Modeling and Processing of High Dimensional Signals and Systems Using the Sparse Matrix Transform

Guangzhi Cao
School of Electrical and Computer Engineering
Purdue University

Ph.D. Final Examination October 5, 2009

*Supported by the National Science Foundation

Outline

- Non-iterative MAP tomographic reconstruction
 - Localization versus reconstruction
 - Framework of non-iterative MAP
 - Matrix source coding theory
 - Experimental results on medical imaging
- Covariance estimation for high dimensional signals
 - SMT framework
 - □ SMT for covariance estimation
 - Experimental results of SMT for modeling hyper-spectral data and face images
- Regression of high dimensional data

Part I. Iterative Statistical Reconstruction in Tomography

- x Unknown image
- *y* Known surface measurement
- Objective: reconstruct unknown x from known y

Model-based Iterative Reconstruction

 \blacksquare MAP estimate of x:

$$\hat{x} = \arg \max_{x \ge 0} \left\{ \log p(y \mid x) + \log p(x) \right\}$$

$$= \arg \max_{x \ge 0} \left\{ |y - f(x)||_{\Lambda}^{2} + \log p(x) \right\}$$

 Λ – Noise model; p(x) – prior image distribution

- Optimization:
- Preconditioned conjugate gradient
- Iterative Coordinate Descent
- Multigrid
- All are computationally expensive!

Introduction to Optical Tomography

- Optical tomography: Deep tissue imaging with light
 - Optical Diffusion Tomography (ODT or DOT)
 - Fluorescence Optical Diffusion Tomography (FODT)
 - Bioluminescence Tomography (BLT)

Forward Model: Diffusion Equation

Transport of light in scattering media:

$$\nabla \cdot [D(r)\nabla \phi(r,\omega)] - [\mu_a(r) + j\omega/c]\phi(r,\omega) = -S(r,\omega)$$

Parameters:

 ϕ – photon flux density (W/cm)

D - diffusion coefficient (cm)

 μ_a – absorption coefficient (cm⁻¹)

c - speed of light in medium (cm/sec)

System description:

$$y = f(x)$$

x – Unknown images of optical parameters, e.g. (μ_a, D)

y – Known surface measurement, e.g. ϕ

Approach 1: Fast Maximum Likelihood Localization

Maximum likelihood (ML) estimate of inhomogeneity location:

$$\hat{r} = \arg\min_{r \in \Omega} ||y - f(x_r)||_{\Lambda}^2$$

- Parameterization of inhomogeneity? Size, contrast $(\mu_a \mu_{a0})$...
- Inhomogeneity can be effectively modeled as a point: $\delta u(r)$

Localization versus Reconstruction

Reflectance measurement geometry

Optical parameters

Bulk: $\mu_{a0} = 0.02 \text{ cm}^{-1}$

 $D_0 = 0.03 \text{ cm}$

Inhomogeneity: d = 1.5 cm

(Diameter = 6.25 mm) $\mu_a = 0.12 \text{ cm}^{-1}$

Average SNR ~ 40 dB

Localization – *negative log likelihood*

Probability of Detection Under Various Conditions

SNR=40dB, size=6.25mm, $\Delta \mu_a$ =0.1cm⁻¹

Absorption & depth, size = 6.25mm

Size & depth, $\Delta \mu_a = 0.1 \text{ cm}^{-1}$

Absorption & size, depth = 1.5 cm

Approach 2: Non-Iterative MAP Reconstruction

- MAP reconstruction: $\hat{x} = \arg\max_{x} \{ \|y f(x)\|_{\Lambda}^{2} + \log p(x) \}$
- Assume a linear forward model and Gaussian prior:

$$y = f(x) = Ax$$
$$\log p(x) = x^{T} Sx$$

Then the MAP estimate has the closed form:

$$\hat{x} = (A^T \Lambda A + S)^{-1} A^T \Lambda y$$
$$= Hy$$

- Can we just store H and directly compute \hat{x} ?
 - But *H* is not sparse!

Our Approach to Non-Iterative MAP Reconstruction

- Use lossy source coding strategies to store H
 - Makes *H* sparse
 - Less storage
 - Less computation
- Compute exact *H* off-line using iterative methods

$$h_i = \arg\max_{x} \{ \|e_i - f(x)\| + \log p(x) \}$$

Then directly compute

$$\hat{x} = [H]y$$

[H] represents quantized version of H.

