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ABSTRACT

A new class of multiscale multidimensional stochastic processes
called spatial random trees was recently introduced in [9]. The
model is based on multiscale stochastic trees with stochastic struc-
ture as well as stochastic states. In this work, we describe a method
for estimating the parameters of the process.

1. INTRODUCTION

In [9], we developed a new class of multiscale stochastic models
for multidimensional signals calledspatial random trees(SRTs).
Similarly to [2, 5], our models are stochastic processes on trees
with each leaf corresponding to a single sample. Our key inno-
vation, however, is that the tree structure itself is random and is
generated by aprobabilistic context-free grammar[11].

Probabilistic grammars have been widely used in natural-lan-
guage processing, for example, to model the structure of sentences
[8]. The concept of probabilistic grammar is based on the notion of
branching stochastic processes which have been used in studying
population dynamics since 1845 [4, 6, 12]. These problems have
been posed either in 1-D where the objects under consideration,
for example, words in sentences, are arranged linearly; or even
in “0-D” where the arrangement of objects, such as molecules of
different types in a population of particles, does not matter. Re-
cently, there have been efforts to apply probabilistic grammars to
2-D problems such as optical character recognition [10].

These developments have motivated SRTs–our framework for
modeling multidimensional signals with probabilistic grammars.
For simplicity, we restrict our exposition of SRTs to 2-D, but the
generalization to an arbitrary number of dimensions is straightfor-
ward. Our framework is reviewed in Section 2. The inference
algorithms for our framework are collectively termed the Center-
Surround algorithm and were inspired by the Forward-Backward
algorithm [8] for hidden Markov models and the Inside-Outside
algorithm [1, 7, 8] for 1-D probabilistic context-free grammars.
We described two components of the Center-Surround algorithm
in [9], specifically, the exact algorithms for computing data like-
lihoods and finding the MAP estimate of both the tree structure
and the tree states. In Section 3 of the present paper, we describe
an exact algorithm for computing the parameter updates required
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Fig. 1. An illustration of our notation for images.

for each iteration of the EM algorithm [3] used to train the model.
The proofs of our results cannot be included in this paper due to
space constraints and will be published elsewhere. Experimental
examples in Section 4 illustrate our framework.

2. SPATIAL RANDOM TREES

We consider images defined on anM1 �M2 rectangular domain
illustrated in Fig. 1. In other words, an imageu is anM1 �M2

matrix of numbers. The rectangular domain whose upper left cor-
ner isp = (p1; p2) and whose lower right corner isq = (q1; q2) is
denoted�pq . Forp = (p1; p2), we writeup and�pp = �p = p
to denote the value and location, respectively, of the pixel at the
intersection of rowp1 and columnp2. We abbreviate1 = (1; 1)
andM = (M1;M2), so that the whole domain of definition of
imageu is�1;M .

SRTs model images with binary (dyadic) trees whose leaves
are image pixel locations, as illustrated in Fig. 2(a,b). A sample
path of an SRT is a (deterministic) tree, i.e. a triple(V; E ; x) con-
sisting of a setV of all vertices, a setE of all edges, and a mapping
x which associates astatex� to every vertex�. We distinguish
between two types of states: the states corresponding to the im-
age pixel values which can only appear at the leaf vertices of the
tree, and the “hidden” states corresponding to the remaining ver-
tices of the tree. Any state which can occur at a leaf vertex (i.e.
any possible pixel value) is called aterminal state, and the set of
all terminal states is denoted byT . Any possible state for an inter-
nal vertex (i.e. a vertex which is not a leaf) is called anonterminal
state, and the set of all nonterminal states is denoted byN .
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Fig. 2. (a) A tree generated by our image grammar, by applying produc-
tions j

o
! j; j andj ! u for o 2 fh; vg andu 2 f1; 2; 3; 4; 5; 6g. (b)

The same tree superimposed onto the corresponding image. A short hori-
zontal (vertical) line through a vertex signifies a horizontal (vertical) split
at that vertex.
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Fig. 3. Possible relationships between the yield of a vertex and the yields
of its children: (a) horizontal split; (b) vertical split.

Theyieldof any internal vertex�, denotedY(�), is the set of
all leaf descendants of�. In our model, the yield of every internal
vertex of a tree is a rectangular region of the image. Every internal
vertex whose yield is a single pixel�p is required to have a single
child–pixel location�p–with a terminal state which is the image
value at that pixel,up. If the parent of�p has statej, we describe
this transition asj ! up. Following the terminology of natural-
language processing, we call any transition of the formj ! u
with j 2 N andu 2 T , a terminal production.

