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Abstract 1

Many image display devices allow only a limited number of colors to be simultaneously displayed.
Usually, this set of available colors, called a color palette, may be selected by a user from a wide
variety of available colors. Such device restrictions make it particularly difficult to display natural
color images since these images usually contain a wide range of colors which must then be quantized
by a palette with limited size. This color quantization problem is considered in two parts: the
selection of an optimal color palette and the optimal mapping of each pixel of the image to a color
from the palette.

This paper develops algorithms for the design of hierarchical tree structured color palettes incor-
porating performance criteria which reflect subjective evaluations of image quality. Tree structured
color palettes greatly reduce the computational requirements of the palette design and pixel map-
ping tasks, while allowing colors to be properly allocated to densely populated areas of the color
space. The algorithms produce higher quality displayed images and require less computations than
previously proposed methods.

Error diffusion techniques are commonly used for displaying images which have been quantized
to very few levels. This paper studies problems related to the application of error diffusion tech-
niques to the display of color images. A modified error diffusion technique is proposed for resolving
these problems. The new error diffusion techinque is shown to be easily implemented using the tree
structured color palettes developed earlier.
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1 Introduction

Video monitors display color images by modulating the intensity of the three primary colors

(red, green and blue) at each pixel of the image. In a digitized color image each primary

color is usually quantized with 8 bits of resolution in order to eliminate distinguishable

quantization steps in luminance, color hue and color saturation. Thus, full color digital

display systems use 24 bits to specify the color of each pixel on the screen.

The cost of high-speed memory needed to support such a full-color display on a high-

resolution monitor makes many applications impractical. An alternative approach, which is

used by many currently available displays, is to provide a limited number of bits, such as

8, for specifying the color at each pixel. Each of these 28 = 256 values is then used as an

index into a user defined table of colors. Each entry into the table contains a 24 bit value

which specifies the color’s red, green and blue components. In this way, the user is allowed

to select a small subset of colors, called a palette, from the full range of 224 = 16, 777, 216

colors. The drawback of this scheme is that it restricts the number of colors which may be

simultaneously displayed.

This paper addresses the problem of displaying color images using a restricted palette.

Since natural images typically contain a large number of distinguishable colors, displaying

such images with a limited palette is difficult. The approach we take is structured around

algorithms for performing two tasks. The first task, called color palette design, selects the

best possible set of colors for a particular image. The second task, called pixel mapping,

associates each pixel of the image with a color from this palette to yield the highest quality

image.

A number of approaches [1, 2] have been suggested for the design of color palettes which

involve iterative refinement of some initial palette. However, these algorithms suffer from

the disadvantage of being computationally intensive. In many applications, the efficiency of

algorithms for performing color palette design and pixel mapping is very important. This

is particularly true in applications involving large image data bases. In these applications,
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images are in some common format which must be displayed on monitors with different

limitations on color palette size. In such an environment, the color palette design and the

pixel mapping functions must be performed at the time an image is displayed. This makes

computational efficiency of critical importance.

Even if the color palette is transmitted with each image, standard image coding techniques

require that the pixel mapping be performed locally at the time each image is displayed. This

is because standard image coding techniques make use of the high correlation between the

values of the primary colors of neighboring pixels to reduce transmission bit-rate. The color

palette indices of neighboring pixels are not highly correlated and, therefore, cannot be coded

with high efficiency. Thus, even if a color palette of correct size is provided with each stored

image, the pixel mapping function must be performed after the image is retrieved from the

data base and decoded into a full color format.

The first problem we address is the problem of designing color palettes. In general, a

color palette will accurately display a particular image if the true color of each pixel in the

image can be well approximated by some color from the palette. Heckbert [2] proposed a

method for constructing an initial color palette by assigning to each color from the palette an

approximately equal number of pixels in the image. This method is based on the construction

of a binary tree in which each leaf contains an approximately equal number of similar pixel

colors which can be described by a single quantization color. The tree is constructed by

recursively determining the leaf node with the largest number of pixels and splitting it into

two new nodes with equal numbers of pixels. To improve this initial color palette, Heckbert

proposed an iterative procedure, derived from the Linde, Buzo, Gray (LBG) algorithm [3]

for quantizer design, which attempts to minimize the total squared error (TSE) between

the original pixels and colors assigned from the palette. Later, Braudaway [1] proposed

constructing an initial color palette by centering colors at peaks in the color-value histogram.

To avoid concentrating too many colors about one peak, the histogram values are reduced

in a region surrounding each assigned color after the color is selected. Beginning with this
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initial palette, Braudaway also used the iterative LGB algorithm as suggested by Heckbert.

An approach similar to that of Braudaway’s has also been used by Gentile, Allebach and

Walowit [4] to study the effects of color transformations on the quality of quantized images.

In both Heckbert’s and Braudaway’s methods, the initial condition is chosen to allocate

more quantization levels to regions of the color space with larger numbers of pixels. However,

neither initial condition attempts to minimize the TSE or any other objective measure of

error. Therefore, the LBG algorithm is used to improve these initial color palettes by search-

ing for a local minimum of the TSE. While the LBG algorithm does reduce the initial TSE,

it is greatly influenced by these initial palettes. Consequently, the local minimum which is

reached is unlikely to be close to the global minimum. In addition, the LBG algorithm is

very computationally intensive since, at each iteration, it requires a search of the full color

palette for each pixel. Also, the LBG algorithm destroys the tree structure of Heckbert’s

initial palette. This is important since the tree structure could otherwise be used to reduce

the computation required for palette searches.

This paper describes a hierarchical approach to the design of color palettes for natural

images. The proposed algorithms attempt to produce color palettes which minimized an

objective error criteria. Therefore, they result in high quality displayed images with minimum

artifacts [7, 8]. We use vector quantization (VQ) [9] as a basis for addressing the design of

good color palettes. In this framework, the colors in the palette can be considered as codes

in a code book, and the pixel mapping as the image pixel coding. In addition, our approach

emphasizes the use of color palettes with a binary tree structure. This tree structure has

the advantage of substantially reducing the computation required both to design a palette

and to quantize colors using a palette. We develop a basic binary splitting approach which

creates tree structured color palettes using a minimum TSE criteria. This allows for very

efficient pixel mapping by making search times proportional to the tree depth.