• Questions: How do we code *H*?

Distortion Metric for H

Reconstruction error due to quantization of *H*:

$$\hat{x} + \delta \hat{x} = (H + \delta H)y$$

Theorem:

$$E\left[\|\delta \hat{x}\|^{2} \mid \delta H \right] = \operatorname{trace} \left\{ \delta H R_{y} \delta H^{T} \right\} = \|\delta H\|_{R_{y}}^{2}$$

where $R_y = E[yy^T]$.

■ Intuition: Whiten the measurement *y* using eigen-decomposition

Three Orthonormal Transforms Used to Code H

- Step 1. Whiten y using eigen-decomposition
- Step 2. Apply KL transform to decorrelate columns of H
- Step 3. Apply wavelet transform to decorrelate rows of H

$$\overrightarrow{H} = WHT^{-1}$$

$$\widetilde{y} = Ty$$

Conclusion:

$$\hat{x} = W^T \check{H} \check{y}$$

Reconstruction from Compressed Transform

- Quantization: Reduces data storage
 - Reduces computation for reconstruction
- Can use a variety of encoding methods for lossy coding of matrix columns

Numerical Example: ODT for Female Breast Imaging

Measurement System

Probe Configuration

Bulk optical parameters:

$$\mu_a = 0.02 \text{ cm}^{-1} \text{ and } D = 0.03 \text{ cm}$$

Heterogeneity optical parameters (Radius: 1 cm, depth: 3 cm):

$$\mu_a = 0.12 \text{ cm}^{-1} \text{ and } D = 0.03 \text{ cm}$$

- Modulation frequency: 70 MHz
- Noise: shot noise with an average SNR of 35.8 dB

Reconstruction Results for Absorption Distribution

Distortion versus Rate

- Distortion Defined as: $NRMSE = \sqrt{\frac{\|[H]y Hy\|^2}{\|Hy\|^2}}$.
- Whitening is more important than decorrelation!

Computation Complexity

- The size of the computational domain is $16 \times 16 \times 6 \text{ cm}^3$.
- M=720 number of measurements, N=65x65x33 number of pixels, I =30 number of iterations, c = 1808:1 compression ratio (NRMSE \approx 10%)

	Computation		Storage	
	Order	Seconds	Order	Mbytes
Conjugate Grad.	MNI	126	MN	766
Uncompressed	NM	0.89	NM	766
Compressed with KLT	$NM/c+N+M^2$	0.03	$NM/c+M^2$	4.4 = 0.4 + 4.0

Problem: Storage and Computation of Orthonormal Transforms

Reconstruction of x:

$$\hat{x} = W^T [\breve{H}] \breve{y}$$

But

$$\check{y} = Ty$$

- T is a dense matrix consisting of two orthonormal transforms
 - T must be stored
- (# of measurements)²
- Ty must be computed $(\# \text{ of measurements})^2$
- As # of measurements becomes large \rightharpoonup Problem!
- More general problem: how to estimate *T* ?!

Part II: Covariance Estimation for High Dimensional Signals

- Setting: Let $Y = [y_1, y_2, \dots, y_n]$ where $y_i \sim N(0, R)$ is a p – dimensional random vector.
- **Objective:** Estimate the eigenvalues and eigenvectors of *R*

$$R = E\Lambda E^{t}$$

- **Challenge:** This a classically difficult problem when n < p
 - Curse of dimensionality
- **Application:** Widely used for
 - □ PCA analysis, Eigenimage and eigensignal analysis
 - □ Machine learning, pattern recognition...

