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Abstract: Transmission X-ray computed tomography (CT) is widely used to quantitatively9

reconstruct 3D objects composed of multiple materials. However, accurate CT reconstruction10

requires the system to be calibrated to account for the effective X-ray spectrum. Unfortunately,11

measurement of the effective spectrum is ill-posed, and existing calibration methods require that12

the system be recalibrated when the system parameters are changed.13

In this paper, we propose XCal, a multi-energy model-based spectral calibration approach for14

X-ray CT. The XCal approach models the effective spectrum using a separable physics-based15

model of the CT system. The model parameters are then estimated by fitting calibration data16

with known objects at multiple energies. An important advantage of XCal is that it allows17

the user to change scanner settings, such as the source voltage or X-ray filters, without the18

need for recalibration. Evaluations on simulated and measured datasets demonstrate that XCal19

significantly improves the accuracy of the estimated spectrum as compared to existing calibration20

methods.21

1. Introduction22

From diagnosing diseases to inspecting critical industrial components, X-ray Computed Tomog-23

raphy (CT) has revolutionized how we explore the unseen. By combining X-rays or gamma24

rays with sophisticated mathematical algorithms, CT enables non-destructive three-dimensional25

visualization of internal structures with remarkable precision [1]. Its applications in medical26

imaging [2, 3], airport security checks [4–6], and industrial inspections [7, 8] have made it a27

cornerstone of modern technology.28

Typical X-ray CT reconstructs an object’s attenuation cross-section from transmission measure-29

ments acquired at multiple angles under the assumption of a monochromatic X-ray source [9].30

This process has fundamental limitations, specifically with regard to quantitative characterization.31

First, the X-ray source emits a spectrum of energies rather than a single value, and its exact32

distribution is often unknown [10]. Second, the detector response varies with energy, meaning it33

does not record all photons equally [11, 12]. Third, material attenuation is inherently energy-34

dependent, causing different interactions across the spectrum [13]. Traditional CT reconstruction35

methods typically approximate the system as mono-energetic using average energy, neglecting36

the above factors, which can lead to inaccurate or suboptimal reconstructions [14].37

More precisely, we use the term effective spectrum to denote the energy-dependent intensity38

recorded by the detector in a given system configuration with no object present. This intensity39

is not measured directly since typical detectors are energy-integrating, so each measurement40

aggregates multiple energies [15]. Although energy-resolving detectors exist, merely measuring41

the source spectrum remains challenging due to the unknown detector response [16]. Additionally,42

this effective system spectrum is affected by the characteristics of the X-ray source, any filters in43

use, and the detector (or scintillator).44

Many CT applications can benefit from more accurate knowledge of the effective spectrum.45

For instance, beam hardening correction methods depend on an accurate spectral model to46

https://orcid.org/0000-0002-9353-6722
https://orcid.org/0000-0002-0921-6559
https://orcid.org/0000-0002-0394-5830
https://orcid.org/0000-0002-9229-2455
https://orcid.org/0000-0002-0286-9549
https://orcid.org/0000-0001-9777-3090
https://orcid.org/0000-0001-8504-0383


Research Article 2

Fig. 1. Effective Spectrum Model for an X-ray System. The effective spectrum, 𝑅(𝐸),
results from the combined effect of the source X-ray spectrum, the filters’ responses,
and the detector response. Each component is characterized by two sets of parameters:
the user-adjustable parameters, such as source voltage and filter choice, which define
the system configuration, and the estimated discrete and continuous parameters, which
are unknown and inferred through the calibration process. Finally, we can calculate the
effective spectrum with this model together with knowledge of the estimated parameters
and the user-adjustable parameters.

mitigate nonlinear attenuation effects and improve image fidelity [14, 17]. Similarly, dual-47

and multi-energy CT techniques rely on precise spectral information to distinguish materials48

with similar attenuation properties, improving the estimation of atomic number and electron49

density [18]. Without proper characterization of the effective spectrum of the X-ray system,50

existing quantitative reconstruction methods [18–21] can suffer systematic errors, reducing the51

reliability of material classification and quantitative reconstructions. Especially, phase retrieval52

methods can potentially provide quantitative reconstruction with an accurate and effective53

spectrum [22,23].54

Accurately modeling the effective spectrum in poly-energetic CT systems is difficult since it is55

typically unknown and cannot be easily measured. One approach to accurately modeling the56

effective spectrum is to use physics simulations such as MCNP [24] or Geant4 [25]. However,57

the difficulty in this approach is that simulations depend on unknown physical parameters, such58

as the scintillator thickness and filter material composition. These parameters are typically59

unknown to the CT user. In some cases, the parameters may simply be difficult to measure,60

but in other cases, parameter values may be proprietary information that is not distributed61

by commercial vendors. Additionally, CT systems age and degrade over time, altering their62

spectral characteristics and rendering simulations based on initial parameter values inaccurate.63

Moreover, even energy-resolving detectors cannot directly measure the effective spectrum since64

the measured spectrum includes the response of the energy-resolving detector itself.65

These challenges motivate the need for methods that can estimate the effective spectrum66

directly from calibration measurements performed by a user. To solve this ill-conditioned67

inverse problem, Tominaga et al. proposed both an iterative gradient descent method [26] and a68

singular-value decomposition (SVD) approach [27] to estimate the spectral distribution of X-rays.69

However, since this is a highly ill-conditioned inverse problem, [18,28,29] have proposed the70

use of regularization that reconstructs a smooth and continuous X-ray spectrum. However, in71

practice, the effective spectrum may exhibit discontinuities due to the characteristic lines of target72

materials like tungsten and the K-edges of scintillator materials [30].73

An alternative approach, which we will refer to as bin-wise spectral calibration (BWSC),74

is to discretize the effective spectrum into multiple energy bins, and then impose some type75

of regularization on this discrete vector to address ill-conditioning and numerical instability76

issues. For example, Ruth et al. [31] introduced an iterative least-squares method with multiple77
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regularizations to accommodate discontinuities in the effective spectrum. Waggener et al. [32]78

incorporated nominal intensities into specific energy bins to estimate spectra with characteristic79

lines using a perturbation method. Leinweber et al. [33] proposed a prior-translated singular80

value decomposition (PTSVD) approach, separating the spectrum into high and low frequency81

components.82

Another approach is to use a low-dimensional basis for spectral estimation, which can provide83

numerical stability along with the flexibility to incorporate characteristic lines and K-edges.84

Sidky et al. [34] represented the spectrum as a linear combination of B-splines and found a85

solution using the expectation–maximization (EM) algorithm. Zhao et al. [35] estimated the86

spectrum as a linear combination of six spectra generated by a Monte Carlo particle model. Liu87

et al. [36] introduced compressed sensing for spectrum estimation. Li et al. [37] proposed a88

dictionary-based spectral estimation (DictSE) method to estimate the X-ray effective system89

spectrum, employing an 𝑙0 norm and a simplex constraint to ensure non-negative coefficients.90

