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Abstract - A nonlinear, Bayesian optimization scheme is presented for reconstructing

fluorescent yield and lifetime, the absorption coefficient, and the diffusion coefficient

in turbid media, such as biological tissue. The method utilizes measurements

at both the excitation and emission wavelengths for reconstructing all unknown

parameters. The effectiveness of the reconstruction algorithm is demonstrated

by simulation and by application to experimental data from a tissue phantom

containing the fluorescent agent indocyanine green. c©2003 Optical Society of

America
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1. INTRODUCTION

Optical diffusion tomography (ODT) is emerging as a powerful tissue imaging modality.1,2 In ODT,

images are comprised of the spatially dependent absorption and scattering properties of the tis-

sue. Boundary measurements from several sources and detectors are used to recover the unknown

parameters from a scattering model described by a partial differential equation. Contrast between

the properties of diseased and healthy tissue might then be used in clinical diagnosis. In principle,

sinusoidally modulated, continuous-wave (CW), or pulsed excitation light is launched into the bio-

logical tissue, where it undergoes multiple scattering and absorption before exiting. The measured

intensity and phase (or delay) information may be used to reconstruct three-dimensional maps of

the absorption and scattering properties by optimizing a fit to diffusion model computations. As

a result of the nonlinear dependence of the diffusion equation photon flux on the unknown pa-

rameters and the inherently three-dimensional nature of photon scattering, this inverse problem is

computationally intensive and must be solved iteratively.

A relatively modest intrinsic contrast between the optical parameters of diseased and healthy

breast tissue has been reported in some studies.3,4 The use of exogenous fluorescent agents has

the potential to improve the contrast and thus to facilitate early diagnosis. In recent years, the

use of fluorescent indicators as exogenous contrast agents for in vivo imaging of tumors with near-

infrared (NIR) or visible light has shown great promise, attracting considerable interest.5–14 In

experimental studies with animal subjects,5–7,9, 10,13,14 fluorescence has been successfully used to

visualize cancerous tissue in vivo near the skin surface. In addition, Ntziachristos et al.12 have used

optical diffusion tomography after indocyanine green (ICG) injection to image the absorption of a

malignant breast tumor in a human subject. The injected fluorophore may preferentially accumulate

in diseased tissue due to increased blood flow from tumor neovascularization.9 Alternatively, the

agent may have different decay properties in diseased tissue, which could be useful in localizing
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tumors independently of fluorophore concentration.7 In addition, contrast between tumors and

surrounding tissue may be substantially improved by the use of diagnostic agents that selectively

target receptors specific to cancer cells.8,10,13,14

In frequency-domain fluorescence optical diffusion tomography, sinusoidally modulated light at

the fluorophore’s excitation wavelength is launched into the tissue. The excited fluorophore, when

it decays to the ground state, emits light at a longer (emission) wavelength, and this emission is

measured by an array of detection devices. These emission data are then used to perform a volu-

metric reconstruction of the yield (a measure of the fluorescence efficiency) and the lifetime (the

fluorescent decay parameter). However, the multiple scattering in tissue complicates the reconstruc-

tion.15,16 The emission intensity of the fluorophore is proportional to the optical intensity at the

excitation wavelength at that position, which depends, in turn, on the optical parameters of the

scattering domain at the excitation wavelength. A rigorous reconstruction of fluorescence property

maps should also therefore include reconstructions of absorption and scattering parameters at the

excitation and emission wavelengths. In addition, reconstruction of the unknown absorption and

scattering coefficients by use of ODT can function as an adjunct image to the fluorescence image

in screening for tumors.

Fluorescence imaging simulations with three-dimensional (3-D)17 and two-dimensional (2-

D)18–20 geometries have reconstructed fluorescence yield and lifetime parameters. These simula-

tions have generally assumed that the absorption and scattering parameters are known in advance,

except for Roy and Sevick-Muraca,17 who also reconstructed the excitation wavelength absorption.

In an early experimental result, Chang et al.21 used a transport theory model to reconstruct fluo-

rescent yield in a heterogeneous tissue phantom containing Rhodamine 6G. Their study used CW

data recorded in a 2-D plane geometry. Recently, Ntziachristos and Weissleder22 used a normalized

Born approximation to reconstruct 3-D, fluorescent heterogeneities containing the NIR cyanine dye
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Cy5.5 embedded in a tissue phantom. Under the assumption of known background optical prop-

erties and absorbers limited to a perturbative regime, their technique can circumvent the need for

recording background measurements before contrast agent administration.