Empirical evidence indicates that the best color palettes are not necessarily ones which

minimize TSE. This is because the subjective error resulting from quantizing a pixel’s color
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value can not be treated independently of the quantization of spatially adjacent pixels.

Standard VQ based algorithms do not address many of these subjective qualities because

they generate a codebook based on the distribution of pixel colors without consideration

of their spatial relationships. We develop two approaches to modifying the basic binary

splitting algorithm to account for these subjective qualities. The first approach computes a

weighted TSE (WTSE) by applying a subjective weighting to the squared error at each pixel

and uses an extension of the basic binary splitting VQ algorithm to minimize this WTSE.

The subjective weighting reflects variations in our ability to perceive small intensity changes

as a function of the spatial intensity gradient at each pixel. The second approach modifies

the order in which the binary splitting algorithm splits nodes so as to reduce the correlation

of quantization errors between adjacent pixels. This approach is based on reducing the sizes

of interiors of constant color areas in the displayed image.

The second part of this paper addresses the problem of optimum pixel mapping once a

color palette has been selected. Pixel mapping involves assigning a color from the palette

to each pixel in the image in a way which produces the highest quality display. Although

the TSE can be minimized by assigning each pixel to the color that is closest to its original

color, higher quality displays are often produced by using dithering methods to assign colors.

These methods attempt to match the local color averages of the displayed image to the local

color averages of the original image. A variety of dithering techniques have been investigated

for displaying bi-level or half-toned images (i.e. a color palette containing only the colors

black and white). Both Heckbert and Braudaway suggest the use of a dithering technique

known as error diffusion [11] which was originally proposed for the display of bi-level images

but is easily extended to multilevel quantization. Error diffusion can significantly improve

the quality of many displayed images when the palette size is small. However, when used in

conjunction with an unstructured color palette, error diffusion requires a search of the full

color palette for each pixel of the image and is therefore quite computationally intensive.

We investigate a number of approaches for improving display quality given a fixed color
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palette. These methods produce more accurate average color at the cost of added noise and

increased computation. By using error diffusion in conjunction with color palettes having

a binary tree structure, we substantially reduce the computation required to quantize an

image. In addition, we propose a modified algorithm for performing the error diffusion. This

algorithm avoids nonlinear oscillations which can occur due to the nonuniform quantization

of the color space. This results in better image reproduction with fewer artifacts.

The paper is organized as follows. Section 2 starts by defining the color space coordi-

nate system in which the palette design algorithms operate. Section 2.1 describes the basic

binary splitting approach to the design of color palettes using a minimum TSE criteria. Sec-

tions 2.2 and 2.3 develop extensions to the basic binary splitting algorithm which account

for subjective measures of image quality. Section 3 describes both ordered dither methods

and methods for efficiently implementing error diffusion techniques using color palettes hav-

ing a binary tree structure. Finally, section 4 reports on simulation results of the various

techniques.

2 Color Palette Design

We first define some notation. The image is assumed to be on a rectangular grid of N pixels.

The set of all grid points is denoted by S, and its members s ∈ S may be explicitly written

as s = (i, j) where i is the row index and j is the column index. The color value of the pixel

at grid point s is denoted xs = [rs, gs, bs]
t where the components are the red, green and blue

tristimulus values for the pixel [13] and superscript t means transpose.

For a typical monitor, there is a nonlinear relationship between the input value of the

primary and its displayed intensity. For a particular primary such as red, this relationship

may be approximated by

Ir = rγ

where Ir is the intensity, r is the input to the display and γ ≈ 2.3. More accurate models

for this relationship generally include constant, linear and logarithmic terms [4]. In order

6



to compensate for this nonlinear relationship between input and luminance, it is common

for video cameras and other image capture devices to predistort their output by the inverse

relationship.

r = I(1/γ)
r

We shall refer to the predistorted primary color values as the gamma corrected colors.

In effect, this is the coordinate system being used if one manipulates color image data

and directly displays it without correction. It is important to emphasize that the gamma

corrected colors are not linear in intensity, and that the gamma correction, and therefore

the resulting coordinate system, varies with changes in a display’s parameters. However,

the gamma corrected colors have the advantage that they may be directly displayed without

transformation, and that they are less susceptible to noise than the corresponding linear

primary intensities [13].

Alternatively, standard coordinate systems have been defined for the representation of

colors. Two such coordinate systems are the L∗a∗b∗ and the L∗u∗v∗ color spaces [12]. These

coordinate systems are nonlinearly related to the primary intensities, and are chosen so that

a fixed euclidean distance represents a fixed perceptual distance independent of position in

the space. Gentile, Allebach and Walowit have studied the application of the L∗u∗v∗ coordi-

nate system to the problems of image quantization [4], halftoning [5] and gamut mismatch

[6]. This work indicates that these coordinate systems can substantially improve quantized

image quality relative to standard coordinate systems which are linearly related to primary

luminances. Therefore, it is reasonable to expect that perceptually based coordinate systems

such as L∗u∗v∗ could improve the quality of displayed images relative to gamma corrected

coordinates. However, it will be assumed throughout this paper that the original image

is specified in terms of gamma corrected coordinates, since this avoids the computational

requirements of coordinate transformation methods. All, the techniques developed can of

course be applied using perceptually based color spaces.
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2.1 Binary Tree Palette Design

The objective of the palette design algorithm is to partition S into M disjoint sets or clus-

ters where M is the predetermined palette size determined by hardware constraints. The

algorithm proposed here constrains the partitioning of S to have the structure of a binary

tree. Each node of the tree represents a subset of S, and the children of any node partition

the members of the parent node into two sets. The set of image pixels corresponding to

node n is denoted Cn. For purposes of illustrating the operations of the algorithm, we will

number the nodes so that the root is 1 and the children of node n are 2n and 2n+ 1. Since

the leaves of the tree form a partition of S, the pixels in S may be coded by representing all

pixels in each leaf node with a single color in the palette. Only the members of the tree’s

leaf nodes need be stored when the algorithm is implemented. Each of the leaf node sets can

be stored as a linked list. When a node is split, the linked list may be reorganized into two

lists without relocating any of the image color data.