While these methods can estimate the effective spectrum, they are restricted to a fixed set of91

instrument settings. For example, if the source voltage is altered, the previous calibration and92

effective spectrum estimate become invalid. In such cases, the entire calibration process must93

be repeated from scratch, including both the collection of new data and the reprocessing of the94

measurements. This limitation makes these methods time-consuming for real-world applications,95

where instrument settings frequently change.96

In this paper, we propose XCal, a multi-energy model-based spectral calibration method for97

X-ray CT. The XCal method estimates the effective spectrum of an X-ray CT scanning system98

using a few scans of known homogeneous samples at different source voltages. The method99

then uses this data to estimate the model parameters such as the anode take-off angle (reflection100

source), target thickness (transmission source), filter material and thickness, and scintillation101

detector material and thickness. An important advantage of XCal is that these parameters remain102

valid for different settings of user-adjustable parameters, such as the source voltage or filter103

choice. Consequently, the system does not need to be recalibrated each time user-adjustable104

parameters are changed.105

At the core of XCal is a differentiable forward model of the CT system implemented in106

PyTorch [38]. Each physical component (source, filter, detector) is represented using a physics-107

based function parameterized by a combination of discrete and continuous parameters. This108

modular design enables automatic differentiation and optimization routines to work with multi-109

energy data, while also allowing the reuse of component model parameters across different CT110

configurations.111

In this research, we introduce the following:112

• A joint maximum likelihood loss function based on parametric, physics-based models of113

the source, filters, and detector using multi-energy measurements;114

• A differentiable forward model of the CT system implemented in PyTorch, enabling115

gradient-based optimization of system parameters;116

• An efficient algorithm for minimizing the loss using a mixed discrete and continuous117

optimization strategy;118

• An open-source Python software implementation available at XCal, https://github.com/119

cabouman/xcal, with documentation at https://xcal.readthedocs.io/en/latest/index.html.120

We evaluate XCal on both simulated and experimental datasets, and demonstrate that it121

significantly improves the accuracy of the estimated effective spectrum relative to existing methods.122

Additionally, our results show that incorporating multi-energy datasets into the calibration process123

improves the accuracy of system parameter estimates by an order of magnitude, making XCal a124

robust solution for practical CT spectral calibrations.125

https://github.com/cabouman/xcal
https://github.com/cabouman/xcal
https://github.com/cabouman/xcal
https://xcal.readthedocs.io/en/latest/index.html
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2. Forward Model126

Figure 1 illustrates our spectral calibration approach. In contrast to a typical CT reconstruction,127

our goal is to estimate the X-ray system parameters and effective spectrum rather than to128

reconstruct the object being scanned. Hence, we use known calibration objects, such as 𝐾129

different wires, each with a known diameter and each made from a specific known material130

(more details are provided in Sections 2.4 and 2.5). We also assume that 𝐽 measurements of the131

calibration objects are taken with varying X-ray energy and filter settings. We demonstrate below132

that including this diversity of information greatly improves the robustness and accuracy of our133

estimates.134

2.1. The CT System Model135

The X-ray CT system is modeled as the composition of a sequence of components comprised136

of a poly-energetic X-ray source, multiple unknown filters, calibration objects, and an energy-137

integrating scintillator-based detector. Our goal is then to determine the effective X-ray spectrum138

by estimating the discrete and continuous parameters of each system component from the139

measurements.140

We use the following notation to model the components of the CT system:141

• 𝑆 𝑗 (𝐸 ; 𝜃𝑠) - The X-ray source spectrum as a function of the photon energy, 𝐸 , the scan142

index 𝑗 = 0, . . . , 𝐽 − 1, and the unknown continuous source parameter, 𝜃𝑠 .143

• 𝑓 (𝐸 ;𝑚 𝑓 , 𝜃 𝑓 ) - The X-ray filter fractional transmission as a function of the unknown144

discrete material type parameter, 𝑚 𝑓 , and the unknown continuous material thickness145

parameter, 𝜃 𝑓 .146

• 𝐷 (𝐸 ;𝑚𝑑 , 𝜃𝑑) - The X-ray detector response as a function of the unknown discrete147

scintillator material parameter, 𝑚𝑑 , and the unknown continuous scintillator thickness148

parameter, 𝜃𝑑 .149

The aggregate discrete and continuous system model parameters can then be formed by150

concatenating the parameters from each system component and are given by151

𝑚 = (𝑚 𝑓

0 , . . . , 𝑚
𝑓

𝑃−1, 𝑚
𝑑) (1)

𝜃 = (𝜃𝑠 , 𝜃 𝑓0 , . . . , 𝜃
𝑓

𝑃−1, 𝜃
𝑑) . (2)

Here, we assume the possibility of 𝑃 X-ray filters, each with its own material and thickness. In152

addition, we index the source by the scan index 𝑗 ∈ {0, . . . , 𝐽−1} since known source parameters,153

such as the peak X-ray voltage, may vary for each scan. We provide more details about this point154

in Section 2.2.155

Using these parameters, we model the effective X-ray spectrum as the source spectrum156

modulated by the filters and detector:157

𝑅 𝑗 (𝐸 ;𝑚, 𝜃) = 𝑆 𝑗 (𝐸 ; 𝜃𝑠) · ©­«
∏
𝑝∈𝐵 𝑗

𝑓 (𝐸 ;𝑚 𝑓
𝑝 , 𝜃

𝑓
𝑝)

ª®¬ · 𝐷 (𝐸 ;𝑚𝑑 , 𝜃𝑑) . (3)

We will further assume that the known calibration object consists of 𝐾 possible materials.158

Let 𝑖 index a single projection pixel through the object (i.e., a single sinogram entry), and let159

𝑘 ∈ {0, . . . , 𝐾 − 1} index one of the 𝐾 materials in the calibration objects being scanned. Then,160

we may define the following known quantities:161

• 𝜇𝑘 (𝐸) - The linear attenuation coefficient (LAC) of the 𝑘 th material at energy 𝐸 .162
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• 𝐿𝑘,𝑖, 𝑗 - The length of intersection of the 𝑖th projection ray with the 𝑘 th material for scan 𝑗 .163

From these known quantities, let 𝐼𝑖, 𝑗 represent the measured intensity for projection 𝑖 and scan164

𝑗 , and let 𝐼𝑎, 𝑗 represent the corresponding air scan measurement, where no object is present.165

Then, these measurements are modeled using Beer–Lambert’s law [9] as:166

𝐼𝑖, 𝑗 =

∫ ∞

0
𝑅 𝑗 (𝐸 ;𝑚, 𝜃) · exp

(
−
𝐾−1∑︁
𝑘=0

𝜇𝑘 (𝐸)𝐿𝑘,𝑖, 𝑗

)
𝑑𝐸 (4)

𝐼𝑎, 𝑗 =

∫ ∞

0
𝑅 𝑗 (𝐸 ;𝑚, 𝜃) 𝑑𝐸, (5)

