Nonlinear Multigrid Optimization for Bayesian Diffusion Tomography

J.C. Ye1, C. A. Bouman2, R. P. Millane2, and K. J. Webb2

1 University of Illinois at Urbana-Champaign
2 School of ECE, Purdue University, West Lafayette
http://www.ece.purdue.edu/~bouman
Optical Diffusion Tomography

- Measure light passes through a highly scattering medium
- Light does not travel along a straight line path
- Use measurements to determine unknown absorption cross-section
- Frequency modulate light to reduce measurement noise
Optical Diffusion Model

• The photon flux density, $\psi_k(r, t)$, obeys the wave equation

$$\frac{1}{c} \frac{\partial}{\partial t} \psi_k(r, t) - \nabla \cdot D(r) \nabla \psi_k(r, t) + \mu_a(r) \psi_k(r, t) = S(t) \delta(r - s_k)$$

where $D(r) = \frac{1}{3(\mu_a(r) + \mu_s'(r))}$

• The frequency modulated light, $\phi_k(r)$, obeys the PDE

$$\nabla \cdot D(r) \nabla \phi_k(r) + (-\mu_a(r) + j\omega/c)\phi_k(r) = -\beta \delta(r - s_k).$$

• We need to compute $\mu_a(r)$ from measurements of $\phi_k(r)$
How Does the Forward Model Behave?

- Nonlinear **forward** model: $\bar{y} = f(x)$
 - \bar{y} - noiseless complex optical measurement of $\phi_k(r)$
 - x - image of unknown absorbtances, $\mu_a(r)$
- Measurement geometry (8 cm \times 8 cm)

![Measurement geometry diagram]

- Log magnitude of data
- Phase of data
What Is It Good for?

- **Medical Imaging**
 - “See” inside tissues at substantial depths
 - Fluorophors increase contrast
 - Tagging agents can target delivery of fluorophors

- **Environmental Imaging**
 - Airborne smoke and dust can obscure objects
 - Spectroscopic analysis of materials
 - Doppler shifting of envelope

- **Nondestructive evaluation**
 - Polymer composites

- **Representative of a fundamentally new imaging modality**
 - Nonlinear forward problem modeled by PDE
 - Potentially low cost
 - Does not require radioisotopes
What is the Problem?

• This inverse problem is REALLY DIFFICULT
 – Nonlinear forward and inverse problem.
 – Each evaluation of forward problem requires the solution of a PDE.
 – Often highly underdetermined
 – Fundamentally 3-D in nature

• Our approach
 – Use a Bayesian inverse framework
 – Develop general purpose computational tools and models
 – **Nonlinear multigrid optimization framework**
Statistical Measurement Model

\[y \] - complex optical measurements of \(\phi_k(r) \)
\[x \] - image of unknown absorbtances, \(\mu_a(r) \)
\[f(x) \] - nonlinear forward model

Using a shot-noise limited measurement model, then

\[
p(y|x) = \frac{1}{(\pi \alpha)^P |\Lambda|^{-1}} \exp \left[-\frac{||y - f(x)||_A^2}{\alpha} \right],
\]

where

\[\alpha \] - measurements variance
\[\Lambda = \text{diag}1/|y_k| \] - measurement covariance
Prior Model for Absorbtances

- Generalized Gaussian MRF (GGMRF)

\[
\log P(x) = -\frac{1}{p\sigma^p} \sum_{\text{all neighbors } \{s,r\}} b_{i-j} |x_s - x_r|^p + \text{constant}
\]

- Convex for \(p > 1 \)
- Scalable - \(\rho(a\Delta) = a^p \rho(\Delta) \) - eliminates need for a “threshold” parameter.
- Simple parameterization

\[
\hat{\sigma}_{ML} = \frac{1}{N} \sum_{\text{all neighbors } \{s,r\}} b_{i-j} |x_s - x_r|^p
\]
We perform joint MAP estimation of x and α.
Estimation of alpha makes global convergence more robust!

\[
\hat{x}_{MAP} = \arg\max_{x \geq 0} \{ \log p(y|x) + \log p(x) \}
\]

\[
= \arg\max_{x \geq 0} \max_{\alpha} \left\{ -\frac{1}{\alpha} \| y - f(x) \|_A^2 - P \log \alpha - \frac{1}{p\sigma^p} \sum_{i,j \in N} b_{i-j} |x_i - x_j|^p \right\}
\]

\[
= \arg\max_{x \geq 0} \left\{ -P \log \left(\frac{1}{P} \| y - f(x) \|_A^2 \right) - \frac{1}{p\sigma^p} \sum_{i,j \in N} b_{i-j} |x_i - x_j|^p \right\}
\]

Intuition: Logarithm term “reduces size” of local minimum.
Multigrid Optimization Approach

• Advantages of multigrid:
 – Fast convergence
 – Robustness to local minima
 – Suitable for non-quadratic optimization (nonlinear problems)
 – Allows simple enforcement of positivity constraints
 – Not just a “multiresolution” algorithm

• Approach:
 – Reformulate nonlinear multigrid in optimization framework
 – Derive general expressions for multigrid recursions
 – Use iterative re-linearization (Born approximation)
 – Iterative estimation of α
Multigrid Cost Functions