The method for generating the binary tree is specified by the number of leaves, M , the

method of splitting a node into its two children, and the order in which the nodes are split.

The methods used for splitting nodes and determining which nodes to split both attempt to

minimize the total squared difference between the actual and quantized image. The TSE is

defined by

TSE =
∑

all leaves
n

∑
s∈Cn

||xs − qn||
2

where qn is the quantization value used to represent the colors in the set Cn. In order to

restrict the complexity of the algorithm, second order statistical properties will be used to

determine the order and manner in which nodes will be split. The three required cluster

statistics are

Rn =
∑
s∈Cn

xsx
t
s (1)

mn =
∑
s∈Cn

xs

Nn = |Cn|
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where Rn is a 3x3 matrix, and mn is a 3 component vector. Since the mean value of a cluster

is the point from which there is minimum squared deviation, the quantization value of a

cluster, qn, is assumed equal to the cluster mean.

qn =
mn

Nn

.

We also define the cluster covariance as

R̃n = Rn −
1

Nn

mnm
t
n .

The splitting of a node into two nodes is equivalent to choosing two new quantization

levels, q2n q2n+1, and associating each member of the cluster with the closer quantization level.

This, in turn, is equivalent to selecting a plane which best splits the cluster’s colors. In the

proposed algorithm, we determine the direction in which the cluster variation is greatest,

and then split the cluster with a plane which is perpendicular to that direction and passes

through the cluster mean. For a large cluster with Gaussian distribution it can be shown

that this strategy is optimal.

More specifically, we determine the unit vector e which maximizes the expression

∑
s∈Cn

((xs − qn)
te)2 = etR̃ne .

Since R̃ is symmetric, the solution is the eigenvector, en, corresponding to the largest or

principal eigenvalue λn of R̃. The total squared variation in the direction en is therefore

∑
s∈Cn

((xs − qn)
ten)

2 = λn . (2)

Once the principal eigenvector has been determined, points in Cn can be sorted into two sets

C2n and C2n+1 in the following way.

C2n = {s ∈ Cn : etnxs ≤ etnqn} (3)

C2n+1 = {s ∈ Cn : etnxs > etnqn} .
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Finally, the new statistics for each node may be calculated by first calculating R2n, m2n and

N2n for node 2n, and then applying the relations

R2n+1 = Rn −R2n (4)

m2n+1 = mn −m2n

N2n+1 = Nn −N2n .

The order in which nodes are split is chosen with the objective of producing the greatest

reduction in TSE at each stage of the algorithm. Because this strategy does not look ahead

to the results of further splits, it is not necessarily optimal; however one would expect it to

perform well in most practical situations. When a node is split its variance is mainly reduced

along the direction of the principal eigenvector. Therefore, it is reasonable to assume that the

reduction in TSE should be proportional to the total squared variation along the direction

of the principal eigenvector, en, of R̃n. For this reason, the principal eigenvalue, λn is used

as a measure of the expected reduction in TSE if node n is split. Given this approximation,

the best allocation of a single quantization level is to split the leaf with the largest principal

eigenvector.

The basic binary quantization algorithm may now be described.

1. Set C1 = S.

2. Calculate R1, m1 and N1.

3. Do the following M − 1 times

3.1 Find the leaf, n, such that λn is largest.

3.2 Use (3) to form the new nodes 2n and 2n+ 1.

3.3 Calculate R, m and N for the new nodes using (4).

For typical image sizes (e.g. 512x512 pixels) the computation is dominated by steps which

must be performed at each pixel of the image. These steps consist of the splitting of clusters
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using (3) and the computation of statistics using (4) and (1). Assuming an approximately

balanced tree, each pixel of the image is involved in log2M splits, each requiring 3 multi-

plications to compute (3). The initial computation of the matrix R1 requires 6 multiplies

per pixel due to the matrix’s symmetry. Assuming approximately balanced splitting of each

node, 3N log2M multiplies are required to compute the remaining values of Rn. This results

is a total of 6N(log2M +1) multiplications and slightly fewer additions for the design of the

color palette. Therefore, for M > 2, fewer multiplications are required for the design of the

complete color palette than a single iteration of the LBG procedure described in section 2.4.

2.2 Subjectively Weighted TSE Criteria

In this section, we develop a framework for incorporating subjective measures of quality

through the use of a weighting function which accounts for local properties of the image.

This weighting can be applied using the same framework of the basic splitting algorithm of

section 2.1, with the substitution of a weighted total square error (WTSE) in place of the

true mean square error. The WTSE is defined as

WTSE =
∑

all leaves
n

∑
s∈Cn

Ws(x)||xs − qn||
2

where Ws is a function of x in some neighborhood of s. Regions of the image which are

subjectively more sensitive to errors in quantization are given a larger weight. By applying

the same arguments used in deriving the basic splitting algorithm, we calculate the following

forms for the new cluster statistics.

Rn =
∑
s∈Cn

Wsxsx
t
s (5)

mn =
∑
s∈Cn

Wsxs

Nn =
∑
s∈Cn

Ws

R̃n = Rn −
1

Nn

mnm
t
n

qn =
mn

Nn
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We first consider some properties that the weight Ws should possess. For simplicity, Ws

will only depend on the gamma corrected luminance component, ys, of the image. In the

NTSC system, ys is given by

ys = [0.300, 0.586, 0.115]xs . (6)

If Is is the true luminance at position s, then ys is approximately given by ys ≈ I1/γ
s . Weber’s

law [14] suggests that any measure of subjective image quality should be invariant to linear

scaling of the color component intensities. However, this is not true of the TSE based on

gamma corrected color components. Scaling Is by the constant cγ results in y being scaled

by c and the TSE being scaled by c2. Therefore, to ensure the invariance of the WTSE to

scaling of Is, Ws should have the property that

Ws(cx) =
1

c2
Ws(x) . (7)

This suggests that Ws should be inversely proportional to a quadratic function of a local

linear function.