And our forward model for the preprocessed measurements 𝑦𝑖, 𝑗 has the form167

𝑦𝑖, 𝑗 =
𝐼𝑖, 𝑗

𝐼𝑎, 𝑗

=

∫ ∞
0 𝑅 𝑗 (𝐸 ;𝑚, 𝜃) · exp

{
−∑𝐾−1

𝑘=0 𝜇𝑘 (𝐸)𝐿𝑘,𝑖, 𝑗
}
𝑑𝐸∫ ∞

0 𝑅 𝑗 (𝐸 ;𝑚, 𝜃)𝑑𝐸

=

∫ ∞

0
𝑅̄ 𝑗 (𝐸 ;𝑚, 𝜃) · exp

{
−
𝐾−1∑︁
𝑘=0

𝜇𝑘 (𝐸)𝐿𝑘,𝑖, 𝑗

}
𝑑𝐸 + 𝜂𝑖, 𝑗 . (6)

where 𝜂𝑖, 𝑗 is assumed to be additive independent noise and168

𝑅̄ 𝑗 (𝐸 ;𝑚, 𝜃) =
𝑅 𝑗 (𝐸 ;𝑚, 𝜃)

𝐼𝑎, 𝑗
(7)

is the normalized effective spectrum.169

We discretize the energy domain by subdividing it into 𝑁𝑒 non-overlapping bins [𝐸𝑏, 𝐸𝑏+1].170

For each bin, we define the discretized effective spectrum as:171

𝑟 𝑗 ,𝑏 (𝑚, 𝜃) =
∫ 𝐸𝑏+1

𝐸𝑏

𝑅̄ 𝑗 (𝐸 ;𝑚, 𝜃) 𝑑𝐸. (8)

Making the approximation that each 𝜇𝑘 (𝐸) is constant within a bin, we define the contribution172

coefficient from the 𝑏th energy bin to projection 𝑖 and scan 𝑗 as:173

𝐴𝑖, 𝑗 ,𝑏 = exp

(
−
𝐾−1∑︁
𝑘=0

𝜇𝑘 (𝐸𝑏)𝐿𝑘,𝑖, 𝑗

)
, (9)

where 𝐴𝑖, 𝑗 ,𝑏 captures the attenuation for the 𝑏th energy bin.174

Using this discretization, the scaled transmission measurement of Eq. (6) becomes:175

𝑦𝑖, 𝑗 ≈
𝑁𝑒−1∑︁
𝑏=0

𝐴𝑖, 𝑗 ,𝑏 𝑟 𝑗 ,𝑏 (𝑚, 𝜃) + 𝜂𝑖, 𝑗 , (10)

where 𝑟 𝑗 ,𝑏 (𝑚, 𝜃) is the effective spectrum of the 𝑗 th scan in the 𝑏th energy bin, 𝜂𝑖, 𝑗 is additive176

noise, and 𝑁𝑒 is the total number of energy bins.177

For all measurements in scan 𝑗 , we can then express the forward model in the simpler form,178

𝑌 𝑗 = 𝐴 𝑗 ®𝑅 𝑗 (𝑚, 𝜃) + 𝜂 𝑗 , (11)

where 𝑌 𝑗 , 𝐴 𝑗 , ®𝑅 𝑗 (𝑚, 𝜃), and 𝜂 𝑗 are defined below.179
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• 𝑌 𝑗 ∈ R𝑀 𝑗 : A vector of normalized transmission measurements, defined as 𝑌 𝑗 =180

[𝑦0, 𝑗 , . . . , 𝑦𝑀 𝑗−1, 𝑗 ].181

• 𝐴 𝑗 ∈ R𝑀 𝑗×𝑁𝑒 : The forward matrix representing contributions from 𝑁𝑒 energy bins.182

• ®𝑅 𝑗 (𝑚, 𝜃) ∈ R𝑁𝑒 : The unknown discretized effective spectrum vector to be estimated.183

• 𝜂 𝑗 ∈ R𝑀 𝑗 : Additive noise affecting the measurements.184

This forward model provides a framework for estimating the system parameters (𝑚, 𝜃) through185

calibration.186

Fig. 2. X-ray Source Physics. Left: Transmission sources generate X-ray photons by
passing high-energy electrons through a thin metallic anode target. Right: Reflection
sources generate X-ray photons by directing high-energy electrons on a thick metallic
anode with an angled surface.

Table 1: Source Lookup Table. We use existing software for each transmis-
sion and reflection case to simulate the source spectra for a discrete
set of parameters and use linear interpolation for intermediate
values.

Source Type: Transmission Reflection
Software: Geant4 Spekpy

Estimated Parameters: Target Thickness Take-off Angle
User Adjustable Parameters: Acceleration Voltage (kV)

Other Parameters:

Target Material
Source-Detector Distance 𝑑 (mm)

Energy Bin Width (keV)
Substrate*

Apex Angle 𝜃𝑠 (°)*

* Applies only to Transmission setup.

2.2. Source Spectrum Model187

In this section, we describe the model used for the source X-ray spectrum. There is no simple,188

analytical X-ray source model due to the diversity of X-ray tube designs and the complexity189

of their internal particle interactions. Consequently, we use existing X-ray modeling software190

to generate a precomputed lookup table at a discrete set of values of the unknown continuous191

parameters. Then, we use linear interpolation of the lookup table to define the source model for192

continuous parameter values.193

Figure 2 illustrates the transmission and reflection X-ray sources parameters, and Table 1194

details which parameters are estimated for each source type and which are assumed to be known.195
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We also note that the known user-adjustable parameters may vary for each scan and depend on the196

scan index 𝑗 . The X-ray spectrum depends on a single unknown scalar, 𝜃𝑠 , for each source type.197

For transmission sources, 𝜃𝑠 represents the target thickness; for reflection sources, 𝜃𝑠 represents198

the take-off angle.199

Using the fixed parameters and defining a physically realistic range for the estimated parameters,
we generate a lookup table using either Geant4 [25] for the transmission source or SpekPy [39]
for the reflection source. We first select discrete parameter values denoted by 𝜃𝑠𝑞 where
𝑞 ∈ {0, . . . , 𝑄 − 1}. These discrete parameters are typically uniformly spaced over a physically
realistic range of values. Then, for each discrete energy, 𝐸 , we use the source modeling software
to compute the lookup table entries given by

S𝑞, 𝑗 (𝐸) = 𝑆 𝑗 (𝐸 ; 𝜃𝑠𝑞) .