- Fine grid cost function is defined by problem
 \[c^{(0)}(\mathbf{x}^{(0)}) = \frac{1}{\alpha} \| \mathbf{z} - \mathbf{A}\mathbf{x}^{(0)} \|_\Lambda^2 + \frac{1}{p\sigma^p} \sum_{\{i,j\} \in \mathcal{N}} b_{i-j} \| x_i^{(0)} - x_j^{(0)} \|^p \]

- Choose coarse grid cost functions which are a good approximation to fine grid
 \[c^{(k)}(\mathbf{x}^{(k)}) = \frac{1}{\alpha} \| \mathbf{z}^{(k)} - \mathbf{A}^{(k)}\mathbf{x}^{(k)} \|_\Lambda^2 + \frac{A^k}{p\sigma^p} \sum_{\{i,j\} \in \mathcal{N}} b_{i-j} \left(\frac{x_i^{(1)} - x_j^{(1)}}{2^k} \right)^p \]

- We will approximately correct any errors later
General 2-Grid Optimization Approach

• Let $I^{(0)}_{(1)}$ and $I^{(1)}_{(0)}$ be interpolation and decimation operators

• 2-Grid Algorithm:
 1. Approximately optimize fine grid cost function $c^{(0)}(x^{(0)})$
 2. Initiald coarse grid to $x^{(1)} \leftarrow I^{(1)}_{(0)}\hat{x}^{(0)}$, then approximately optimize coarse grid cost function $c^{(1)}(x^{(1)})$
 3. Update fine grid result
 \[x^{(0)} \leftarrow \hat{x}^{(0)} + I^{(0)}_{(1)}(x^{(1)} - I^{(1)}_{(0)}\hat{x}^{(0)}) \]

• Problem
 – True solution is not a fixed point of algorithm!
 – Coarse grid cost function needs to be corrected
Fine Grid Residual Term

- Use fine grid solution to compute correction term

\[
\min_{x^{(1)} \geq 0} \left\{ c^{(1)}(x^{(1)}) - r^{(1)} x^{(1)} \right\}
\]

- Choose the row vector \(r^{(1)} \) so that:
 - Gradients of coarse and fine grid cost functions are equal
 - Exact solution is fixed point of algorithm

- General formula for \(r^{(1)} \)

\[
r^{(1)} = \nabla c^{(1)}(\hat{x}^{(0)}(0)) - \nabla c^{(0)}(\hat{x}^{(0)}) I_{(1)}^{(0)}
\]
Formula for Residual Term

• Explicit expression for residual term

\[
[r^{(1)}]_k = \frac{4}{\sigma_p} \sum_{j \in N_k} b_{k-j} \frac{1}{2} \left| \frac{x_k^{(1)} - x_j^{(1)}}{2} \right|^{p-1} \text{sgn}(x_k^{(1)} - x_j^{(1)})
\]

\[-\frac{4}{\sigma_p} \sum_l \left[I^{(1)} \right]_{k,l} \left(\sum_{m \in N_l} b_{l-m} \left| x_l^{(0)} - x_m^{(0)} \right|^{p-1} \text{sgn}(x_l^{(0)} - x_m^{(0)}) \right)\]

• Optimize \(c^{(1)}(x^{(1)}) \) to minimize \(r^{(1)} \)
For each iteration:

- Update α
- Linearize about current point (Born approximation)
- Apply nonlinear multigrid optimization

\[
\hat{\alpha} \leftarrow \frac{1}{P} \|y - f(\hat{x})\|_A^2
\]

\[
A \leftarrow \nabla f(\hat{x}) \quad z \leftarrow y - f(\hat{x}) + \nabla f(\hat{x})\hat{x}
\]

\[
\hat{x} \leftarrow \text{Multigrid min}_{x \geq 0} \left\{ \frac{1}{\hat{\alpha}} \|y - Ax\|_A^2 + \frac{1}{p\sigma^p} \sum_{\{i,j\} \in N} b_{i,j} |x_i - x_j|^p \right\}
\]
Multigrid Recursion

- Multigrid(k)
 - Apply v optimization iterations to $c^{(k)}(x^{(k)})$
 - Apply Multigrid(k+1) to $c^{(k+1)}(x^{(k+1)}) + (r^{(k+1)})^T x^{(k+1)}$
 - Apply v optimization iterations to $c^{(k)}(x^{(k)})$

- Fixed grid optimizer must have good **high frequency** convergence
- We use ICD/Born optimizer
Data (Simulated)

129×129 phantom

absorbtance in \(cm^{-1} \)

log magnitude of data

phase of data
Reconstructions

129×129 phantom

Fixed grid solution

Multigrid solution
Convergence Speed

Fixed grid solution

Multigrid solution
Conclusions

- Optical tomography represents a fundamentally new imaging modality with potentially important applications.
- Optical tomography problem is representative of a very important class of nonlinear inverse problems.
- Multigrid algorithms offer great potential in reducing computation and providing robustness to local minima.
- Multigrid algorithms are well suited to nonlinear optimization problems and the enforcement of positivity constraints.
- Direct formulation of multigrid algorithms in an optimization framework has many analytical advantages.