
BAYESIAN MULTIRESOLUTION ALGORITHM FOR PET RECONSTRUCTION
∗†

Thomas Frese†, Charles A. Bouman†, Ned C. Rouze‡, Gary D. Hutchins‡ and Ken Sauer††

†Purdue University, School of
Electrical and Computer Engineering

West Lafayette, IN 47907-1285
{frese, bouman}@ecn.purdue.edu

‡Indiana University School of Medicine
Department of Radiology

Indianapolis, IN 46202-5111.
{nrouze,gdhutchi}@iupui.edu

††University of Notre Dame
Department of Electrical Engineering

Notre Dame, IN 46556-5637
sauer@nd.edu

ABSTRACT

We introduce a spatially non-homogeneous adaptive im-
age model and multiresolution reconstruction algorithm for
Bayesian tomographic reconstruction. In contrast to exist-
ing approaches, the proposed image model is formulated in a
multiresolution wavelet domain and relies on training data to
incorporate the expected characteristics of typical reconstruc-
tions. The actual tomographic reconstruction is performed
in the space domain to simplify enforcement of the positivity
constraint. We apply the proposed algorithm to simulated
data and to data acquired using the IndyPET dedicated re-
search scanner. Our experimental results indicate that our
algorithm can improve reconstruction quality over fixed reso-
lution Bayesian methods.

1 INTRODUCTION

One of the major challenges in Bayesian tomographic recon-
struction is the design of edge-preserving prior models. Exist-
ing prior models are largely based on spatially homogeneous
Markov random field (MRF) implementations. A disadvan-
tage of such models is that Gaussian MRF’s tend to over-
smooth edges while non-Gaussian MRF’s can artificially en-
hance edges and remove important detail.

In this report, we present a prior model designed to preserve
sharp edges without eliminating fine detail in the reconstruc-
tion. In contrast to existing models for iterative Bayesian to-
mographic reconstruction, our approach is formulated in the
wavelet domain where it exploits dependencies of wavelet co-
efficients across scales. Training data are used to incorporate
the expected characteristics of typical reconstructions. The
model presented here extends an earlier version[1] by intro-
ducing a recursive algorithm for optimizing the reconstruction
at all resolutions simultaneously.

In comparison to commonly used wavelet models[2, 3], the
dependency structure of the proposed model is more general.
Specifically, the model does not restrict the dependencies to
interactions within a quadtree structure. Instead, the wavelet
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Figure 1: IndyPET small animal scanner.

coefficients at each location are assumed to depend on an arbi-
trary but fixed window of scaling coefficients at the same scale.
A disadvantage of this more general approach is that MAP
optimization must be performed iteratively. For tomographic
reconstruction this is not a limitation since the forward model
requires that the optimization be performed iteratively in any
case.

Our model assumes linear dependencies between the
wavelet coefficients at different scales, thereby simplifying op-
timization in a Bayesian framework. To account for the non-
Gaussian statistics of typical reconstructions, the parameters
of the model are spatially adapted to the local characteristics
of the image. The actual tomographic reconstruction is per-
formed in the space domain. In comparison to performing the
reconstruction in the wavelet domain, the space-domain opti-
mization simplifies enforcement of the positivity constraint.

We apply the proposed algorithm to data acquired using
the IndyPET[4] positron emission tomography (PET) scan-
ner. This scanner has been developed as a high resolution,
high sensitivity dedicated research scanner for use in small an-
imal, intermediate sized animal and small field of view human
(brain, breast) imaging applications. As sketched in Fig. 1,
the distinguishing feature of the scanner is the use of two,
approximately planar, detector banks with adjustable separa-
tion which are mounted on a rotatable gantry. Each detector
bank consists of 8 BGO detector blocks. In comparison to
using a complete ring of detectors, this geometry results in
reduced parallax and more uniform resolution throughout the



field of view. Furthermore, the detector separation can be ad-
justed for each subject, which greatly increases the sensitivity
for smaller subjects.