We use linear interpolation to evaluate 𝑆 𝑗 (𝐸 ; 𝜃𝑠) at values of 𝜃𝑠 not in the lookup table:200

𝑆 𝑗 (𝐸 ; 𝜃𝑠) = (1 − 𝛾)S𝑞, 𝑗 (𝐸) + 𝛾S𝑞+1, 𝑗 (𝐸) , (12)

where 𝛾 =
𝜃𝑠−𝜃𝑠𝑞
𝜃𝑠
𝑞+1−𝜃

𝑠
𝑞

for 𝜃𝑠𝑞 ≤ 𝜃𝑠 < 𝜃𝑠
𝑞+1. The interpolation equation results in a continuous201

function that can be numerically differentiated everywhere except at the spline points. We note202

that PyTorch supports the gradient-based optimization of such functions since it is also used for203

the optimization of loss functions that use the commonly used ReLU function [40].204

2.3. Filter and Detector Models205

In this section, we describe the analytical models for the filter and detector functions. More206

specifically, for the filter, we use the following analytical model based on Beer–Lambert’s law [41]207

𝑓

(
𝐸 ;𝑚 𝑓

𝑝 , 𝜃
𝑓
𝑝

)
= e−𝜇 (𝐸;𝑚 𝑓

𝑝 ) 𝜃
𝑓
𝑝 , (13)

where 𝜇(𝐸 ;𝑚 𝑓
𝑝) is the linear attenuation coefficient (LAC) for the material 𝑚 𝑓

𝑝 at energy 𝐸 .208

For the detector response, we assume an energy-integrating detector based on scintillation. A209

scintillator in a detector converts the energy of absorbed X-ray photons into multiple visible-light210

photons [42]. Different scintillators have distinct K-edges, resulting in unique responses to211

incident X-ray photons. We represent the detector response as the product of the scintillator’s212

X-ray photon absorption efficiency and the energy of the ionizing particle [43]. Then, based on213

the formula for X-ray photon absorption efficiency defined in equation (4) in [44], the scintillator214

response at energy 𝐸 can be written as215

𝐷

(
𝐸 ;𝑚𝑑 , 𝜃𝑑

)
=
𝜇𝑒𝑛 (𝐸 ;𝑚𝑑)
𝜇(𝐸 ;𝑚𝑑)

(
1 − e−𝜇 (𝐸;𝑚𝑑 ) 𝜃𝑑

)
𝐸 , (14)

where 𝑚𝑑 is the scintillator material, 𝜇(𝐸 ;𝑚𝑑) is the LAC, 𝜇𝑒𝑛 (𝐸 ;𝑚𝑑) is the linear energy-216

absorption coefficient (LEAC) for this scintillator material, and 𝜃𝑑 is the scintillator thickness.217

The LAC 𝜇(𝐸 ;𝑚𝑑) quantifies the fraction of photons removed from a beam per unit thickness218

of material due to both absorption and scattering processes. In contrast, the LEAC 𝜇𝑒𝑛 (𝐸 ;𝑚𝑑)219

measures the fraction of photon energy that is locally absorbed in the material, excluding energy220

lost to scattered photons [45]. Since scintillation arises from the energy deposited within the221

material rather than merely from photon attenuation, the above formula incorporates the ratio222

𝜇𝑒𝑛 (𝐸 ;𝑚𝑑)/𝜇(𝐸 ;𝑚𝑑) to account for the fraction of attenuated photons that deposit to the223

scintillator.224



Research Article 8

Algorithm 1 Computing Material Projection Lengths
Input: Physical samples made of 𝐾 known materials
Output: Material projection lengths 𝐿𝑘,𝑖, 𝑗

1: 𝑠 𝑗 ← CTScanTarget() ⊲ Measure the 𝑗 th sinogram
2: 𝑋̂ 𝑗 ← FBP(𝑠 𝑗 ) ⊲ Reconstruct the volume
3: for 𝑘 = 0 to 𝐾 − 1 do ⊲ Segment into K materials
4: Mask𝑘, 𝑗 ← Segment( 𝑋̂ 𝑗 ,material 𝑘)
5: end for
6: ⊲ Forward project the binary mask
7: for 𝑘 = 0 to 𝐾 − 1 do ⊲ for each material
8: for 𝑖 = 0 to 𝑁 − 1 do ⊲ for each projection
9: 𝐿𝑘,𝑖, 𝑗 ← FP𝑖 (Mask𝑘, 𝑗 )

10: end for
11: end for

Fig. 3. Computing Material Projection Lengths from a CT scan. This example
shows how to calculate projection lengths with a measured CT scan.

2.4. Model of Calibration Objects225

The calibration objects are implicitly modeled through the values of the material projection226

lengths, 𝐿𝑘,𝑖, 𝑗 ,. However, in practice, small variations in the calibration object’s position and227

shape can adversely affect the calibration accuracy.228

Figure 3 illustrates an example of how the projection lengths are accurately estimated from229

an initial full CT scan of the calibration objects. More specifically, for the 𝑗 th experiment we230

perform the following steps:231

1. Scan the test object to obtain the sinogram 𝑠 𝑗 .232

2. Reconstruct 𝑋̂ 𝑗 from the sinogram 𝑠 𝑗 to form a 3D volumetric representation of the target233

object.234

3. Segment the reconstructed volume into 𝐾 distinct materials based on the object’s known235

structure.236

4. Perform a forward projection of each segmented material volume to obtain the material237

projection lengths 𝐿𝑘,𝑖, 𝑗 .238

Algorithm 1 provides a pseudo-code specification of our method. Note that segmentation can239

be performed accurately without knowledge of the effective spectrum since we know the shape240

and material composition of the test object. In this case, we know the test object is a cylindrical241
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Algorithm 2 XCal Parameter Estimation Algorithm
Input: Set of possible filter and scintillator materials and range of possible values for the
unknown continuous parameter
Output: Estimated material combination, 𝑚̂, and parameter value, 𝜃

1: ⊲ Get all combinations of filter and scintillator materials
2: M ←M 𝑓

0 × . . . ×M
𝑓

𝑃−1 ×M
𝑑

3: Θ← Θ𝑠 × Θ 𝑓

0 × . . . × Θ
𝑓

𝑃−1 × Θ
𝑑

4: L ← {} ⊲ Mapping from material combinations to loss values
5: C ← {} ⊲ Mapping from material combinations to optimized continuous parameters
6: for 𝑚 ∈ M do ⊲ Search over all material combinations
7: Initialize 𝜃 ← 𝜃min+𝜃max

2
8: Loss(𝑚, 𝜃) ← ∑

𝑗
1
2 ∥𝑌 𝑗 − 𝐴 𝑗 ®𝑅 𝑗 (𝑚, 𝜃)∥

2
Λ 𝑗

9: 𝜃 ← arg min𝜃∈Θ Loss(𝑚, 𝜃) ⊲ Adam optimizer
10: L[𝑚] ← Loss(𝑚, 𝜃) ⊲ Save current results
11: C[𝑚] ← 𝜃