The development of nonlinear inversion methods for optical diffusion tomography is necessary

due to the fundamentally limited accuracy of methods which linearize the forward model.23 Pre-

viously, we have presented a nonlinear Bayesian approach24–26 and shown that it produces high

quality images compared to previous methods such as the distorted Born iterative method.27 The

method formulates the inversion as the optimization of an objective function which incorporates a

model of the detection system and a priori knowledge about the image properties. We have found

that a neighborhood regularization scheme used in a Bayesian framework reduces artifacts charac-

teristic of previous approaches which impose a penalty on the norm of the image updates.24 The

inversion can be made more computationally efficient by multigrid techniques.25

Here, we extend our previous approach to include fluorescence yield and lifetime in the inverse

problem. We present a new inversion algorithm and a measurement scheme for reconstructing all

the unknown fluorescence, absorption, and diffusion parameters. Numerical simulations validate

the scheme and demonstrate its computational efficacy. We use the method to image a spherical

heterogeneity in a tissue phantom by use of transmission data collected by a CW imaging device.

The heterogeneity contains ICG, a fluorescent diagnostic agent approved by the FDA for use in the

NIR range, where biomedical imaging with light is most practical.

2. FLUORESCENCE DIFFUSION TOMOGRAPHY PROBLEM

The transport of modulated light (at modulation angular frequency ω, i.e., ejωt variation) in a fluo-

rescent, highly scattering medium with an external source at the excitation wavelength is modeled
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by using the coupled diffusion equations:15,16,28

∇ · [Dx(r)∇φx(r, ω)]− [µax(r) + jω/c] φx(r, ω) = −δ(r− rsk
) (1)

∇ · [Dm(r)∇φm(r, ω)]− [µam(r) + jω/c] φm(r, ω) = −φx(r, ω)ηµaf
(r)

1− jωτ(r)

1 + [ωτ(r)]2
, (2)

where the subscripts x and m, respectively, denote excitation and emission wavelengths λx and

λm, φ(r, ω) is the complex modulation envelope of the photon flux, δ(r) is the Dirac function, and

rsk
is the location of the excitation point source. We also assume single exponential decay in this

model. The optical parameters are the diffusion coefficients D(r) and the absorption coefficients

µa(r). The fluorescence parameters are the lifetime τ(r) and the fluorescent yield ηµaf
(r). The

fluorescent yield incorporates the fluorophore’s quantum efficiency η (which depends on the type

of fluorophore and the chemical environment) and its absorption coefficient, µaf
(which depends

on the fluorophore concentration). Note the right hand side of (2), where the light absorbed by

fluorophores and subsequently emitted at the emission wavelength, is incorporated into an effective

source term. In the case of an external point source at the emission wavelength, the flux is governed

by

∇ · [Dm(r)∇φm(r, ω)]− [µam(r) + jω/c] φm(r, ω) = −δ(r− rsk
). (3)

In the most general case, the unknown parameters in (1) and (2) are µax , µam , Dx, Dm, τ ,

and ηµaf
. Reconstructions of the Dx and µax images may be obtained using data from sources and

detectors at the excitation wavelength λx. Similarly, Dm and µam may be obtained using data from

sources and detectors at the emission wavelength λm. Finally, having found these parameters, using

sources at λx and detectors filtered at λm will yield the fluorescence parameters. Figure 1 depicts

this measurement approach schematically.

After discretizing the domain into N voxels of equal size, the unknown parameters can be

regarded as three image vectors, each corresponding to a measurement set. Let ri denote the position
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of the ith voxel centroid, i.e., the location of a node in a Cartesian finite difference representation

of (1)-(3). We define the image vectors as

xx =











xxa

xxb











= [µax(r1) · · ·µax(rN ), Dx(r1) · · ·Dx(rN )]T

xm =











xma

xmb











= [µam(r1) · · ·µam(rN ), Dm(r1) · · ·Dm(rN )]T

xf =











xfa

xfb











= [γ(r1) · · · γ(rN ), τ(r1) · · · τ(rN )]T ,

(4)

where the subscript f denotes the fluorescence image and the superscript T denotes the transpose

operation. Note that the three image vectors are each of size 2N , consisting of two unknown

parameter vectors of size N . In addition, we reparameterize the fluorescence unknowns {ηµaf
, τ}

to {γ, τ} using

γ(r, ω) = ηµaf
(r)

1

1 + [ωτ(r)]2
, (5)

which, when substituted into (2), gives

∇ · [Dm(r)∇φm(r, ω)]− [µam(r) + jω/c] φm(r, ω) = −φx(r, ω)γ(r, ω) [1− jωτ(r)] . (6)

As explained in Appendix A, this new parameterization is useful because, in a sequential optimiza-

tion scheme, it takes advantage of the inherent linearity of the fluorescence inverse problem while

allowing regularization to be applied to τ directly. The sets of flux measurements corresponding to

the above image vectors may be defined, respectively, as yx, ym, and yf .