The most prominent artifact of a limited palette is false contouring. False contours result

from mapping smoothly varying regions of an image to a small number of colors from the

color map. Instead of displaying slow variations of color across the region, smaller regions

of constant color are displayed with abrupt color changes across region boundaries. These

abrupt color changes are perceived as contours in the displayed image.

A reasonable measure of the visibility of a false contour is the width of uniformly quan-

tized region. Since the luminance component has the greatest variation, we will use it to

estimate the likely size of false contours. Figure 1 is a schematic representation of a one-

dimensional slice through the luminance component of an image along the direction of the

gradient. The two curves are the true luminance and the quantized luminance. Notice that

the width of the uniformly quantized region, ∆, is equal to the quantization step size, E,
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∆

Figure 1: This figure illustrates the relationship among the gradient of the image luminance
(5y), the size of quantization steps (E) and the width of regions with fixed quantization
value (∆).

divided by the gradient size. This suggests that for a region of the image with uniform

quantization ∑
s∈Cn

||xs − qn||2

|| 5 ys||2
≈ (area)

E2

12|| 5 ys||2
≈ (area)

∆2

12
.

In practice, the gradient of ys is not constant, so a more accurate estimate may be obtained

by convolving the magnitude of the gradient with a smoothing kernel hs. The form of Ws

which is used is

Ws =

(
1

h ∗ (min{|| 5 y||, 16}+ 2)

)2

(8)

where y takes on values between 0 and 255, and h is a kernel which filters the gradient

estimates. The effect of 5y is limited to the range between 2 and 16 since values below 2 are

visually indistinguishable, and values greater than 16 correspond primarily to edges. Also,

these limits allow fixed-point implementation of the algorithm by limiting dynamic range.

The increase in computation due to the use of the WTSE criteria comes from the addi-

tional multiplications required by the appearance of Ws in (5) and the computation of the

weightings in (8). (5) requires an additional 1.5N(log2M + 1) multiplications, increasing

the complexity of the basic algorithm by 25%. The major computational cost of calculating
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the weights is the computation of the gradient, the convolution with h and the squaring of

the weights. The division can be avoided by using power of two quantization. The compu-

tation required for filtering depends on the filter size, and weights. The gradient calculation

together with the implementation of a 5x5 filter of 1’s and the squaring of the result requires

13N arithmetic operations including 1N multiplications. In practice, the calculation of these

weights adds substantially to the total computation time.

2.3 Erosion-Based Weighting

Another method for improving the quality of the quantization is to develop an error criteria

which depends directly on the qualities of the quantized image. Such a method can be

used to dynamically focus quantization values in regions of the quantized image which are

problematic. More specifically, if regions of the quantized image that may result in false

contouring can be efficiently identified while the binary tree is being created, then the relevant

clusters can be split to avoid artifacts.

The visual effect of false contouring is caused by the highly correlated nature of the

error which results from large regions being quantized with a single value. Even if the TSE

(or WTSE) is small in such regions the errors will be visually significant because they will

form well defined patterns. However, regions of the image which are quantized with single

values may be identified by searching the two dimensional field of quantization code words

for regions with large interiors. The interiors of each region formed by a fixed code word

value may be measured using the technique of erosion from morphological filtering [15]. This

is done by selecting a fixed pattern of lattice points and counting the number of times the

pattern may be uniquely positioned completely within a region consisting of a single code

word value. This operation is shown graphically in Figure 2. If a square block of nine points

is used as the eroding set, then this is equivalent to counting the number of pixels in a cluster

for which all eight neighbors of that pixel belong to the same cluster. For this reason, the

interior size ωn of cluster n is a measure of the number of interior pixels in the cluster.
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Figure 2: Sample erosion with nine point block.

After an initial allocation of M0 code words, the weights ωn may be used to bias the

order in which clusters are split by more heavily weighting principal eigenvalues of clusters

with large interiors. Instead of choosing the cluster with the largest eigenvalue, λn, the

weighted eigenvalue, ωnλn, is used. All experimental results use M0 = (2/3)M . We have

found that for palettes with 256 colors this value of M0 allocates a sufficient number of colors

to eliminate regions with large interiors.

The binary quantization algorithm with erosion-based weighting may now be described.

1 Set C1 = S.

2 Calculate R1, m1 and N1.

3 Do the following M0 − 1 times.

3.1 Find the leaf, n, such that λn is largest.

3.2 Use (3) to form the new nodes 2n and 2n+ 1.

3.3 Calculate R, m and N for the new nodes using (4).

4 Calculate the interior weights, ωn, for all leaf nodes, n.

5 Do the following M-M0 times.

5.1 Find the leaf, n, such that ωnλn is largest.
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5.2 Use (3) to form the new nodes 2n and 2n+ 1.

5.3 Calculate R, m and N for the new nodes using (4).

5.4 Compute ω2n and ω2n+1 for the two new leaves.

The calculation of the weights ωn represent only a modest overhead in computation

because they can be efficiently computed using only compare and logical operations. Step

4 requires that an interior weight be computed for each region of the image. For a K

point eroding set, the worst case number of comparisons required for step 4 is N(K − 1).

However, this is a conservative estimate since the search for differing quantization levels can

be performed sequentially, and can be stopped when unlike quantization levels are found.

Tests using a 9 point eroding set for quantizing a large sample of images have found that

an average of 1.4N comparisons are needed for computing the interior weights. The total

computation required for all applications of step 5.4 is generally less than is required for step

4. This is because the splitting of a cluster only effects the interior points of the cluster being

split. Therefore, time required to recompute these two weights is proportional to the number

of pixels in the cluster being split. Since the number of pixels contained in the last M/3 of

clusters split is generally much less then N , this represents a small amount of computation.

2.4 The LBG Algorithm

The LBG Algorithm [3, 9] is a method used in VQ for iteratively refining a code book. The

algorithm is quite general, and has also been applied to wide variety of problems in pattern

recognition and clustering [10]. Since the problem of designing an optimal code book is

equivalent to finding a set of palette colors, {qn : 1 ≤ n ≤M}, which best approximate the

set of image pixel colors, {xn : 1 ≤ n ≤ N}, the LBG algorithm is directly applicable to the

color quantization problem. In the case of minimum TSE palette design, the algorithm is

defined as follows:

1. Choose an initial color palette, {qn : 1 ≤ n ≤M}.
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2. Form M pixel clusters, Cm = {xn : ||xn − qm|| ≤ ||xn − qk||, 1 ≤ k ≤M}

3. Recompute the color palette using, qm =
1

|Cm|

∑
s∈Cn

xs

4. Repeat 2 and 3 until no more changes occur or the decrease in TSE is less than a

predetermined amount.