Data Model

Notation:

$$Y = \begin{bmatrix} y_1, y_2, \dots, y_n \end{bmatrix} \qquad S \triangleq \frac{1}{n} YY^t \qquad R = E \begin{bmatrix} S \end{bmatrix}$$
Observed Data Sample Covariance True Covariance

Likelihood of Y given R:

$$p_R(Y) = \frac{1}{(2\pi)^{np/2}} |R|^{-\frac{n}{2}} \exp\left\{-\frac{1}{2} tr\{Y^t R^{-1} Y\}\right\}, \text{ with } R = E \Lambda E^t.$$

ML estimate of eigenvectors and eigenvalues is given by

$$\begin{cases} \hat{E} = \arg\min\{|diag(E^tSE)|\} \\ \hat{\Lambda} = diag(\hat{E}^tS\hat{E}) \end{cases}$$

Sparse Matrix Transform (SMT)

SMT is product of Givens rotations:

$$E = E_1 E_2 \cdots E_k$$
 where $E_k = \begin{bmatrix} cos \\ sin \end{bmatrix}$

So the SMT is a generalization of the FFT

SMT is also a generalization of orthonormal wavelet transforms

Proposed Solution: Model-based estimation

- Big idea: (Eigenvector matrix E) $\in \Omega$ (Sparse Matrix Transform)
- The constrained ML estimation of eigenvectors and eigenvalues:

$$\begin{cases} \hat{E} = \arg\min_{E \in \Omega_K} \left\{ \left| diag(E^t S E) \right| \right\} \\ \hat{\Lambda} = diag(\hat{E}^t S \hat{E}) \end{cases}$$

- Each Givens rotation operates on only two coordinates
 - Only 4 multiplies per rotation (actually, only 2)
 - When K=p(p-1)/2, this can be any p-dimensional orthonormal transform

Design of SMT

Design of SMT is formulated as a cost optimization problem:

$$\hat{E} = \arg\min_{E = E_1 E_2 \cdots E_K} \left\{ \left| diag(E^t S E) \right| \right\}$$

- A greedy algorithm is used for optimization
- The algorithm:

```
For k = 1 to K {

Select most correlated coordinate pair

Decorrelate the coordinate pair with rotation E_k

}
E \leftarrow E_1 E_2 \cdots E_K
```

- Comments: 1) *K* is chosen to maximize cross-validated likelihood
 - 2) Does not depend on ordering of vector or stationary assumption

Distortion versus Rate – SMT for Optical Tomography

- The number of SMT butterflies used is $p\log_2(p)$
- Comment: SMT both reduces the data storage and computation required to compute Ty

Covariance Estimation for Hyperspectral Data: Grass Class

• # of hyperspectral bands: p = 191, # of samples: n = 80

Y (Gaussian)

Y (non-Gaussian)

Estimators Compared

Shrinkage estimator:

$$\hat{R} = (1 - \alpha) \cdot S + \alpha \cdot diag(S)$$

Graphic lasso (glasso) covariance estimator:

$$\hat{R} = \arg\max\left\{\log(Y|R) - \alpha \|R^{-1}\|_{1}\right\}$$

- SMT estimator
- SMT-shrinkage (SMT-S) estimator:

$$\hat{R} = (1 - \alpha) \cdot S + \alpha \cdot \hat{R}_{SMT}$$

• Comment: α is estimated using cross-validation

Eigenvalue Estimation: Gaussian Case

$$\hat{\Lambda} = diag(\hat{E}^t S \hat{E})$$

Results in Kullback-Leibler Distance: Gaussian Case

Computational Complexity

	Complexity	CPU time	Model order
	(without c.v.)	(seconds)	
Shrinkage	p	8.6 (with c.v.)	1
glasso	p^3I	422.6 (without c.v.)	4939
SMT	$p^2 + Kp$	6.5 (with c.v.)	495
SMT-S	$p^2 + Kp$	7.2 (with c.v.)	496

- *I* cycles used in glasso, *K* number of Givens rotations in SMT
- Numerical results are based on the grass Guassian case with n = 80
- c.v.: cross-validation

Computing Eigen-Images Using SMT

SMT Model Training

n training sample images p eigenvalues Apply p eigenfaces Givens rotations p pixels

SMT Eigenimage Analysis

SMT versus Traditional Eigen-faces

Face dataset:

SMT:

PCA + Shrinkage:

SMT-S:

Comparison of Traditional and SMT Eigenimages

- Eigenimage experiment
 - Dataset: face image
 - •Number of samples (n) = 80
 - •Dimensions (p) = 644
- Use cross-validation to compute expected log likelihood
 - •∆loglikelihood=167.3

Method	Maximum log-likelihood	Δ	K _{max}
PCA+Shrinkage	-2863.6	0	-
glasso	-2699.1	164.5	-
SMT	-2797.2 l	113.6	952
SMT-S	-2696.3	167.3	952
Diagonal	-3213.3	-349.7	-