3. INVERSION

The estimation of each of the unknown images {xx,xm,xf} from the corresponding observations

{yx,ym,yf} is an ill-posed, typically underdetermined, inverse problem. As in previous work,24–26,29
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we address this by formulating the inverse problem in a Bayesian framework. This framework allows

the incorporation of a priori information, and it encapsulates all available information about the

problem model into an objective function to be optimized. Let x denote one of the images of (4),

and let y denote its corresponding observations. We use Bayes’ rule to compute the maximum a

posteriori (MAP) estimate, given by

x̂MAP = arg max
x≥0
{ p(y|x) + p(x) }, (7)

where p(y|x) is the data likelihood and p(x) is the prior density for the image. The data likelihood

can be formed from a Gaussian model by considering, for example, the physical properties of a

photocurrent shot noise-limited measurement system.24 This gives

p(y|x) =
1

(πα)P |Λ|−1
exp

[

−
||y − f(x)||2

Λ

α

]

, (8)

where P is the number of measurements, f is the appropriate forward operator, α is a scalar

parameter that scales the noise variance, and, for an arbitrary vector w, ||w||2
Λ

= wHΛw (where

H denotes Hermitian transpose), and αΛ−1 is the covariance matrix. In a small signal shot noise

model, the measurements are independent and normally distributed with a mean equal to the exact

(noiseless) measurement and a variance proportional to the exact measurement at a modulation

frequency of zero (DC). Following Ye et al.,24 we approximate the DC flux for the ith datum as

|yi|. The resulting covariance matrix is given by

αΛ−1 = diag[|y1|, |y2|, ...|yP |]. (9)

For the prior density p(x), we use the generalized Gaussian Markov random field (GGMRF)

model, which enforces smoothness in the solution while preserving sharp edge transitions.24,30 For

each node (representing a voxel) inside the image, we form a three-dimensional neighborhood from

the 26 adjacent nodes. Let xT = [xT
a xT

b ], as in (4). Assuming independence of xa and xb, the
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density function is given by

p(x) = p(xa) · p(xb) (10)

=





1

σN
a z(pa)

exp



−
1

paσ
pa
a

∑

{i,j}∈Na

bi−j |xi − xj |
pa







 ·





1

σN
b z(pb)

exp



−
1

pbσ
pb

b

∑

{i,j}∈Nb

bi−j |xi − xj |
pb







 , (11)

where the subscripts a and b have the same meaning as in (4), xi denotes the ith node of x, the set

N consists of all pairs of neighboring nodes, and bi−j is the weighting coefficient corresponding to

the ith and jth nodes. The coefficients bi−j are assigned to be inversely proportional to the node

separation in a cube-shaped node layout, with the requirement that that
∑

j bi−j = 1. The constants

p and σ control the shape and scale of the distribution, and the factor z(p) is a normalization term.

As in previous work,25 we incorporate α into the inverse problem as an unknown for each

image. We have found that this tends to improve the robustness and speed of convergence. As a

result, we perform a joint MAP estimation of both x and α for each image:

x̂x = arg max
xx≥0,αx

{ p(xx|yx, αx) } (12)

x̂m = arg max
xm≥0,αm

{ p(xm|ym, αm) } (13)

x̂f = arg max
xf≥0,αf

{ p(xf |yf , αf , x̂x, x̂m) }. (14)

The estimations of xx and xm are performed independently of each other, using (1) and (3) as

the respective forward models. Subsequently, these estimates are incorporated into the coupled

diffusion equations (1) and (2) to estimate xf .

Let x and α correspond to one of the images in (12)-(14). Ye et al.25 showed that the above

reconstructions are equivalent to maximizing the log posterior probability l(x), which can be derived

using (7), (8), and (11):

l(x) = −P ln ||y − f(x)||2
Λ
−

1

paσ
pa
a

∑

{i,j}∈Na

bi−j |xi − xj |
pa −

1

pbσ
pb

b

∑

{i,j}∈Nb

bi−j |xi − xj |
pb (15)
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Optimizing l(x) may be implemented by alternating closed form updates of α̂ with updates of x̂:25

α̂ =
1

P
||y − f(x̂)||2

Λ
(16)

x̂ ' arg max
x≥0
{ ln p(y|x, α̂) + ln p(x|α̂)}, (17)

where ' implies an update iteration, rather than a full optimization. The x̂ updates represent

more computationally expensive steps toward optimizing (7) than the α̂ updates. For each image,

we form an objective function from (8) and (11):

c(xx, α̂x) =
1

α̂x
||yx − fx(xx)||2

Λx
+

1

pxaσ
pxa
xa

∑

{i,j}∈Nxa

bi−j

∣

∣

∣xxai
− xxaj

∣

∣

∣

pxa

+
1

pxbσ
pxb

xb

∑

{i,j}∈Nxb

bi−j

∣

∣

∣xxbi
− xxbj

∣

∣

∣

pxb

(18)