Each step of the LBG algorithm causes the TSE to either decrease or remain the same.

Therefore, the algorithm is guaranteed to converge to a minimum of the TSE. However,

this minimum is generally not the global minimum of the TSE. Therefore, the initial palette

plays a key role in determining the local minimum to which the algorithm converges. In fact,

the experimental results of Section 4 indicate that the LBG algorithm will improve initial

color palettes of poorly quantized images, but it will not significantly change palettes of well

quantized images. Consequently, we take the view that the LBG algorithm is best used as a

post-processing algorithm for improving suboptimal initial palettes.

A significant disadvantage of the LBG algorithm is its computational cost. The forming

of clusters in step 2 generally requires NM distance calculations, and this step must be

performed in each iteration. Therefore, one iteration of the LBG algorithm requires 3NM

multiplications. Finally, we noted that binary tree structure of a palette is destroyed by the

LBG algorithm. Without the tree structure, pixel quantization requires a full search of the

palette, or NM distance calculations. However, pixel quantization with the tree structure

requires only N log2M inner products and compares. This is particularly important in the

error diffusion applications discussed below.

3 Pixel Mapping

Once a color palette has been selected, the TSE of the displayed image is minimized by map-

ping each pixel to the color from the palette which is closest to its original color. The pixel

mapping techniques described in this section attempt to improve the quality of the displayed

image by accepting a larger TSE so that the local average color of the displayed and original
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images may be matched. These techniques reduce error power at low spatial frequencies and

increase error power at high spatial frequencies where error is less noticeable. This section

discusses two types of pixel mapping techniques, ordered dither and error diffusion, which

have been used widely for the halftoned display of grey-scale images. The application of

these techniques to the display of color images with limited color palettes raise difficulties

which do not exist in the display of bi-level images.

3.1 Ordered dither

Ordered dithering is a method for improving the appearance of a displayed image by adding

a pseudorandom noise pattern, d(k,l), to blocks of pixels, xs, before quantizing. Therefore,

the image before quantization, x̃, is given by

x̃(i,j) = d(i mod n,j mod n) + x(i,j),

where d(k,l) is a n by n matrix of dithering values. d(k,l) is chosen to have an average value of

zero and an energy spectrum with minimum energy at low spatial frequencies. The amplitude

of the noise pattern is chosen so that any area of constant color value is quantized into a

variety of nearby color values, thereby breaking up regions of false contouring. This reduces

the correlated error patterns that are characteristic of areas of false contouring.

The application of ordered dithering to the display of color images is complicated by

the nonuniform spread of colors in the palette. In image-specific color palettes, the distance

between nearby colors varies significantly across the color space. Therefore, it may be im-

possible to determine an amplitude which will sufficiently dither all areas of constant color

value in the image without adding noticeable noise to other areas. One method of addressing

this problem is to adjust the dithering to the distance and orientation between nearby colors

in the palette. This can be done by first determining two candidate quantization colors, q1

and q2, which are nearest to the actual pixel color. The noise pattern value for the pixel can

then be scaled by the distance between quantization colors and rotated in color space by the
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Figure 3: Block diagram of error diffusion filter. The quantization error is propagated
forward to reduce the low frequency component of the error.

orientation of the colors to form the dithered signal

x̃(i,j) = (q2 − q1)d(i mod n,j mod n),+x(i,j) (9)

where d takes on scalar values on the interval [−1/2, 1/2]. The dithered value can then be

quantized to one of the two levels.

This approach adjusts the dithering to the non-uniform spread of quantization colors;

however, it has a number of disadvantages. In regions which change significantly enough to

cause q1 and q2 to change, the dither noise will be modulated by the changing quantization

colors. This will cause the spectrum of the dither noise to spread to low spatial frequencies.

Because the dither is only added along the direction of the differing quantization values, the

average error in directions orthogonal to that component will not be effected. The compu-

tational cost of searching for candidate quantization colors can be reduced by restricting the

search to colors which appear in a limited neighborhood of the pixel; however, this search

still possesses a substantial computational overhead. Finally, no ordered dithering method

guarantees that after quantization the error spectrum will continue to be concentrated at

high spatial frequencies.
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3.2 Error diffusion

The object of error diffusion is to quantize the image in such a way that the average value

of the quantized image is the same as the average value of the true image [11, 16]. Figure 3

illustrates the method. The pixels are chosen in some ordering (raster ordering is commonly

used), and the residual quantization error is propagated forward to unquantized pixels. The

error is propagated by computing an adjusted value of the pixel color, x̃s, formed by summing

the actual color with a weighted sum of previous errors. The equations for error diffusion

are as follows

x̃s = xs +
∑
k<s

hs−knk (10)

qs = Q(x̃s)

ns = x̃s − qs ,

where s − k = (s1 − k1, s2 − k2) and s < k means (s1 = k1 & s2 < k2) or s1 < k1. We note

that while these equations have a somewhat different form then those originally presented

by Floyd and Steinberg, they are equivalent. Since xs is a vector, (10) describes a system

of vector equations where hs is a matrix for each value of s. For simplicity, the h is usually

chosen to be diagonal. The two-dimensional Fourier transform of h is given by

H(ω) =
∑
s>0

hse
−jω·s,

where ω = (ω1, ω2) and · is the notation for inner product.

Notice that the variable, ns, is the error generated by the quantizer, but it is not the

difference between the actual and quantized image. The actual displayed image error and

its relationship to the quantizer error is given by

εs = xs − qs

= xs − (x̃s − ns)

= ns −
∑
k<s

hs−knk .
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The two-dimensional Fourier transform then yields

E(ω) = (I −H(ω))N(ω) .