12: end for
13: 𝑚̂ ← arg min𝑚 L[𝑚] ⊲ Save optimal results
14: 𝜃 ← C[𝑚̂]

wire made of a homogeneous material. So we first form a standard reconstruction from the242

uncalibrated data. Next we apply Canny edge detection to extract the wire’s boundary. Then we243

use binary filling to generate the segmentation mask.244

2.5. Model of LAC and LEAC Material Properties245

The models described above rely on estimates of the LAC, 𝜇, and the LEAC, 𝜇𝑒𝑛, for various246

materials. The NIST database provides tabulated values of the mass attenuation density, 𝜇/𝜌,247

and the mass energy-absorption coefficient, 𝜇𝑒𝑛/𝜌, for elemental materials where 𝜌 is the density248

of the material in units of 𝑔/𝑐𝑚3.249

For compounds, 𝜇(𝐸)/𝜌 and 𝜇𝑒𝑛 (𝐸)/𝜌 are determined as a weighted sum of the individual250

elements given by251

𝜇(𝐸)
𝜌

=
∑︁
𝒾

𝑤𝒾 ·
(
𝜇𝒾 (𝐸)
𝜌

)
(15)

where the weight 𝑤𝒾 represents the fraction of the mass contribution of the specific element 𝒾 to252

the total molecular mass. Once these quantities are computed, the values of 𝜇 and 𝜇𝑒𝑛 can be253

computed using the material’s density listed in Table 14.254

The tabulated NIST data is given at specific photon energy values 𝐸𝓆 that are distributed on a255

log scale, ranging from 10−3 MeV to 102 MeV. For intermediate photon energy values within256

the range 𝐸 ∈ [𝐸𝓆, 𝐸𝓆+1), we use linear interpolation, also on a log scale, to compute 𝜇(𝐸)/𝜌257

as follows:258

log
(
𝜇(𝐸)
𝜌

)
= (1 − 𝛼) log

(
𝜇(𝐸𝓆)
𝜌

)
+ 𝛼 log

(
𝜇(𝐸𝓆+1)

𝜌

)
(16)

where the interpolation factor 𝛼 is given by: 𝛼 =
log𝐸−log𝐸𝓆

log𝐸𝓆+1−log𝐸𝓆

This approach ensures the259

continuity of the LAC across a wide range of photon energies using logarithmic scaling.260
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3. Parameter Estimation using Loss Minimization261

XCal estimates both the discrete and continuous parameters by numerically minimizing the262

following loss function based on the forward model defined in (11),263

Loss(𝑚, 𝜃) =
𝐽−1∑︁
𝑗=0

1
2
∥𝑌 𝑗 − 𝐴 𝑗 ®𝑅 𝑗 (𝑚, 𝜃)∥2Λ 𝑗

, (17)

where Λ 𝑗 is a diagonal matrix with weights Λ 𝑗 = diag(1/𝑦𝑖, 𝑗 ). Here, we assume that the noise264

variance is inversely proportional to the measured signal in order to approximately account for265

photon counting noise [3]. The parameter estimates, (𝑚̂, 𝜃), are then given by the solution to the266

optimization problem267

(𝑚̂, 𝜃) = arg min
𝑚∈M, 𝜃∈Θ

Loss(𝑚, 𝜃) , (18)

where M represents the set of feasible discrete values of material choices for the filter and268

scintillator, and Θ defines the continuous parameter space, which is a product of intervals of269

continuous parameters.270

We use the PyTorch software package [38] to solve the optimization of (18) for each fixed 𝑚.271

To do this, we implement the source, filter, and detector models as custom modules, allowing272

each component to be reused over multiple scans. The effective system spectrum, transmission273

function, and loss function are then implemented based on Eq. (3), (11), and (17). The parameters274

of each component are encapsulated to support repeated calls and allow optimization using275

built-in adjoint differentiation along with gradient descent optimization.276

As detailed in Algorithm 2, the optimization algorithm is designed to solve the minimization277

problem of Eq. (18). The core strategy of the algorithm is to handle the discrete and continuous278

parameters separately. The outer loop of the algorithm performs an exhaustive search in the279

discrete parameter space M, which includes various combinations of filters and scintillator280

materials. For each combination of these discrete parameters 𝑚 ∈ M, the algorithm initializes281

the continuous parameters 𝜃 ∈ Θ using the center initialization, setting them at the midpoint of282

their respective bounds 𝜃min and 𝜃max and then performs a gradient-based search using the Adam283

optimizer [46], a gradient-based optimization approach using the constraints defined on line 3 of284

Algorithm 2.285

The standard Adam optimizer does not inherently support enforcing constraints, so we enforce286

parameter bounds by implementing a custom clamping function. The custom clamping function287

uses the built-in torch.clamp function for the forward propagation and uses the identity for the288

back propagation. Intuitively, this models the derivative as 1 for all input values, even if they fall289

outside the clamped range. This results in the convergence of the Adam optimizer to a solution290

in the constraint set.291

The optimal solution is selected based on the discrete parameter set 𝑚̂ that yields the minimum292

total cost L[𝑚]. Finally, the continuous parameters 𝜃 associated with this optimal discrete293

parameter set 𝑚̂ are extracted, providing the complete set of optimal parameters (𝑚̂, 𝜃) for the294

system.295

4. Experimental Results296

We compare our proposed XCal algorithm to existing methods on both simulated and measured297

datasets. In particular, we compare to the BWSC method implemented in Livermore Tomography298

Tools(LTT) [18] and the DictSE [37] method. We also compare to XCal-SingleE defined as XCal299

using only one scan at a single X-ray source voltage. This allows us to better understand the300

value of estimating model parameters using multi-energy data sets.301
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Finally, we used the center value of each parameter’s range to initialize the XCal algorithm,302

and we used the same parameter values to calculate an initial effective spectrum for the BWSC303

method.304

4.1. Data Pre-Processing305

To enhance the accuracy of spectral estimation, we corrected the measurement data for various306

effects, including flux variation, gain effects, outliers, source blur, and detector blur. We corrected307

these effects before applying any spectral estimation algorithm to ensure the data were accurately308

represented, leading to more reliable calibration results.309

Our measured datasets were acquired using two micro-CT systems: the Advanced Light310

Source (ALS) Beamline 8.3.2 and the Zeiss Xradia 510 Versa. Each dataset was pre-processed311

with the following steps, which ensure that the X-ray transmission through the air is normalized312

to 1, thereby allowing accurate transmission measurement for each sample within the system.313

Step 1: We normalized projection measurements using a reference air scan, which was obtained314

by averaging 15 scans without the object present. Step 2: We applied flux correction by first315

finding a “stamp region” of the normalized view in which unattenuated X-rays strike the detector.316

We then measure the average value in the stamp region and divide the entire normalized view317

by this value, so that the average value in the resulting stamp regions is 1, thus compensating318

for variations in background across views. Step 3: After flux correction, we applied a median319

filter with a 3x3 window to correct for outliers in the measurement data. The median filter is320

particularly effective for this purpose because it preserves edges while removing noise. Step 4:321

For only the Zeiss Versa 510 cone-beam X-ray data, we performed a deblurring operation using322

the SABER algorithm [47].323

Table 2. Setup for simulated X-ray measurement scanning with different source voltages.