2 MODEL AND ALGORITHM

Our approach is to model the conditional distribution of the
wavelet coefficients at each resolution given the information
at all coarser scales. Let x be the N-dimensional vector of the
image pixel values in raster order. Assuming an L resolution
wavelet decomposition, let z(n) denote the wavelet coefficients
at scale n for 1 ≤ n ≤ L. Furthermore, let x(n) be the cor-
responding scaling coefficients where 0 ≤ n ≤ L such that
x(0) = x. The notation is illustrated in Fig. 2 for the case of
a 1-D wavelet decomposition. We can now write the wavelet
transform of x as z = Wx where z = (z(1), · · · , z(L), x(L)).
Using this notation, we can write the distribution log pz(z) as

log pz(z) =

L∑
n=1

log p(z(n)|x(n)) + const (1)

where we assume x(L) to be uniformly distributed and use
the fact that the scaling coefficients x(n) contain the same
information as z(n+1), . . . , z(L), x(L).

To obtain a practical model, we assume the wavelet coef-
ficients at different locations to be conditionally independent
given the scaling coefficients. Furthermore, we assume the
wavelet coefficients at each location to depend only on a small
window of scaling coefficients. Let s denote a spatial location
at a given scale n. Then x

(n)
s is the scaling coefficient and z

(n)
s

is the vector of the wavelet coefficients at location s and scale
n. For the 2-D case, z

(n)
s has three components corresponding

to the high-low, low-high, and high-high coefficients of a sepa-
rable wavelet decomposition. We now define x

(n)
∂s as a window

of scaling coefficients centered at location s. Incorporating our
assumptions, we can then write

log pz(z) =

L∑
n=1

∑
s∈S(n)

log p(z(n)
s |x

(n)
∂s ) + const (2)

where S(n) is the set of all locations s at scale n. For our
implementation, we assume a square window ∂s of size 3× 3
pixels.

To model the conditional distributions log p(z
(n)
s |x

(n)
∂s ), we

assume the wavelet coefficients z to be jointly Gaussian with
spatially varying parameters. In this case, the conditional
distributions are of the form

log p(z(n)
s |x

(n)
∂s ) = −

1

2
‖z(n)
s −A(n)

s x
(n)
∂s − b

(n)
s ‖

2

B
(n)
s

+ c (3)

where ‖ε‖2B = εtBε and c is a constant. Consequently, the

model is parameterized by A
(n)
s , b

(n)
s and B

(n)
s .

Assuming an orthonormal wavelet transform W , we can
now write the model as a function of x

log px(x) = log pz(Wx) (4)

= −
1

2

L∑
n=1

∑
s∈S(n)

‖z(n)
s −A(n)

s x
(n)
∂s − b

(n)
s ‖

2

B
(n)
s

+ c′ (5)

where z
(n)
s = (Wx)

(n)
s . The model (5) is used as the prior dis-

tribution for the Bayesian reconstruction of x = x(0). In ad-
dition to this fine scale reconstruction, we can perform coarse
scale reconstructions of the scaling coefficients x(l) at scale l.
To compute the coarse scale reconstruction of x(l), we apply
the model only to the wavelet coefficients at the coarser scales
n = l+1, . . . , L. We thus define the prior distribution log px(l)

for the reconstruction at scale l as

log px(l)(x
(l)) = log p(z(l+1), . . . , z(L), x(L)) (6)

= −
1

2

L∑
n=l+1

∑
s∈S(n)

‖z(n)
s −A(n)

s x
(n)
∂s − b

(n)
s ‖

2

B
(n)
s

+ cl . (7)

Assuming noisy projection measurements y and a forward
model log p(y|x(l)), the Bayesian MAP estimate x̂(l) of the
scaling coefficients x(l) at scale l is the solution to the opti-
mization problem

x̂(l) = arg max
x(l)≥0

{log p(y|x(l)) + log px(l)(x
(l))} . (8)