Therefore, we see that the spectral components of the displayed error may be shaped by

choosing the filter I − H(ω) correctly. In general, this filter should have a high-pass char-

acteristic since it is desirable to suppress the low-frequency error components. Billotet-

Hoffmann and Bryngdahl have suggested a simple filter kernel which we have used in all

experimentation [16].

The methods of color palette generation described in the previous sections all generate

a color palette and a mapping from the image pixels to that palette. However, in general,

palette design and pixel quantization can be performed separately. In the case of minimum

TSE coding using an unstructured color palette, quantization is performed by

Q(x) = arg min
qn
{||x− qn||

2} .

This is very computationally intensive since quantizing an image requires NM distance

calculations, each of which requires three multiplies, three subtractions and a comparison. In

the case of a palette with binary tree structure, an approximate minimum TSE coding, Qb(x),

can be performed with order N logM computation. This is done by storing the principal

eigenvectors and cluster means of all the internal tree nodes during the tree construction.

These values can then be used to uniquely descend through the tree using the rule from

(3). Notice, that both types of quantization can be performed for colors outside the original

image. This is important since error diffusion will require the quantization of colors not in

the original image. However, this leads to a unique problem associated with the application

of error diffusion to image specific palettes.

The advantage of an image-dependent palette is that quantization values are densely

spaced only in regions of the color space with significant numbers of pixels. This advantage

can be quite significant because for typical images a large amount of the color space is

empty. The situation may be visualized by considering a region of an image in which the
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color varies smoothly (such a region is more likely to exhibit the problems typical of a limited

palette.) The image is then a smooth mapping from a two-dimensional surface into a three-

dimensional space. The range of that mapping is, in general, a manifold with dimension ≤ 2.

In particular, the local dimension of the manifold is given by the rank of the matrix
∂r
∂i

∂g
∂i

∂b
∂i

∂r
∂j

∂g
∂j

∂b
∂j


where i and j are temporarily considered to take values on the real line. Most often this

matrix will have rank 2 since the color components are likely to vary with some degree of

independence. However, the manifold will have dimension 1 if two of the components are a

function of the third. This can occur if the region has fixed hue and saturation and varies

only in intensity. The most degenerate case is when the color of an region is fixed and the

manifold is zero-dimensional.

When the color palette is designed, the majority of colors are allocated around these

surfaces in the color space. Unfortunately, the sparse nature of these surfaces can cause

problems when colors outside the set are quantized. Error diffusion accumulates errors made

in the pixel coding until those errors are negated by errors of opposite polarity. However, if

all the quantization levels fall to one side of the manifold then there will be no local colors to

offset accumulated error. This situation can occur if the manifold is a convex surface since

the minimum TSE criteria will tend to allocate color on the concave side of the manifold.

Ultimately, the error will become so great that either the color will become saturated to some

extreme value, or more likely, a color from another manifold (region of the image) will be

chosen. In this situation the assumption of independence between the input to the quantizer

and the quantization error becomes invalid, and the nonlinear feedback structure of error

diffusion can lead to a unstable condition in which large oscillations in quantization error

occur between colors far from the original color. This, of course, creates noticeable artifacts

in the resulting image.

We would like to constrain the filter, H in figure 3, to operate in a region in which the
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Figure 4: Block diagram of modified error diffusion filter. The feedback is clipped if mag-
nitude of the error is significantly larger than the longest axis of the corresponding cluster
formed in the palette design process.

quantizer error, ns, is of the order of the distance between quantization colors within the

manifold. A reasonable method for detecting when the filter is oscillating is to compare the

error magnitude to the diameter of the cluster associated with the quantization color. This

can be done by storing along with the quantization color the associated principle eigenvalue

of the cluster. Since the principle eigenvalue of the cluster is proportional to the square

of the cluster’s diameter along its longest axis, we can determine when oscillations occur

by comparing the error magnitude to
√
λα where α is a constant. When oscillations are

detected, the filter can then be damped by opening the feedback loop, and the unadjusted

pixel intensities, xs, can be quantized instead of the highly biased values, x̃s. This combined

operation is simply performed by “clipping” the input of the filter to a magnitude of
√
λα.

ñs =

{
ns if |ns|2 < λα2

0 otherwise

A diagram of the modified error diffusion process is shown in Figure 4.
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4 Results

The previous sections have proposed a number of algorithms, each of which attempts to

maximize performance by minimizing a measure of displayed image distortion (e.g. TSE,

WTSE and region interior size). This section compares these algorithms by measuring their

performance with respect to all of the quality measures which have been discussed. Besides

providing a means for comparing algorithms, the results of this section offer insights into the

validity and significance of the various performance criteria which have been proposed.

The algorithms were tested on a variety of images available on public image databases,

and four images were selected for comparisons. Figure 5 shows monochrome versions of

the four color images used. Images 1 and 2, known as Lenna and Tiffany respectively, are

characterized by large smooth regions of light skin tones which are particularly difficult to

quantize transparently. This is probably due to the combined effects of a sensitive region of

luminance/hue together with strong prior expectations on the part of the viewer. Image 1

contains colors from a larger area of the color space than image 2, and it suffers from the

most noticeable false contouring of the four images used for comparisons. Image 3, known as

F16, is relatively easy to quantize transparently because its large saturated white background

contains colors concentrated in a small region of the color space. Image 4, known as Peppers,

contains colors from many disjoint regions of the color space and produces significantly higher

TSE than the other images.

Table 1 compares five color quantization algorithms with respect to three performance

criteria. The comparisons are shown for images 1 and 4 which are the most challenging

images to quantize. The first algorithm, labeled (8,8,4), uses a image independent separable

color map with 8 red, 8 green, and 4 blue quantization levels. The second algorithm, labeled

HIST, is a generic histogram-based method similar to that used for the initialization step in

[1]. The final three algorithms, labeled BS, WBS, and EBBS, are the basic binary splitting

algorithm of Section 2.1, the weighted binary splitting algorithm of Section 2.2, and the

erosion-based binary splitting algorithm of Section 2.3. The WBS method uses a 5x5 moving
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Figure 5: Monochrome versions of color images used in comparisons of algorithms. The
images are referred to as a) Lenna; b) Tiffany; c) F16; d) Peppers.

average filter to smooth the gradient components, and the EBBS uses the nine point block

of Figure 2. Three criteria are used to judge algorithm performance: the RMS error given by

RMSE =
√

TSE
N

, the WRMS error given by WRMSE =
√

WTSE
N

, and the average codeword

interior size (ACIS) computed with the nine point eroding block.