We moreover impose that unless the yield�pq of an internal
vertex� is a single pixel,� must have two children which are in-
ternal vertices with disjoint yields such that the union of the yields
is equal to the yield of�. In this case, one further restriction is
that the two children be an ordered pair, with the upper left cor-
ner�p falling into the yield of the first child and the lower right
corner�q falling into the yield of the second child. An equivalent
explanation of these requirements is that there are the following
possibilities for the yields of the children� and of �:

(i) Y(�) = �p;(d;q2) andY() = �(d+1;p2);q for somed 2
fp1; : : : ; q1 � 1g, as illustrated in Fig. 3(a).

(ii) Y(�) = �p;(q1;d) andY() = �(p1;d+1);q for somed 2
fp2; : : : ; q2 � 1g, as illustrated in Fig. 3(b).

If x� = j, x� = k, andx = `, we denote a transition of the

first type (splitting ofY(�) along a horizontal line) byj
h
! k; `

and call it ahorizontal nonterminal production. We denote a tran-
sition of the second type (splitting ofY(�) along a vertical line) by
j

v
! k; ` and call it avertical nonterminal production. We useO

to denote the set of possible orientations of a nonterminal produc-
tion: O = fh; vg, and we useP to denote the set of all possible
productions (both terminal and nonterminal).

The triple (N ; T ;P) is called agrammar. The discussion
above means that, in our model,P consists of the following pro-
ductions:

j
o
! k; ` 8j; k; ` 2 N ; 8o 2 O (1)

j ! u 8j 2 N ; 8u 2 T : (2)

Each nonterminal productionj
o
! k; ` is assigned probability

Pprod(j
o
! k; `), and each terminal productionj ! u is assigned

probability Pprod(j ! u), in such a way that the following nor-
malization equations are satisfied:
X

o;k;l

Pprod(j
o
! k; `) +

X

u

Pprod(j ! u) = 1; 8j 2 N :

In our model, the state of the root vertex can be any nonterminal
statej 2 N with probabilityProot(j) where

X

j2N

Proot(j) = 1:

The probability of any treeT is then defined to be the product of
the root state probability and the probabilities of all the produc-
tions that are involved in generatingT . Denoting the set of all
internal vertices ofT by Vint, the root ofT by �, and the produc-
tion applied at� by��, we have:

P(T ) �
= Proot(x�)

Y

�2Vint

Pprod(��):

Definition 1. The stochastic process defined by the probabilistic
grammar with productions (1,2), is called aspatial random tree.

As discussed in [9], a sequence of productions from Eqs. (1,2)
may generate a tree whose leaves cannot be arranged in anM1 �
M2 rectangle. It turns out, however, that if a tree’s leaves can be
associated with anM1�M2 rectangle, such association is unique.
If the yield of a treeT forms a rectangle�1;M , and the states of
the leaves areu, then we say that the treeT generatesthe image
u. We define the event
u to be the set of all trees that generate
the imageu. The termprobability of imageu (denotedP(u)) is
shorthand for the probability of the set
u.

3. PARAMETER ESTIMATION VIA EM

Our framework of SRTs admits recursive algorithms for likeli-
hood calculation and for the estimation of the MAP (maximum
a posteriori probability) tree. The EM (expectation maximization)
algorithm [3] can moreover be adapted to search for the param-
eter values which maximize the likelihood of an image or a set
of images. These algorithms are collectively termed the Center-
Surround algorithm. The Center-Surround algorithm is based on
recursive calculations involvingcenterandsurroundprobabilities
which we presently describe.

For every rectangular region�pq of an imageu, we define
the center probabilitycjpq to be the conditional probability of the



subimageupq given that it is generated by a subtree whose root
state isj: cjpq = P(upqj
j), where
j is the set of all trees with
root statej.

The following proposition, taken from [9] and illustrated in
Fig. 3, gives a recursive algorithm for the computation ofcjpq. It
takes advantage of the fact that any center probability for a rect-
angle containing multiple pixels can be expressed in terms of the
center probabilities for smaller rectangles.