c(xm, α̂m) =
1

α̂m
||ym − fm(xm)||2

Λm
+

1

pmaσ
pma
ma

∑

{i,j}∈Nma

bi−j

∣

∣

∣xmai
− xmaj

∣

∣

∣

pma

+
1

pmbσ
pmb

mb

∑

{i,j}∈Nmb

bi−j

∣

∣

∣xmbi
− xmbj

∣

∣

∣

pmb

(19)

c(xf , x̂x, x̂m, α̂f ) =
1

α̂f
||yf − ff (xf , x̂x, x̂m)||2

Λf
+

1

pfaσ
pfa

fa

∑

{i,j}∈Nfa

bi−j

∣

∣

∣xfai
− xfaj

∣

∣

∣

pfa

+
1

pfbσ
pfb

fb

∑

{i,j}∈Nfb

bi−j

∣

∣

∣xfbi
− xfbj

∣

∣

∣

pfb

. (20)

The variables have the same meaning as in (8) and (11), and their subscripts have the same meaning

as in (4). Note that forward operator ff is a function of xf and the estimates x̂x and x̂m. In principle,

one could jointly optimize (18)-(20) over xx, xm, and xf , but for computational simplicity, we first

optimize (18) and (19) and subsequently incorporate the estimates into (20). With the objective

functions (18)-(20) established, an optimization algorithm to minimize these costs is needed, which

is described in the next section.

4. ITERATIVE COORDINATE DESCENT OPTIMIZATION

The optimizations of (18)-(20) are performed using the iterative coordinate descent (ICD) algo-

rithm,24,26,31 a sequential single-site update scheme similar to the Gauss-Seidel method used in
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other problems. One ICD scan consists of forming a local quadratic approximation to the cost

function, followed by an update of each image element individually to minimize the approximate

objective function. On each subsequent scan, the Fréchet derivative of the nonlinear forward oper-

ator is recomputed, and a new quadratic approximation is made.

Once again, let x denote one of the three images to be optimized. During the scan, the individual

voxels of x are sequentially updated in random order. At the beginning of the scan, f(x) is first

expressed using a Taylor expansion as

||y − f(x)||2
Λ
'

∣

∣

∣

∣y − f(x̂)− F′(x̂)∆x
∣

∣

∣

∣

2
Λ

, (21)

where ∆x = x− x̂, and F′(x̂) represents the Fréchet derivative of f(x) with respect to x at x = x̂.

Using (21), we formulate the approximate cost function

c(x, α̂) '
1

α̂

∣

∣

∣

∣z− F′(x̂)x
∣

∣

∣

∣

2
Λ

+
1

paσa
pa

∑

{i,j}∈Na

bi−j |xi − xj |
pa +

1

pbσb
pb

∑

{i,j}∈Nb

bi−j |xi − xj |
pb , (22)

where

z = y − f(x̂) + F′(x̂)x̂ . (23)

With the other image elements fixed, the ICD update for x̂i is given by

x̂i = arg min
xi≥0

{

1

α̂

∣

∣

∣

∣

∣

∣y − f(x̂)−
[

F′(x̂)
]

∗(i) (xi − x̂i)
∣

∣

∣

∣

∣

∣

2

Λ
+

1

pσp

∑

j∈Ni

bi−j |xi − x̂j |
p
}

, (24)

where [f ′(x̂)]∗(i) is the ith column of the Fréchet matrix and Ni is the set of nodes neighboring

node i, and p and σ are chosen appropriately from {pa, pb} and {σa, σb}. This one-dimensional

minimization is solved by use of a simple half-interval search.24 The Fréchet matrices used for

each image are given in Appendix A. Appendix B summarizes the ICD optimization algorithm in

pseudocode form.

Previously, we have found that multiresolution techniques can reduce the computational burden

and improve robustness of convergence for the optical diffusion tomography problem.25 Hence, for
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large computational domains, it may be beneficial to perform several ICD scans at a reduced

resolution followed by interpolation as an initialization step for the full-resolution problem.

5. SIMULATIONS

Figure 2 shows cross section images of a 17.3×17.3×6 cm tissue phantom having background values

µax,m = 0.01 cm−1, Dx,m = 0.047 cm, τ = 0 ns and ηµaf
= 0 cm−1. A slightly off-center spherical

heterogeneity with diameter of roughly 3 cm is present, with µax = 0.05 cm−1, µam = 0.01 cm−1,

Dx and Dm = 0.30 cm, τ = 0.55 ns, and ηµaf
= 0.02 cm−1. Figure 2(g) shows the location and

size of the fluorophore as the ηµaf
= 0.01 cm−1 isosurface. As shown in Figure 3, the bottom face

of the domain contains 16 sources (modulated at 70 MHz) arranged in a 4× 4 grid pattern. On the

top face, 16 detectors are placed in an identical grid. Using multigrid finite differences32 to solve

the diffusion equations, we generated synthetic measurements. Additive noise was introduced using

the approximate shot noise model of (8) and (9), giving an average signal-to-noise ratio (SNR) of

34 dB and a maximum SNR of 41 dB. In the forward solution, an extrapolated zero-flux boundary

condition33 was used to model the free space absorbing boundaries.