- SMT produces much better fit to image data
- SMT can produce *all* eigenimages

Samples Generated Using Estimated Covariance

Diagonal:

$$y \sim N(\overline{y}, \hat{R})$$

PCA + Shrinkage:

Glasso:

SMT:

SMT-S:

Signal Detection in Hyper-Spectral Remote Sensing

Formulation of signal detection :

$$H_0: r = x$$

 $H_1: r = x + \lambda \cdot t$,

where: x is a background with covariance R t is a target signature λ is a scalar signal strength

r is the observed pixel

A filter q can be used for signal detection:

$$q^t \cdot r \ge \delta?$$

 \blacksquare The signal-to-clutter ratio (SCR) for a filter q is given by

$$SCR = \frac{(q^{t}t)^{2}}{E[(q^{t}x)^{2}]} = \frac{(q^{t}t)^{2}}{q^{t}Rq}$$

□ The matched filter $q = R^{-1}t$ optimizes the SCR

Matched Filter Performance: SCRR

• Matched filter using an estimated \hat{R} :

$$q = \hat{R}^{-1}t$$

■ The SCR ratio (SCRR) of the matched filter using an estimated \hat{R} :

$$SCRR = \frac{SCR(\hat{R})}{SCR(R)} = \frac{SCR \text{ using estmated } \hat{R}}{\text{optimal } SCR}$$

Numerical experiments on AVIRIS Florida data (p=224):

Detection Results for AVIRIS Florida Coastline Image

$$SCRR = \frac{SCR(\hat{R})}{SCR(R)} = \frac{SCR \text{ using estmated } \hat{R}}{\text{opitmal } SCR}$$

 $larger \Rightarrow better!$

Anomaly Change Detection (ACD)

Hyperbolic anomaly change detection:

$$\frac{P(x,y)}{P_x(x)P_y(y)} > \delta?$$

SMT for Anomaly Change Detection --- HACD

SMT for Anomaly Change Detection --- Dimension Reduction

Part III. Regression from High Dimensional Vectors

Conventional regression model

$$y = Xb + W$$

- y is $n \times 1$ vector to be predicted; X is $n \times p$ matrix of observations
- \Box b is px1 vector of prediction weights
- MMSE estimate of b: $\hat{b} = \underbrace{\mathbb{E}[X^t X]}^{-1} \cdot \underbrace{\mathbb{E}[X^t y]}_{\rho_{xy}}$
- Traditional solutions
 - □ Ordinary least squares: $\hat{b} = (X^t X)^{-1} X^t y$
 - □ Ridge regression: $\hat{b} = \arg\min_{b} \{ \|y Xb\|^2 + \gamma \|b\|^2 \}$
 - Lasso regression: $\hat{b} = \arg\min_{b} \left\{ \|y Xb\|^2 + \gamma \|b\|_1 \right\}$

SMT Regression

$$y = Xb + W$$

• Use SMT method to estimate $p \times p$ covariance of X

$$\hat{R} = \hat{E}\hat{\Lambda}\hat{E}^t \cong \frac{1}{n}X^tX$$

Decorrelate and whiten X

$$\tilde{X} = \hat{\Lambda}^{-1/2} \hat{E}^t X$$

Compute correlation between Y against X

$$\hat{b} = y^t \tilde{X} / n$$

Shrink coefficients using lasso, shrinkage or subset selection

Shrinkage:
$$\hat{b}_{\gamma} = sign(\hat{b})(\hat{b} - \gamma)_{+}$$

Numerical Results

• Each experiment was repeated 30 times with a re-generated t and W.

Summary

- We presented
 - □ A fast non-iterative MAP reconstruction algorithm
 - Localization versus reconstruction
 - Framework of non-iterative MAP
 - Matrix source coding theory
 - Covariance estimation for high dimensional data
 - SMT representation
 - SMT covariance estimation
 - SMT regression of high dimensional data

Thank you!!!

- Especially,
 - Prof. Bouman and Prof. Webb
 - □ Prof. Doerschuk, Prof. Low and Doctor Theiler
 - Prof. Allebach and Prof. Bell
 - Vaibhav, Leonardo, Jianing, Zhou, Yandong, Dalton...
 - Finally, my wife Yue!

Questions?