Proposition 1. For any nonempty rectangular domain�pq �
�1;M with p 6= q, and anyj 2 N ,

c
j
pq =

q1�1X

d=p1

X

k;`

Pprod(j
h
! k; `)ckp;(d;q2)c

`
(d+1;p2);q

+

q2�1X

d=p2

X

k;`

Pprod(j
v
! k; `)ckp;(q1;d)c

`
(p1;d+1);q:

For anyp 2 �1;M and anyj 2 N , cjpp = Pprod(j ! up).
Each surround probabilitysjpq is the joint probability of the

image region surrounding�pq and the event that the subimage
upq is generated by a subtree whose root state isj. The surround
probabilities can also be calculated recursively; however, these re-
cursions use the center probabilities which must therefore be pre-
computed.

Proposition 2. For any nonempty rectangular domain�pq �
�1;M with p 6= q, and anyj 2 N ,

s
j
pq =

p1�1X

e=1

X

k;`

s
k
(e;p2);qPprod(k

h
! `; j)c`(e;p2);(p1�1;q2)

+

M1X

e=q1+1

X

k;`

s
k
p;(e;q2)Pprod(k

h
! j; `)c`(q1+1;p2);(e;q2)

+

p2�1X

e=1

X

k;`

s
k
(p1;e);qPprod(k

v
! `; j)c`(p1;e);(q1;p2�1)

+

M2X

e=q2+1

X

k;`

s
k
p;(q1;e)Pprod(k

v
! j; `)c`(p1;q2+1);(q1;e);

where our convention is that any sum over an empty set is zero.
The base case for this recursion is:s

j
1;M(u) = Proot(j).

As the next proposition shows, the combination of the center
and surround recursions makes it possible to perform one iteration
of the EM procedure for estimating the parameters of the SRT from
data. Starting with any initial parameter values(P0root;P

0
prod), the

EM algorithm [3] generates a sequence of parameter estimates
(P0root;P

0
prod); (P

1
root;P

1
prod); (P

2
root;P

2
prod); : : : which is guar-

anteed to climb the likelihood surface. The next proposition gives
the EM update equations for our problem.

Proposition 3. Suppose we have an observationu. Denoting
Pn
jk`;o = Pn

prod(j
o
! k; `), the EM update equations for the pa-

rameters of our probabilistic image grammar are:

Pn+1
root(j) = Pn

root(j);

Pn+1
jk`;h =

X

p;q

s
j
pqPn

jk`;h

q1�1X

d=p1

c
k
p;(d;q2)c

`
(d+1;p2);q

X

p;q

s
j
pqc

j
pq

;
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Fig. 4. The rate of correct classification of noisy digit images from the X
WINDOWS 9x15 font, as a function of the noise level".

Pn+1
jk`;v =

X

p;q

s
j
pqPn

jk`;v

q2�1X

d=p2

c
k
p;(q1;d)c

`
(p1;d+1);q

X

p;q

s
j
pqc

j
pq

;

Pn+1
prod(j ! u) =

Pn
prod(j ! u)

X

p:upp=u

s
j
pp

X

p;q

s
j
pqc

j
pq

;

where all center and surround variables in the righthand sides
are calculated using the parametersPn

prod, and where each double
summation overp andq is done over all such pairs(p; q) that�p;q

is a nonempty rectangular subdomain of�
1;Mi . As before, our

convention is that any sum over an empty set is zero.

We note that this proposition can be easily modified to account
for training on multiple images.

4. EXPERIMENTAL EXAMPLES

We now apply our parameter estimation algorithm of Section 3 to
two problems involving classification and segmentation of noisy
images. For the first experiment, our data set consists of the ten
digits from the X WINDOWS9x15 font whose characters are10�
7 pixel images, placed at various locations on a white14 � 11
background. These images are corrupted by synthetic noise which
independently flips every pixel with probability".

For each noise-free digitk = 0; 1; : : : ; 9, a probabilistic gram-
mar Gk was obtained from the EM algorithm of Section 3, by
training on a single10 � 7 image of the digit. Each grammarGk
was then manually expanded (i.e., several new nonterminal states
and nonterminal production rules were introduced) to obtain a new
probabilistic grammar capable of placing the10� 7 image of the
digit k at any location on a white14 � 11 background. For each
level of noise", the resulting grammar was further manually mod-
ified, to account for the noise. Thus, for each level of noise" and
each digitk = 0; 1; : : : ; 9, a probabilistic grammarGk;" was ob-
tained through a combination of automatic training via the EM al-
gorithm and manually writing down certain productions and their
probabilities.