We use a multiresolution algorithm to perform the image
reconstruction and to adaptively select the parameters of the
linear model. The basic concept of the multiresolution algo-
rithm is to compute a sequence of Bayesian MAP estimates
from coarse to fine scale. The algorithm starts with the recon-
struction of the scaling coefficients x(L) at the coarsest scale L
and then successively performs the reconstructions at the finer
scales l = L− 1, . . . , 0. At each step in this sequence, the cur-
rent reconstruction is used to initialize the model parameters
at the next finer scale and to re-adapt the parameters at the
coarser scales. Let θ

(l)
s denote the vector of model parameters

at location s and scale l

θ(l)
s = [A(l)

s , b
(l)
s , B

(l)
s ] . (9)

After computing the MAP reconstruction x̂(l) at scale l, we
update all the parameters θ

(n)
s for n ≥ l based on the wavelet

decomposition of x̂(l). The new parameters θ
(n)
s are then used

to reconstruct x(l−1) at the next finer scale.
The parameters θ

(n)
s are computed using a nonlinear

prediction method derived from recent work in image
interpolation[5]. Specifically, we use a trainable predictor that

first classifies x
(n)
∂s into a class kn,s. The parameters θ

(n)
s are

then selected as the parameter vector θ
(n)
kn,s

associated with
class kn,s. The classifiers and associated parameter vectors
are obtained during a training phase. Additional methods
are employed to adjust for the overall scaling of the image x.
The amount of regularization imposed by the reconstruction
algorithm can be adjusted through change of a global scaling
parameter. A more detailed description of the structure of
the nonlinear predictor can be found in [1].

3 SPACE DOMAIN OPTIMIZATION

The positivity constraint, x(l) ≥ 0, is an essential component
of the MAP optimization equation (8). However, enforcement
of positivity can be very difficult in the wavelet domain, par-
ticularly for general wavelet transforms. To avoid this prob-
lem, we perform the MAP optimization in the space domain
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Figure 2: Optimization example for 1-D Haar wavelet de-
composition and window ∂s = {s − 1, s, s + 1}. The nodes

in circles and squares illustrate the sets S
(n)
4 and S̃

(n)
4 for the

update of pixel x
(0)
4 .

where enforcement of positivity is simple. Another advantage
of space domain optimization is that it simplifies the forward
model in tomography.

We perform the MAP optimization using an iterative co-
ordinate descent (ICD)[6] strategy. To simplify the presenta-
tion, we will assume reconstruction at the finest scale l = 0.
The coarse scale reconstructions are performed analogously
by treating the reconstruction scale as the finest scale. Let ei
denote the unit vector in direction xi. Since (5) is quadratic,
we can write the prior as a function of the perturbation γ of
pixel xi as

log px(x+ γei) = α1γ +
1

2
α2γ

2 + log px(x) (10)

where α1 and α2 are the first and second partial derivatives
of log px(x) with respect to xi. Since (10) expresses the prior
distribution as a function of only a single pixel in the space-
domain, the MAP optimization can be performed using the
standard ICD algorithm[6].

To obtain the derivatives α1 and α2, let ε
(n)
s denote the

error in the wavelet domain

ε(n)
s = z(n)

s −A(n)
s x

(n)
∂s − b

(n)
s . (11)

Let W
(n)
si and D

(n)
si denote the coefficients of the wavelet de-

composition such that

∂z
(n)
s

∂xi
= W

(n)
si

∂x
(n)
s

∂xi
= D

(n)
si . (12)

The notation in (12) is for the 1-D case, where both ∂z
(n)
s /∂xi

and ∂x
(n)
s /∂xi are scalars. We can now write the derivative

of ε
(n)
s with respect to xi as

dε
(n)
si =

∂ε
(n)
s

∂xi
= W

(n)
si −A

(n)
s D

(n)

(∂s)i (13)

where D
(n)

(∂s)i is the vector with elements D
(n)
ki for k ∈ ∂s. To

compute α1 and α2, we need to consider only the locations

(s, n) for which dε
(n)
si 6= 0. Then we define the sets S

(n)
i as

S
(n)
i = {s : W

(n)
si 6= 0 or D

(n)
si 6= 0} . (14)