Image 1 Image 4
Algorithm RMSE WRMSE ACIS RMSE WRMSE ACIS

(8,8,4) 23.66 23.35 187 22.30 21.92 189
HIST 7.87 7.36 28 11.39 10.22 31
BS 5.96 5.28 5.7 8.26 7.28 6.0

WBS 6.31 5.08 3.4 8.73 7.06 3.2
EBBS 6.10 5.27 2.3 8.43 7.27 1.5

Table 1: Color quantization algorithms compared according to RMSE, WRMSE, and average
codeword interior size (ACIS).

Several observations can be made from Table 1. It is clear that the algorithms generating

image dependent color maps yield significantly better performance than the fixed (8,8,4)
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color map according to all performance criteria. The generic histogram algorithm, which is

not developed from maximizing any performance criterion, is outperformed by the three tree

structured algorithms according to all criteria. It should be noted that the displayed images

produced by the first two algorithms show noticeable false contouring and are clearly of

lower subjective quality than those produced by the final three algorithms. The differences

between the tree-structured algorithms are less obvious and, in many cases, can be identified

only under close examination.

It is not surprising that, for each of the three criteria, the algorithm giving the best

performance is the one that was developed to maximize performance relative to that criteria.

However, some insight into the significance of the three criteria can be gain by comparing

the results of the three algorithms. The BS and EBBS algorithms differ only in the selection

of codewords which are split by the last 25% of the node splitting operations. Although the

EBBS gives a 2% increase in the RMSE by using the erosion-based criterion for selecting

codewords to split, it achieves greater than 50% reduction in ACIS, thus suggesting that the

RMSE criterion is a poor measure of false contouring in the displayed image. The EBBS

algorithm performs roughly equal to the BS algorithm relative to the WRMSE criterion,

reflecting the fact that codewords with large interiors are often found in regions which are

given high weights by equation (8). The relationship between the weighting function of

Section 2.2 and the erosion-based weighting of Section 2.3 is also reflected in the performance

of the WBS algorithm. Although it does not directly attempt to reduce interior size, Table 1

shows that the WBS algorithm produces significantly smaller ACIS compared with the basic

BS algorithm. Both the WBS and EBBS algorithms produce noticeably less false contouring

than the BS algorithm.

The LBG algorithm described in Section 2.4 can be applied to improve the color maps

generated by each of the algorithms considered in Table 1, and Figure 6 shows the RMSE

that results at each iteration. Since the first two algorithms were not designed to minimize

any error function, the early LBG iterations offer significant reduction in RMSE for these
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Figure 6: RMS Error versus the number of iterations of the LBG algorithm. Each plot
corresponds to an initial color palette generated using one of the five quantization algorithms.

algorithms and then quickly reach a local minimum in RMSE. Although the LBG iterations

offer significant improvements to the subjective quality of these algorithms, the displayed im-

ages produced by the resulting local minima still exhibit very objectionable false contouring

in the case of the fixed (8,8,4) map and noticeable false contouring in the case of the palette

generated by the HIST algorithm. The last three algorithms start near local minima and

realize small improvements from the LBG iterations. For these algorithms, the LBG itera-

tions produce no noticeable change in the subjective quality of the displayed images. Tests

on all four images show that, although the LBG algorithm does reposition palette colors at

each iteration, it reaches a local minimum before it can perform any major reallocation of

colors in the color space. Because the general allocation of palette colors to regions in the

color space remains the same before and after the LBG iterations, the quality of displayed

images produced by the LBG algorithm is very dependent on the initial palette selected.

Table 2 compares the computational complexity of the algorithms by showing their ex-

ecution times on a Sun Sparcstation and a rough measure of required multiplications. The
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execution times are averaged over the four images which were quantized. Since the three tree-

structured algorithms perform pixel mapping during the palette design process, the times

shown for the first two algorithms also include both palette design time and pixel mapping

time. The time listed for the LBG algorithm reflects the execution time of a single iteration

utilizing a recently proposed fast method for computing nearest neighbors [17]. The second

column of Table 2 lists the number of multiplications used by each algorithm in terms of

the number of pixels, N , and the number of palette colors, M . This computation count

relates the complexity of the last three algorithms and the LBG algorithm by comparing

the multiplications required for computing distances and autocorrelation matrix elements.

However, this count does not measure the complexity of the first two algorithms since their

computational complexity is dominated by operations other than multiplication. Since the

multiplicative complexity of the fast algorithm in [17] varies significantly as a function of

the map, the multiplication counts given for the HIST and LBG algorithms reflect the com-

plexity of the full search algorithm for computing nearest neighbors instead of the algorithm

used in the timing comparisons.

Algorithm Execution Time (sec.) Mult. Count
(8,8,4) 4.0 –
HIST 305.5 3NM
BS 56.3 6N(log2M + 1)

WBS 127.6 7.5N(log2M + 1) +N

EBBS 59.6 6N(log2M + 1)
1 iteration of LBG 32.1 3NM

Table 2: Computational complexity of color quantization algorithms. Column 1 lists run
times for each algorithm on a Sun Sparcstation, and column 2 lists the required number of
multiplies for a image with N pixels and a palette with M colors.

The error diffusion methods for pixel mapping attempt to shape the error spectrum in

order to minimize low-frequency error at the expense of higher RMS error. Figure 7 shows

error spectra of quantized versions of Image 1 with and without error diffusion. Both plots

use a 64 color palette generated by the EBBS algorithm. The algorithm of Figure 7a maps

each color to the nearest neighboring palette color while the algorithm of Figure 7b uses the
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modified error diffusion method with (α = 6) as described in Section 3.2. The plots show

that, while nearest neighbor pixel mapping minimizes overall error power, error diffusion

produces a shaped error spectrum with lower error energy at low frequencies. Table 3

shows this same result numerically by comparing these same two methods of pixel mapping

using the the RMSE and a filtered RMSE (FRMSE) performance criteria. The FRMSE is

computed by low pass filtering the error before computing the RMS deviation. This reflects

the frequency sensitivity of the human visual system together with the spatial bandwidth of

the display device.