After the training stage was complete, we conducted 900 clas-
sification experiments with noisy digit images for several noise
levels in the range0 � " � 0:2. Each of the 900 images was clas-
sified by calculating its likelihoods with respect to the ten gram-
marsG0;"; : : : ;G9;" and choosing the hypothesis corresponding to
the largest likelihood. The likelihood calculation was performed
using our algorithm described in [9]. Classifying each image took
about 3 seconds on an 800 MHz Pentium III processor.
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Fig. 5. Six images that were classified correctly. Left: digits 3 and
8, noise level" = 0:05; center: digits 6 and 9, noise level" = 0:1;
right: digits 7 and 0, noise level" = 0:2.
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(a) A noisy image of a string of digits.
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(b) The image and segmentation (dashed lines) produced by our algorithm.

Fig. 6. Given the noisy image shown in (a), our algorithm identi-
fies each of the seven digits correctly and produces the segmenta-
tion shown in dashed lines in (b).

Our experiments are summarized in Fig. 4 which shows a plot
of our estimates of the correct classification probability as a func-
tion of the noise level", from the noise-free case" = 0 to the
extremely noisy case of" = 0:2. This latter case corresponds to
an average of about 31 incorrect pixels per14� 11 image, which,
as shown in Fig. 5, makes some images difficult to recognize for a
human. The plot in Fig. 4 demonstrates excellent performance of
our algorithm and graceful degradation for very noisy images.

In our second example, we use the MAP estimation algorithm
of [9] to extract a string of digits from a noisy image and classify
these digits. The EM stage of the training process was identical
to the one used in the first experiment. The resulting probabilistic
grammarsG0;G1; : : : ;G9 for the ten digits were manually embed-
ded in a larger grammar which describes strings of seven digits on
a white background. Similarly to the first experiment, this latter
grammar was further manually modified to account for noise. The
grammar obtained through this procedure is capable of generating
images such as Fig. 6(a). In this grammar, there are ten special
nonterminal statesdigit-0, digit-1, : : :, digit-9 which are used to
label the ten digits. For example,x� = digit-0 is interpreted to
mean that digit zero is present in the image and is situated inY(�).

Given an image such as that of Fig. 6(a), we use our algorithm
of [9] to estimate the MAP tree. For each internal vertex� of this
tree such thatx� = digit-k, we extract the rectangleY(�) and
label it as digitk. Our algorithm therefore produces the segmenta-
tion of our image into digits and background, and recognizes each
digit. For the input image of Fig. 6(a), this results in Fig. 6(b).

5. CONCLUSIONS

In this paper, we have further analyzed a new class of multiscale
stochastic processes called spatial random trees which was intro-
duced in [9]. We have presented general methods for training our
models with the help of the EM algorithm, and illustrated their
effectiveness through applications to image classification and seg-
mentation.

6. ACKNOWLEDGMENTS

We would like to thank Yan Huang, Bill Nagel, James Sherman,
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[4] I. J. Bienaymé, “De la loi de multiplication et de la dur´ee des
familles,” Soc. Philomat. Paris Extraits, S´er., vol. 5, pp. 37–
39, 1845. Reprinted as an Appendix to [6].

[5] C. A. Bouman and M. Shapiro, “A multiscale random field
model for Bayesian image segmentation,”IEEE Trans. on Im-
age Processing, vol. 3, no. 2, pp. 162–177, March 1994.

[6] D. G. Kendall, “The genealogy of genealogy: Branching pro-
cesses before (and after) 1873,”Bull. London Math. Soc.,
vol. 7, pp. 225–253, 1975.

[7] K. Lari and S. Young, “The estimation of stochastic context-
free grammars using the inside-outside algorithm,”Computer
Speech and Language, vol. 4, pp. 35–56, 1990.

[8] C. Manning and H. Sch¨utze,Foundations of Statistical Natu-
ral Language Processing. MIT Press, 1999.

[9] I. Pollak, J. M. Siskind, M. Harper, and C. A. Bouman, “Mod-
eling and estimation of spatial random trees with application
to image classification,” submitted toICASSP, Hong Kong,
2003.

[10] D. Potter, Compositional Pattern Recogni-
tion. PhD thesis, Brown University, 1999.
http://www.dam.brown.edu/people/dfp.

[11] D. Sankoff, “Branching processes with terminal types: ap-
plication to context-free grammars,”Journal of Applied Prob-
ability, vol. 8, pp. 233–240, 1971.

[12] H. W. Watson and F. Galton, “On the probability of extinc-
tion of families,” Journal of the Anthropological Institute of
Great Britain and Ireland, vol. 4, pp. 138–144, 1875.