Dataset Low Voltage Mid Voltage High Voltage

Scanned material 1 mm diam rods: V, Ti, Al, and Mg

Source Reflection X-ray source

Voltage 50 kV 100 kV 150 kV

Take-off Angle* [5,45] deg

Tube Current 1 mAs

Filter Material* Randomly selected from filters in Table 14

Filter Thickness* Al: (0, 10] mm
Cu: (0, 1] mm

Scintillator Material* Randomly selected from detectors in Table 14

Scintillator Thickness* [1, 500] 𝜇𝑚

Projection Geometry Parallel beam

Views 15 equally spaced

Angle span
[
− 𝜋2 ,

𝜋
2
]

Detector Pixels 1024

Pixel size 0.005 mm

* Parameters to be estimated.
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4.2. Simulated Dataset Experiments324

In this section, we compare spectral calibration methods using 100 simulated datasets. Table 2325

indicates that each simulated dataset used the same filter across three different voltages, and all326

datasets were generated using four distinct materials. Each dataset was generated using the X-rays327

as defined by Eq. (3) at three different voltages, with randomly generated model parameters328

having a uniform distribution over either their discrete values or their specified continuous values.329

Notice that aluminum and copper have very different attenuation properties; therefore, distinct330

thickness ranges are used for these two types of filters in our simulations. We generated Poisson331

noise for both the air and object scans individually, and our reflection source model used a lookup332

table with 11 evenly spaced values of the take-off angle in the range of 5 to 45 deg.333

Fig. 4. Simulated Dataset: Compare Estimated X-ray Effective Spectra with
Ground-Truth. Comparison of estimated effective spectra using different methods
across three scans with varying source voltages: 50.0 kV (Top), 100.0 kV (Middle),
and 150.0 kV (Bottom). The left column shows the estimated effective spectra, while
the right column presents the difference between the estimated spectra and the ground
truth. Notice that the XCal method has much lower error.
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Figure 4 compares the estimated effective spectra and the ground truth for a single typical334

simulated dataset out of 100. Notice that the XCal method accurately estimates the effective335

spectrum for all three tested voltages of 50.0 kV, 100.0 kV, and 150.0 kV. In contrast, the BWSC336

method shows more significant deviations from the ground truth, especially at higher voltages.337

While the DictSE and XCal-SingleE methods show improved performance over BWSC, their338

spectral responses still fail to accurately capture the structure around the K-edge, highlighting the339

advantage of the full multi-energy calibration in XCal. The poorer performance of XCal-SingleE340

compared to XCal is likely due to the less well-conditioned nature of the inverse problem when341

using a single energy measurement.342

Table 3 lists the NRMSE between the ground-truth and estimated normalized effective spectrum,343

𝑅̄, of (7) for each of the three tested voltages. Notice that the XCal method has the lowest error344

by a large margin in each case. In contrast, the BWSC method exhibited the highest average345

NRMSE values. The DictSE and XCal-SingleE methods performed better than BWSC but still346

had far higher errors than the XCal method.347

Table 3. Average NRMSE between ground-truth and estimated normalized effective
spectra for low-kV, mid-kV, and high-kV scans among 100 simulated datasets.

Scan
Method BWSC DictSE XCal-SingleE XCal

Low-kV 0.0324 0.00552 0.00401 0.00168

Mid-kV 0.0219 0.00776 0.00509 0.00103

High-kV 0.0165 0.00753 0.00538 0.00083
* XCal jointly estimates all discrete and continuous parameters with all scans.

Tables 4 and 5 list metrics for the accuracy of the parameter estimation using both XCal and348

XCal-SingleE. Table 4 lists the success rate of estimating the correct discrete material for the 100349

test examples. Notice that the XCal method achieves the highest accuracy for both the filter and350

scintillator materials, with greater than 93% accuracy. Table 5 lists the NRMSE of the estimated351

parameters. Again, the XCal method estimates the model parameters much more accurately than352

the SingleE method. This is again consistent with the conjecture that the MultiE inverse problem353

is much better conditioned than the SingleE inverse.354

The results demonstrate that the XCal algorithm consistently achieves a higher success rate355

in estimating discrete parameters and lower NRMSE values for continuous parameters than356

XCal-SingleE. Furthermore, the results indicate that leveraging multi-energy datasets enhances357

parameter estimation accuracy, making XCal a more effective approach for model estimation.358

Table 4: Success Rate of Estimated Discrete Parameters over 100 simulated datasets.

Parameters Number of
Options

XCal-SingleE
Low-kV

XCal-SingleE
Mid-kV

XCal-SingleE
High-kV

XCal
Combined

Filter
material 𝑚 𝑓0

2 81% 83% 74% 93%

Scintillator
material 𝑚𝑑 7 37% 58% 55% 94%
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Table 5: Average NRMSE of Continuous Parameters over 100 simulated datasets

Parameters Range XCal-SingleE
Low-kV

XCal-SingleE
Mid-kV

XCal-SingleE
High-kV

XCal
Combined

Take-off angle
𝜃𝑠 (◦) [5, 45] 0.242 0.242 0.214 0.044

Filter thickness
𝜃
𝑓

0 (mm)
[0, 10] 0.141 0.128 0.176 0.054

Scintillator
thickness
𝜃𝑑 (𝜇𝑚)

[1, 500] 0.220 0.218 0.241 0.070

Table 6. Setup for the ALS X-ray measurement dataset.

Dataset Low-filtration High-filtration

Scanned material 1 mm diam rods: V, Ti, Al, and Mg

Source 100 kV ALS Beamline 8.3.2 Synchrotron Light Source

Filter 0’s Material Silicon

Filter 0’s Thickness* (0,5] mm

Filter 1’s Material* − Aluminum

Filter 1’s Thickness* − (0,10] mm

Scintillator Material* Lu3Al5O12

Scintillator Thickness* [10,500] 𝜇𝑚

Projection Geometry Parallel beam

Views 2625

Angle span [−𝜋, 𝜋]

Detector Pixels 2048 × 2048

Pixel size 0.65 𝜇𝑚 × 0.65 𝜇𝑚

Blank scan photons/pixel ≈ 45000 ≈ 500
* Parameters to be estimated.
− Filter not used.

4.3. Measured ALS Dataset Experiments359

In this section, we compare spectral calibration methods using data measured at the Advanced360

Light Source (ALS) Beamline 8.3.2. This data includes a total of eight scans. Each scan has one361

homogeneous, 1mm diameter rod composed of one of V, Ti, Mg, and Al, each rod is scanned362

with two different filters. One filter has silicon only (low-filtration dataset), and one has silicon363

and aluminum (high-filtration dataset), as seen along with other parameters in Table 6. Since the364

objects are homogeneous, we run the spectral calibration algorithm using only 16 views and the365

center five slices in each scan. However, the full set of views is used to estimate the shape of366

each sample rod, as described in Section 2.4.367

Since a ground-truth spectrum is not available for measured data, we use a leave-one-material-368

out cross-validation approach to evaluate our spectral calibration method. Since the effective369

spectrum should not depend on the selection of samples, we can measure the robustness of the370



Research Article 15

calibration method by measuring the standard deviation of estimated effective spectra varying for371

different excluded materials. Since we do have ground truth for material types (although not372

thicknesses), we can also get a rough measure of accuracy by determining the success rate in373

identifying the filter and scintillator materials.374

(a) Low-filtration.

(b) High-filtration.