For each of the xx, xm, and xf inversions, 20 ICD iterations at a resolution of 17 × 17 × 9

nodes, followed by 20 ICD iterations at a resolution of 33× 33× 17 nodes, were performed. For the

nonlinear xx and xm problems, multigrid finite differences were used to solve the forward model

prior to each ICD image update. During the inversions, the log posterior probability was evaluated

as the convergence criterion. For each image, convergence (with subsequent iterations changing the

images very little) was obtained in approximately 10 minutes of computation on a AMD Athlon

1333 MHz workstation. While automatic estimation of the GGMRF hyperparameters p and σ is in

principle possible using a maximum likelihood estimation technique,34 we follow Ye et al.24 and use

parameter values which empirically give good results. For each reconstruction, the solutions were
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initialized with the correct constant background value, as the ICD method’s convergence is slow for

low spatial frequency image components.31 Multigrid inversion methods in conjunction with ICD

updates alleviate this difficulty,25,35 but, again, we do not address them in this investigation.

Reconstructions of µax,m , Dx,m, τ , and ηµaf
are shown in Figure 4. We used p = 2.0 in all of the

reconstructions, and σ values of 0.015 cm−1, 0.02 cm, 0.5 ns, and 0.002 cm−1 in the reconstructions

of µa, D, τ , and γ, respectively. The reconstructions are qualitatively and quantitatively accurate.

In some cases, changes in the lifetime parameter τ may be used to distinguish between diseased

and healthy tissue environments. Hence, it is useful to determine if such changes are within the

accuracy of the reconstruction algorithm. The simulation was repeated for four fluorophores, each

with a different value of τ : 0.1375 ns, 0.275 ns, 0.55 ns, and 1.10 ns. The procedure outlined above

was performed for each image. To determine single value of τ̂avg for each reconstructed image, we

used a weighted average:

τ̂avg =

∑N−1
i=0 γ̂(ri)τ̂(ri)
∑N−1

i=0 γ̂(ri)
. (25)

The weighted average is reasonable, as the reconstruction τ̂(r) may conceivably be large in regions

where ˆηµaf
≈ 0. It is also similar to the weighting that occurs in the source term of (6), which

represents the effect of τ on the data. Figure 5 shows a plot of τ̂avg as a function of the true value.

The result suggests that the method can track even small changes in diagnostic lifetime imaging

applications.

We also investigated the propagation of error from the x̂x and x̂m calculations into the x̂f

result. Rather than computing reconstructions x̂x and x̂m, we initialized the fluorescence inversion

with several constant background values for µax , Dx, µam , and Dm and computed an error metric.

For the η̂µaf
results, the error metric was the normalized root mean squared error (NRMSE),
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defined as

NRMSE =





∑N−1
i=0 |η̂µaf

(ri)− ηµaf
(ri)|

2

∑N−1
i=0 |ηµaf

(ri)|2





1/2

. (26)

For the τ̂ results, the error metric is the fractional error, |τ̂avg−τtrue|/τtrue. The plots in Figure 6(a)-

(d) show the NRMSE for η̂µaf
, as a function of background µax , Dx, µam , and Dm, respectively.

The plots in Figure 7(a)-(d) show the fractional error for ˆtauavg, also as a function of background

µax , Dx, µam , and Dm, respectively. Whenever one parameter was varied, the others were all set

to the correct image’s background value. In all plots, an ”X” symbol shows the error metric value

resulting from computing x̂x and x̂m in advance. For η̂µaf
, the NRMSE is above 0.5 in all cases,

even when the full reconstruction was done. This is likely due to blurring of the sharp edges as

a result of using the GGMRF prior model with p = 2.30 Ignoring the heterogeneities, but using

the correct background values, substantially increases the NRMSE. However, the NRMSE changes

relatively little over a range of incorrect background values for all of the parameters, µax , Dx, µam ,

and Dm. This suggests that the reconstructed yield is fairly robust to initialization errors. However,

τ̂ is highly sensitive to initialization with incorrect backgrounds.

6. EXPERIMENTAL RESULTS

To further evaluate the proposed reconstruction method, we performed fluorescence measurements.