Algorithm RMSE FRMSE
Nearest Neighbor 8.87 5.49
Error Diffusion 10.53 4.70

Table 3: RMSE and filtered RMSE (FRMSE) produced by the nearest neighbor and error
diffusion methods of pixel mapping.

Section 3.2 discussed how the nonuniform distribution of colors in the palette can lead to

quantization error oscillations and proposed the modified error diffusion method to eliminate

these oscillations. One method of detecting oscillations is to measure the output error of the

quantizer in the error diffusion loop. When this error is large it suggests that the input values

to the quantizer are far from any available palette colors. In practice large errors result in

very poor quality images often containing high frequency patterns of spots. Table 4 uses the

image Peppers (the worst case of the four images) to show the dependence of the quantizer

output RMSE on the value of the clipping parameter α and the method of quantization. It is

useful to note the conventional error diffusion may be thought of as modified error diffusion

with α =∞. The two types of quantization methods used are tree-based quantization, and

a full search quantizer which finds the minimum distance palette color. In addition to the

quantization RMSE, the percentage of pixels at which clipping occurs is also listed. This,

together with the FRMSE, gives an indication as to when an excessive amount of clipping

is occurring due to a small value of α. It is interesting to note that oscillation occurred

both with and without the full search quantizer, and that when clipping was used the two
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Figure 7: Spatial spectra of the quantization error in two displayed images. Each plot shows
the RMS spectrum of the luminance component of the error. The plots correspond to the
error spectrum from a) minimum distance pixel mapping and b) the modified error diffusion.
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quantization methods had comparable performance. This table also indicates that α = 6

yields a reasonable compromise between oscillation damping and restricted limiting.

Algorithm Quantizer RMSE % of pixels clipped FRMSE
ED (tree search; α =∞) 426.9 0 8.24
ED (full search; α =∞) 242.4 0 6.68
MED (tree search; α = 6) 26.4 8.1 4.89
MED (full search; α = 6) 25.6 7.7 4.70
MED (tree search; α = 3) 16.5 22.2 4.99
MED (full search; α = 3) 16.0 21.7 4.83

Table 4: Performance comparisons of error diffusion and modified error diffusion methods
for pixel mapping. The parameter α controls the amount of quantization error which can
occur before the feedback signal is clipped.

In order to illustrate the artifacts present in the quantized images, we have included

monochrome versions of some of the quantized images. These images were generated by

using the luminance component of the quantized colors as defined in (6). While distortions

in color are not visible, false contouring can still be seen. Each figure shows the center

region of the image Lenna enlarged by a factor of two. This emphasizes smooth regions

in her shoulder and face which are difficult to quantize. Figure 8 contains the results of

the five color quantization algorithms, fixed (8,8,4), HIST, BS, WBS and EBBS. The fixed

color map shows very severe degradation and contouring. The result of the histogram-based

method is significantly better than the fixed map, but it still contains severe artifacts in

areas of smooth color variation. The third image, generated using the basic binary splitting

algorithm, has relatively good but not transparent quality. The areas above “Lenna’s” lips

and on her forehead and along her shoulder show false contours. The contours along her

shoulders and face are significant when viewed on a high quality display. Both the WBS

and EBBS algorithms are significant improvements over the basic algorithm, but the EBBS

exhibited slightly more reliable performance with substantially less computation than the

WBS algorithm. For 256 color palettes, we have found that both methods yield transparent

quality for a variety of images. The advantage of the erosion method is that the actual

quantization quality is measured during the palette design. In contrast, the weighting method
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predicts problematic areas of the image.

The results of two error diffusion algorithms using a 64 color EBBS palette are also shown

in Figure 9. Both images used tree-based quantizers, but the first image used conventional

error diffusion and the second used the modified error diffusion of Section 3.2 with α = 6.

The conventional error diffusion method resulted in saturated regions and spotty patterns

caused by the large oscillations of the error diffusion filter. The modified error diffusion

eliminated these artifacts and improved the display quality relative to minimum TSE pixel

mapping. However, the image quality is still some what degraded relative to the original. We

have found that error diffusion can dramatically improve the quality of an image generated

from a excessively small palette, but it generally does not produce transparent results since

in the process it adds some distinguishable amount of noise.

5 Conclusion

A variety of methods where explored for designing and using hierarchical image specific color

palettes. The advantage of the hierarchical design is that nearly optimal color palettes can

be designed in O(N logM) time where N is the number of image pixels and M is the number

of colors in the palette. In addition, the hierarchical structure allows colors outside the image

to be quantized in O(N logM) time. This computational savings is important in dithering

applications. The color palette was improved by modifying the minimum total square error

criteria to incorporate more subjective measures of image quality. This was done using two

methods: subjective weighting and erosion. Erosion was found to require less computation,

but both methods were found to yield very high quality results for palettes of size 256.

The techniques of ordered dithering and error diffusion were extended for use with image

specific color palettes. Basic error diffusion exhibited instability due to the sparse nature

of the color palette, but a modified error diffusion technique was proposed to limit this

instability when it occurred. Modified error diffusion substantially reduced artifacts caused

by excessively small palettes of size ranging from 32 to 128 colors.
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Figure 8: A comparison of color palettes using enlarged monochrome versions of color images.
Each palette contains 256 colors. a) Original image is shown together with quantized versions
using b) an image independent color map of 8 red, 8 green and 4 blue; c) histogram based
method (HIST); d) binary splitting method (BS); (continued on next page)
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Figure 8: e) weighted binary splitting (WBS); f) erosion based binary splitting (EBBS).
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Figure 9: Monochrome versions of quantized color images using error diffusion methods.
Each image uses a 64 color palette generated with the EBBS method. a) Result of con-
ventional error diffusion, and b) modified error diffusion using α = 6 and a tree search
quantizer.
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