This may be written formally as

AtA ≈
1

∆θ∆t
(w(0,0) ∗ w(0,0) ∗

1

d
)((k−m)T, (l−n)T ) . (30)

So the kernel of AtA is formed by filtering the continuous function 1/d and then sampling

the result. Since the components of the matrix AtA only depend on the differences, k −m

and l − n, the matrix must be approximately Toeplitz-block-Toeplitz. The accuracy of this

approximation is affected only by ∆t, the period of the sampling in t.

If the pixels (m,n) and (k, l) are distant, then the integrand will be approximately con-

stant, and the following approximation holds

AtA(m,n, k, l) ≈
β√

(m−k)2 + (n−l)2
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where

β =

∫
IR2 w(m,n)(x, y)dxdy

∆θ ∆t T
.
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