The data were recorded using a CW imaging device and a versatile phantom box (shown in Figure

8), both described in detail elsewhere.36 In the absence of phase information, we did not reconstruct

τ , and we assumed D to be constant and known based on physical considerations. The instrument

has laser diode sources available at both 690 nm and 830 nm, and it has avalanche photodiode

(APD) detectors. While 690 nm excitation is not ideal for ICG, a published excitation spectrum37

indicates that the detected 830 nm emission intensity, using 690 nm excitation, is about 30% of the

maximum value (obtained using 780 nm excitation), making it acceptable for this demonstration.
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The box had internal dimensions of 16 × 16 × 3.8 cm, where the last dimension is the vertical

thickness. As shown in Figure 9, 9 source fibers were connected to the bottom plate (at z = −1.9

cm), and 14 detector fibers were connected to the top plate (at z = 1.9 cm). A hollow, surface

frosted glass sphere of outer diameter 2 cm and thickness of about 2 mm was mounted with its

center near z = 0.7 cm, as depicted in Figure 10. This sphere was mounted on a small plastic stand

on the bottom of the box. It was also connected to a closed circulation channel via thin, translucent

rubber tubes leading outside the box, allowing fluorophore solution to be titrated into the sphere

from an external reservoir over the course of the experiment. The titration allowed comparable data

to be taken both without and with the fluorophore present for analysis and calibration purposes.

The box was filled with a suspension of 0.4% Intralipid. Assuming 690 nm excitation and 830

nm emission, this results in background values of approximately Dx = 0.071 cm, Dm = 0.082 cm,

µax = 0.0052 cm−1, and µam = 0.03 cm−1.38,39 The sphere was initially filled with the same sus-

pension, creating an essentially homogeneous domain (apart from the glass sphere, rubber tubes,

and plastic stand). Before administration of the ICG, two sets of measurements, y
(base)
x and y

(base)
m ,

were recorded using sources at 690 nm and at 830 nm, respectively. We refer to the measurements

recorded before ICG administration as baseline measurements. Subsequently, ICG was introduced

into the sphere at a concentration of 1.0 µmol/L. For the purposes of reconstructing µax , measure-

ments, which we define as y
(uncal)
x , were recorded using 690 nm sources with no optical bandpass

filters installed over the detectors. We neglect the fluorescence signal in these measurements, as

published quantum efficiency values16,40 imply that its effect on the data is two or three orders of

magnitude below the effects due to absorption. Following a similar procedure, 830 nm data, which

we call y
(uncal)
m , were recorded (with no filters) for reconstructing µam . Upon completion of these

measurements, 830 nm bandpass filters with 12 nm FWHM (Newport 10LF10-830) were installed

in front of the detectors to perform the fluorescence measurements. Due to a limited number of
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filters, only 9 of the 14 detectors were used for recording the filtered fluorescence measurements (as

shown in Figure 9).

The installation of the filters required disconnection of the detector fibers from the detection

devices. In principle, the disconnection and subsequent reconnection of the fibers could invalidate

the previous baseline calibrations by potentially changing the detectors’ coupling efficiencies. Such

effects might adversely affect the yx and ym measurements. Hence, a new baseline calibration

procedure was performed. This need for multiple calibrations is a limitation in the design of the

experiment which could be alleviated by using a different detection scheme. For example, the

instrument used by Ntziachristos and Weissleder,22 in which a CCD camera imaged a detection

fiber array, required only the installation of a single fluorescence filter without perturbing the

detection fibers. Incorporating the unknown calibration parameters into the inverse problem29,41

may also alleviate this difficulty.

To perform the new calibration, the ICG-Intralipid mixture was pumped out of the sphere

and replaced with new Intralipid without ICG. Baseline measurements y
(base)
f with 690 nm sources

and 830 nm detection were made. Subsequently, a new ICG-Intralipid mixture identical in concen-

tration to the previous one was titrated into the sphere. With the ICG now present, fluorescence

measurements y
(uncal)
f were recorded using 690 nm source excitation and 830 nm detection.

Before applying the reconstruction algorithm for xx and xm, calibrations using the baseline

data were performed. Synthetic data y
(comp)
x (for 690 nm sources) and y

(comp)
m (for 830 nm sources)

were computed for a homogeneous phantom with Dx = 0.071 cm, Dm = 0.082 cm µax = 0.0052

cm−1, and µam = 0.03 cm−1 on a 33 × 33 × 17 grid. Calibrations were performed by normalizing

to these computed data:

yxi
= y(uncal)

xi

y
(comp)
xi

y
(base)
xi

(27)
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ymi
= y(uncal)

mi

y
(comp)
mi

y
(base)
mi

, (28)

where the subscript i represents the ith component of the data vector. This baseline calibration

procedure estimates the unknown scaling and coupling efficiencies in the measurements. For the

much dimmer fluorescence measurements, the baseline data y
(base)
f contained significant background

signal. Calibrations were performed to account for the unknown coupling efficiencies and to remove

these background components from the fluorescence data:

yfi
=

(

y
(uncal)
fi

− y
(base)
fi

) y
(comp)
xi

y
(base)
xi

, (29)

where we have used the 690 nm calibration factors. The resulting fluorescence data contain an

unknown scale factor, due to the unknown filter attenuation of the 690 nm excitation light relative

to the 830 nm fluorescence light.