Fig. 5. Comparison of estimated effective spectra using leave-one-material-out
cross-validation on the ALS dataset. (a) Low-filtration and (b) High-filtration. First
row: estimated spectra; Second row: standard deviation across cross-validation cases.
Column correspond to BWSC, DictSE, XCal-SingleE, and XCal. Notice that XCal is
the most accurate.

Figure 5 compares the estimated effective spectrum from various approaches using leave-one-375

material-out cross-validation on the ALS dataset. Each column corresponds to a distinct method:376

BWSC, DictSE, XCal-SingleE, and XCal. The first row displays the estimated spectra in each377

figure, while the second row represents the standard deviation across cross-validation cases.378

Different colors indicate the exclusion of a specific material (V, Ti, Mg, Al) in the estimation379

process. It is evident from Figure 5 that XCal obtains the most consistent effective spectra380

estimate across all cross-validation cases (i.e., different material exclusions).381

Table 7 presents the cross-validated NRMSE between the measured and predicted transmission382
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Table 7. Average Cross-Validation NRMS Deviation of Transmission Values

BWSC DictSE XCal-SingleE XCal
0.0441 0.0313 0.0323 0.0303

values in the tomograhic views. So this measures how accurately the model predicts the actual383

measurements for the excluded material. We note that this is somewhat different than the error in384

the predicted effective spectrum itself. Again, the XCal method has the lowest error among the385

tested methods.386

Table 8 reports the success rates of the discrete parameters estimated in four cross-validation387

cases of leave-one-material-out. The material of filter 1 is accurately estimated for all approaches388

based on the known ground truth-material choices. However, the scintillator material is accurately389

estimated only by the XCal method, which in this case achieves 100% accuracy.390

Table 9 lists metrics associated with the accuracy of estimates for the continuous parameters in391

XCal. Notice that the XCal method results in estimated values of the parameter that are close to392

the nominal values indicated above each mean. Moreover, the XCal method also results in much393

lower standard deviation about the estimated value when different materials are excluded. This394

indicates that the XCal estimate is more robust than the other methods.395

Table 8. Success rate of Estimated Discrete Parameters across 4 Leave-One-Out
Cross-Validation Cases for the ALS X-ray Measurement Dataset.

Parameters Number of
Options

XCal-SingleE
Low-filtration

XCal-SingleE
High-filtration

XCal
Combined

Filter 1 material,
𝑚
𝑓

1
2 / 100% 100%

Scintillator
material, 𝑚𝑑 7 50% 0% 100%

4.4. Measured Xradia 510 Versa Datasets396

In this section, we compare methods using a dataset scanned with a Zeiss Xradia 510 Versa397

X-ray imaging system. The ZEISS Xradia 510 Versa is a widely used, high-resolution 3D398

X-ray imaging system for non-destructive analysis. This commercial micro-CT system uses a399

transmission X-ray source and operates with an adjustable source voltage ranging from 30 kV to400

160 kV and produces bremsstrahlung X-ray spectra.401

We collected multiple scans at different source voltages to obtain a multi-voltage dataset.402

Throughout this paper, we refer to these datasets as the Versa dataset. We used three different403

source voltages, capturing datasets at various energy levels, resulting in a multi-voltage dataset404

for three scanned samples.405

Table 10 summarizes the scanning configuration used to acquire the multi-voltage dataset. It406

includes details about what was scanned and how the data was collected. In addition, the table407

provides all the necessary information to set up our optimization framework, which involves both408

discrete and continuous parameters.409

Several key points should be noted: First, Eq. (12) defines an interpolated source spectrum410

model that requires a lookup table containing simulated transmission spectra for various target411

thicknesses. Second, while the scintillator material is known from the vendor, we also estimate it412

from a predefined list of possible detector materials (Table 14). This is motivated by the fact that413

obtaining the exact scintillator information experimentally is often difficult and time-consuming.414
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Table 9. Mean and Standard Deviation of Estimated Continuous Parameters over 4
Leave-One-Out Cross-Validation Cases for the ALS Dual-Energy X-ray Measurement
Dataset. The XCal estimator exhibits a significantly lower standard deviation than
XCal-SingleE, with values reduced by an order of magnitude, indicating much greater
robustness.

Metric XCal-SingleE
Low-filtration

XCal-SingleE
High-filtration

XCal
Combined

Filter 0 thickness, 𝜃 𝑓0 (𝑚𝑚) [0, 5] with nominal value of 2.0

Mean 2.308 2.032 2.557

Std. 0.3441 0.4540 0.0109

Filter 1 thickness, 𝜃 𝑓1 (𝑚𝑚) [0, 10] with nominal value of 8.0

Mean / 9.045 9.494

Std. / 0.9264 0.0303

Scintillator thickness, 𝜃𝑑 (𝜇𝑚) [10, 500] with nominal value of 50.0

Mean 85.740 33.179 50.565

Std. 74.7912 14.9645 1.5171

Third, we acquired a full set of high-kV CT measurements for each sample rod to reconstruct415

their shapes using the method described in Sec. 2.4. In contrast, only a limited number of views416

were collected for the low- and mid-kV datasets since high-kV scans are more efficient to acquire417

while still maintaining an acceptable noise level.418

As with the ALS data set of Section 4.3, we use leave-one-material-out cross-validation to419

assess the accuracy and robustness of the calibration methods. In this case, datasets consist of420

scans of three rods of different materials.421

Figure 6 compares estimated effective spectra using four different spectral estimation approaches.422

The comparison is performed using leave-one-material-out cross-validation on the Versa dataset.423

In each subfigure, the first row displays the estimated spectra, while the second row presents424

the standard deviation across the three cross-validation cases, assessing the robustness of each425

method. The columns correspond to the four different estimation approaches mentioned above.426

In each plot, the spectra are plotted for three scenarios in which one of the materials (Al, Mg, Ti)427

is dropped from the dataset during the estimation process. These scenarios are represented by428

lines in blue (Drop Al), orange (Drop Mg), and green (Drop Ti). From Figure 6, we can see that429

the variation in the estimated spectrum caused by dropping specific materials is much lower for430

the XCal algorithm.431

Table 11 lists the cross-validated NRMSE in the fit of the measurement data caused by dropping432

each of the three materials. Once again, the XCal algorithm has the lowest cross-validated433

NRMSE on the Versa dataset. Since this NRMSE is calculated in the measurement domain434

rather than the reconstructed effective spectrum domain, the reduction in NRMSE is smaller.435

However, in practice, we have found that this reduction corresponds to a significant enhancement436

in effective spectrum estimation accuracy.437

Table 12 reports the success rates of the discrete parameters estimated in four cross-validation438

cases of leave-one-material-out based on the known ground-truth material types. The scintillator439

material is accurately estimated with the XCal-SingeE method using a Low-kV dataset and the440

XCal method.441

Table 13 lists metrics associated with the accuracy of estimates for the continuous parameters442

in XCal. Notice that the XCal method also results in a much lower standard deviation about443
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Fig. 6. Comparison of estimated effective spectra using leave-one-material-out
cross-validation on the Versa dataset. (a) 40 kV, (b) 80 kV, and (c) 150 kV. First
row: estimated spectra; Second row: standard deviation across cross-validation cases.
Columns correspond to BWSC, DictSE, XCal-SingleE, and XCal. Notice that XCal is
the most accurate.
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Table 10. Setup for the Versa multi-voltage X-ray measurement dataset.