The derivatives dε
(n)
si are nonzero only at locations whose pre-

diction window ∂s includes nodes in S
(n)
i . Let us define the

sets S̃
(n)
i = {s : dε

(n)
si 6= 0}, then

S̃
(n)
i = {k : s ∈ ∂k for some s ∈ S(n)

i } (15)

=
⋃

s∈S
(n)
i

∂s . (16)

Figure 2 illustrates the sets S
(n)
i and S̃

(n)
i for the case of a

1-D Haar wavelet decomposition.
Based on (5), (13) and (16) we can compute α1 and α2 as

α1 =

L∑
n=1

∑
s∈S̃

(n)
i

(ε(n)
s )tB(n)

s dε
(n)
si (17)

and

α2 =

L∑
n=1

∑
s∈S̃

(n)
i

(dε
(n)
si )tB(n)

s dε
(n)
si . (18)

After performing the ICD update of xi, we update ε
(n)
s for all

nodes in S̃
(n)
i .

For a general wavelet basis, the computational complex-
ity associated with the optimization of the prior model is
O(N(logN)2) multiplications for a full update of x. For the
special case of a Haar wavelet decomposition, this complexity
becomes O(N logN).

4 RESULTS

We present results for two data sets. The first set is simu-
lated emission data generated by forward projecting the MRI
data in Fig. 3(a). The second data set was collected using a
bar phantom on the IndyPET scanner. The proposed algo-
rithm was implemented using a 2-D Haar wavelet decomposi-
tion with L = 5 resolution levels. For all results, the algorithm
was trained on a set of 40 MRI images. The MRI phantom in
Fig. 3(a) was not included in the training set.

For the simulated data set, the projection data was cal-
culated at 128 evenly spaced angles each with 256 parallel
projections, assuming a field of view of 20 cm. The simulated
projection beam had a triangular profile of width 2.3 mm. The
data samples were formed by Poisson random variables with
the appropriate means. The average number of counts per
projection was 235. The reconstructions were computed at a
resolution of 256 × 256 pixels. Figure 3 compares the recon-
struction using the proposed method to standard Bayesian
MAP reconstructions using a Gaussian MRF (GMRF) and
a generalized Gaussian MRF (GGMRF)[7] prior model with
shape parameter p = 1.5. For each method, the regularization
parameter was adjusted to achieve minimum mean square er-
ror between reconstruction and ground truth. The proposed
method produces sharper edge detail than the GMRF MAP
algorithm. Alternatively, the GGMRF produces sharp edges
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Figure 3: Reconstructions using simulated data.

(a) CBP (b) MAP, GMRF prior (c) Proposed algorithm

Figure 4: Reconstructions using bar phantom data collected on the IndyPET scanner.

but removes substantial detail, typical of spatially homoge-
neous non-Gaussian models.

Reconstructions of the data set collected on the IndyPET
tomography scanner are shown in Fig. 4. The phantom con-
sists of four quadrants, each containing an array of parallel
acrylic bars with equal gaps between bars. The widths of the
bars are 4.5, 3.0, 2.25, and 1.5 mm for the four quadrants. The
gaps were filled with radioactive FDG, resulting in a square
wave emission pattern. The total number of counts was 9.0
million. The reconstructions were computed at a resolution
of 256 × 256 pixels for a field of view of 18 cm. In Fig. 4,
the reconstruction using the proposed method is compared
to convolution backprojection (CBP) using a Hanning recon-
struction filter and to a Bayesian MAP reconstruction using
a Gaussian MRF prior model. The proposed method and the
GMRF MAP algorithm used a physical system model that is
based on point source measurements of the scanner’s point
spread function in the sinogram domain. For both meth-
ods, the regularization parameters were adjusted to achieve
the best visual reconstruction quality. The proposed method
produces a reconstruction with sharper edges and more ac-
curately preserves the square wave profile than either of the
other reconstruction methods.
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