The reconstructions of µax and µam are shown in Figures 11 and 12, respectively. For each

inversion, a volume representing the whole box was discretized into 33 × 33 × 17 voxels. The µax

inversion used σ = 0.015 cm−1 and p = 2, and the µam inversion used σ = 0.03 cm−1 and p = 2. For

both images, the ICD algorithm was run for 20 iterations on a 927 MHz Pentium III workstation,

taking approximately 10 minutes. The resulting µax and µam reconstructions show a heterogeneity

with accurate shape, though with artifacts present in the region close to the top plate. In both

images, the sphere’s vertical positions are similar, but below the true location by approximately 4 or

5 mm. The similarity of the two reconstructions, despite the fact that they are based on independent

data sets, suggests that this error is due to a systematic effect in the reconstruction method. They

may be a result of calibration errors, as the assumption of a diffuse, homogeneous medium in the

baseline calibrations neglected the presence of the low-scattering glass sphere, the plastic stand

used to hold the sphere, and the thin rubber tubes used for pumping in ICG solution. Small errors

in the assumed Dx and Dm values might also contribute to artifacts in the reconstructions. In
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addition, placing the sphere close to the detectors may have resulted in modeling errors under the

diffusion approximation. The reconstructed ICG µax is slightly smaller than the predicted value of

0.039 cm−1 which one would expect from the results of Sevick-Muraca et al.,16 after correcting for

the use of 690 nm, rather than 780 nm, excitation with the aforementioned 30% factor.37 The µam

image has higher contrast than the µax image, in contrast to a published absorption spectrum for

ICG 6.5 µmol/L, which shows higher absorption at 690 nm than at 830 nm. It is possible that ICG’s

instability in aqueous solution causes some variability in its optical spectrum, as Landsman et al.42

observed a shift in the absorption peak toward longer wavelengths with decreasing concentration.

In addition, the effect of an Intralipid suspension on ICG’s absorption spectrum has not been

investigated in detail, to our knowledge.

Figure 13 shows the reconstructed fluorescent yield ηµaf
. As a result of the unknown scale factor

in the fluorescence data, the image is in arbitrary units (AU). Making use of the reconstructed µax

and µam , the ICD algorithm, using p = 2.0 and σ = 5.0 AU , was run for 20 iterations (about 3

minutes). The iterations were computationally inexpensive due to the linearity of the fluorescence

inverse problem. In contrast to the absorption reconstructions, the reconstructed fluorophore’s

center is slightly higher than that of the true fluorophore. Though no quantitative information is

available, the size and shape are approximately correct.

7. CONCLUSION

We have presented a computationally efficient Bayesian inversion strategy for reconstructing fluo-

rescence, absorption, and scattering properties, and demonstrated the method in a simulation study

and in a tissue phantom experiment to image fluorescence from ICG in a spherical heterogeneity.

The results show potential for use of optical diffusion tomography with fluorescence as a tool for

localizing fluorescent contrast agents in clinical diagnostic applications.
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It is worth noting that our experimental calibration procedure simplifies the problem substan-

tially by choosing a background absorption value in advance and observing changes with respect to

baseline measurements. We have found that this procedure reconstructs similar-looking absorbers,

over a wide range of background values. Ongoing work with nonlinear multigrid reconstruction

algorithms25 and more accurate transport models43 may improve reconstruction accuracy with less

favorable calibrations.

The error propagation study suggests that qualitative, if not necessarily quantitative, results for

the yield imaging problem may be obtainable without doing the full xx and xm inversions. Although

the reconstructed lifetime was highly sensitive to incorrectly initialized background properties, the

reconstructed yield was not. Hence, as Ntziachristos and Weissleder22 have observed, simplified

first-order models are more easily applied to the fluorescent yield imaging problem than to the

full absorption imaging problem. This enables a simpler experimental approach which requires no

baseline data. For qualitative localization of tumors, this could prove to be a decisive advantage of

fluorescence imaging over absorption imaging.

8. APPENDICES

A. Fréchet Derivatives

Here we describe the computation of the Fréchet derivatives of the forward operators used in

this study. Let g(rsrc, robs;x) be the diffusion equation Green’s function for the problem domain

computed using the image vector x and a numerical forward solver, with rsrc as the source location

and robs as the observation point. In addition, suppose that for a particular image x there are K

sources and M detectors, and a total of P = KM measurements. Let rsk
represent the position

of the kth source and let rdm′
represent the position of the {m′}th detector. ∗ It follows that the

∗Here, we use the letter m to denote detector number, as in our previous publications,24–26,29 but with a prime

mark to avoid confusion with the fluorescence emission subscript.
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computed data vector f(x) is given by

f(x) =

[

g(rs1
, rd1

;x) g(rs1
, rd2

;x) · · · g(rs1
, rdM

;x) g(rs2
, rd1

;x) · · · g(rsK
, rdM

;x)