Dataset Low-kV Mid-kV High-kV

Scanned material 1 mm diam rod: Ti, 0.5 mm diam rods: Al and Mg

Source Xradia 510 Versa Transmission X-ray Tube

Voltage 40 kV 80 kV 150 kV

Target Thickness* [1, 7] 𝜇𝑚 [48]

Lookup Table Simulated source spectra with target thickness at 1, 3, 5, and 7 𝜇𝑚

Filter’s Material − Aluminum

Filter’s Thickness* − [0, 10] mm

Scintillator Material* From Vendor

Scintillator Thickness* [1, 500] 𝜇𝑚

Projection Geometry Cone-beam

Source to Iso Distance 120 mm 120 mm 120 mm

Iso to Detector Distance 8 mm 8 mm 8 mm

Slit Collimator ✓

Views 33 33 257

Angle span
[
− 𝜋2 ,

𝜋
2
] [

− 𝜋2 ,
𝜋
2
]

[−𝜋, 𝜋]

Detector Pixels 2048 × 2048

Pixel size 0.68 𝜇𝑚 × 0.68 𝜇𝑚

Blank Scan Photons/pixel ≈ 40000 ≈ 21000 ≈ 13000
* Parameters to be estimated.
− Filter not used.

Table 11. Average Cross-Validation NRMSE of Transmission Values for Versa Dataset

BWSC DictSE XCal-SingleE XCal
0.0443 0.0415 0.0406 0.0326

the estimated value when materials are excluded. This indicates that the XCal estimate is more444

robust.445

5. Conclusion446

We propose XCal, a physics-based parametric model-based method to estimate the effective447

spectrum of an X-ray CT system. This model leverages multi-voltage or multi-filtration data,448

enabling more accurate and robust spectral estimation across different source voltages and449

filtration settings. XCal reduces the number of parameters by using a parametric representation450

of the CT system implemented with a differentiable forward model. This approach greatly451

reduces the ill-conditioning typically associated with spectral estimation, and it allows for easy452

reconfiguration of the model when user-defined system parameters, such as source voltage, are453

changed.454

We applied the XCal algorithm to both simulated and measured datasets. The results455

demonstrate that XCal provides the highest accuracy and robustness in estimating the effective456
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Table 12. Success rate of Estimated Discrete Parameters for Versa Dataset.

Parameters Number of
Options

XCal-SingleE
Low-kV

XCal-SingleE
Mid-kV

XCal-SingleE
High-kV

XCal
Combined

Scintillator
material, 𝑚𝑑 7 100% 66.7% 66.7% 100%

Table 13. Standard Deviation of Estimated Continuous Parameters for Versa Dataset.

Metric XCal-SingleE
Low-kV

XCal-SingleE
Mid-kV

XCal-SingleE
High-kV

XCal
Combined

Target thickness, 𝜃𝑠 (𝜇𝑚) [1, 7]

Std. 1.247 2.103 1.460 0.379

Filter 0 thickness, 𝜃 𝑓0 (𝑚𝑚) [0, 10]

Std. / 0.183 0.227 0.019

Scintillator thickness, 𝜃𝑑 (𝜇𝑚) [1, 500]

Std. 8.094 39.327 40.285 1.822
* Low-kV dataset does not use filter 0.

spectrum, even with changes in calibration materials. This is achieved through the accurate457

and robust estimation of system parameters, which is made possible by leveraging multi-energy458

datasets and a model-based, fully differentiable forward model of the X-ray CT system.459

Although this study targets a single-source, multi-voltage or multi-filtration flat-panel setup, our460

differentiable framework is more flexible. Users can integrate customized differentiable PyTorch461

modules into the XCal package to support other advanced CT systems, such as dual-energy or462

multi-detector systems. These extensions, however, introduce additional parameters and require463

user to have a good understanding of their system.464

With a broader trend toward differentiable computational imaging, our spectral calibration465

method, built on PyTorch, naturally aligns with modern frameworks like LEAP [49]. By466

leveraging auto-differentiation and GPU acceleration, our approach can be easily integrated into467

spectral CT reconstruction pipelines, enabling end-to-end optimization of both calibration and468

reconstruction. This may help inspire more sophisticated CT reconstruction algorithms in the469

future.470

Appendix A:Interpolation of source spectrum over source voltage471

Notice that the source voltage in an X-ray system can vary continuously and is not limited to a set472

of specific values; it is essential to have a model that works for any possible source voltage. To473

accurately handle any source voltage, we propose an interpolation function based on a list of474

source spectra and their corresponding voltages.475

Let 𝑣0 < 𝑣1 be adjacent source voltages and let 𝑆(𝐸, 𝑣0) and 𝑆(𝐸, 𝑣1) be their associated476

effective system spectra. However, linear interpolation directly using 𝑆(𝐸, 𝑣0) and 𝑆(𝐸, 𝑣1) will477

not provide an accurate model because the X-ray system would not generate photons with an478

energy larger than the source voltage, which means 𝑆(𝐸, 𝑣0) is zero for 𝐸 ≥ 𝑣0. To resolve this,479

we extend 𝑆(𝐸, 𝑣0) to 𝑆′ (𝐸, 𝑣0) by setting a negative value for 𝐸 > 𝑣0480

𝑆′ (𝐸, 𝑣0) =
{
𝑆(𝐸), 𝐸 ≤ 𝑣0

− 𝐸−𝑣0
𝑣1−𝑣0

𝑆(𝐸, 𝑣1), 𝐸 > 𝑣0
(19)
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where 𝑟 = 𝐸−𝑣0
𝑣1−𝑣0

.481

Then, 𝑆(𝐸, 𝑣) for any 𝑣0 < 𝑣 < 𝑣1 can be written as a bilinear interpolation between 𝑆(𝐸, 𝑣0)482

and 𝑆(𝐸, 𝑣1)483

𝑆(𝐸, 𝑣) = 𝑣1 − 𝑣
𝑣1 − 𝑣0

𝑆(𝐸, 𝑣0) +
𝑣 − 𝑣0
𝑣1 − 𝑣0

𝑆(𝐸, 𝑣1) (20)

The modification ensures that 𝑆(𝐸, 𝑣) = 0 for any 𝐸 > 𝑣.484

Appendix B: Element and Compound Densities485

Table 14. Element and Compound Densities for Filters and Detectors

Type Material Density 𝜌 (g/cm3)

Filter Aluminum (Al) 2.70
Copper (Cu) 8.92

Detector

CsI 4.51
Gd3Al2Ga3O12 6.63

Lu3Al5O12 6.73
CdWO4 7.90

Y3Al5O12 4.56
Bi4Ge3O12 7.13

Gd2O2S 7.32

Table 14 lists the material densities used in this paper. The possible scintillator materials for the486

detector are based on [50].487
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