]T

.(30)

For image vectors x of size 2N , the Fréchet derivative is the P × 2N complex matrix given by

f ′(x) =























































∂g(rs1
,rd1

;x)

∂x1

∂g(rs1
,rd1

;x)

∂x2
· · ·

∂g(rs1
,rd1

;x)

∂x2N−1

∂g(rs1
,rd1

;x)

∂x2N

∂g(rs1
,rd2

;x)

∂x1

∂g(rs1
,rd2

;x)

∂x2
· · ·

∂g(rs1
,rd2

;x)

∂x2N−1

∂g(rs1
,rd2

;x)

∂x2N

...
...

. . .
...

...

∂g(rs1
,rdM

;x)

∂x1

∂g(rs1
,rdM

;x)

∂x2
· · ·

∂g(rs1
,rdM

;x)

∂x2N−1

∂g(rs1
,rdM

;x)

∂x2N

∂g(rs2
,rd1

;x)

∂x1

∂g(rs2
,rd1

;x)

∂x2
· · ·

∂g(rs2
,rd1

;x)

∂x2N−1

∂g(rs2
,rd1

;x)

∂x2N

...
...

. . .
...

...

∂g(rsK
,rdM

;x)

∂x1

∂g(rsK
,rdM

;x)

∂x2
· · ·

∂g(rsK
,rdM

;x)

∂x2N−1

∂g(rsK
,rdM

;x)

∂x2N























































. (31)

For the absorption and scattering coefficients, the discrete representations of the Fréchet deriva-

tive matrix elements have been derived and reported previously27,44 as

∂g(rsk
, rdm′

;x)

∂µa(ri)
' −g(rdm′

, ri;x)g(rsk
, ri;x)V (32)

∂g(rsk
, rdm′

;x)

∂D(ri)
' −∇g(rdm′

, ri;x) · ∇g(rsk
, ri;x)V , (33)

where ' is used due to domain discretization errors, V is the voxel volume, ri is the position of

the ith voxel, and reciprocity45 (which allows replacement of g(rsrc, robs;x) with g(robs, rsrc;x))

has been used to reduce computation. Here, ∇ is the spatial gradient operator, which, in our

computations, is evaluated numerically as a symmetric first difference. The separability of (32) and

(33) with respect to source index and detector index enables additional savings in computation and

in storage.29 Rather than creating the entire KM × 2N matrix, it suffices to initially compute and
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store two Green’s function matrices of sizes K ×N and M ×N , respectively:

G(s) =



















g(rs1
, r1;x) · · · g(rs1

, rN ;x)

...
. . .

...

g(rsK
, r1;x) · · · g(rsK

, rN ;x)



















(34)

G(d) =



















g(rd1
, r1;x) · · · g(rd1

, rN ;x)

...
. . .

...

g(rdM
, r1;x) · · · g(rd1

, rN ;x)



















. (35)

During the ICD scan, when the ith voxel of x is to be modified, the ith column of f ′(x) can be

formed from (34) and (35).

For the fluorescence problem, more specific notation is needed. Let gx(rsrc, robs;xx) denote

the λx Green’s function obtained by solving (1), and let gm(rsrc, robs;xm) denote the λm Green’s

function obtained by solving (3). We denote the Green’s function matrices accordingly:

G(s)
x =



















gx(rs1
, r1;xx) · · · gx(rs1

, rN ;xx)

...
. . .

...

gx(rsK
, r1;xx) · · · gx(rsK

, rN ;xx)



















(36)

G(d)
x =



















gx(rd1
, r1;xx) · · · gx(rd1

, rN ;xx)

...
. . .

...

gx(rdM
, r1;xx) · · · gx(rdM

, rN ;xx)



















(37)

G(s)
m =



















gm(rs1
, r1;xm) · · · gm(rs1

, rN ;xm)

...
. . .

...

gm(rsK
, r1;xm) · · · gm(rsK

, rN ;xm)



















(38)
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G(d)
m =



















gm(rd1
, r1;xm) · · · gm(rd1

, rN ;xm)

...
. . .

...

gm(rdM
, r1;xm) · · · gm(rdM

, rN ;xm)



















. (39)

Consider one reparameterization of the right hand side of (2):

ηµaf
(r)

1− jωτ(r)

1 + [ωτ(r)]2
= βR(r)− jβI(r). (40)

It follows immediately that the inverse problem for βR and βI is linear. Let gf (rsrc, robs;xx,xm)

denote the fluorescence observed at robs emitted in response to excitation at rsrc. The Fréchet

derivatives for βI and βR are given by

∂gf (rsk
, rdm′

;xx,xm)

∂βR(ri)
' gm(rdm′

, ri;xm)gx(rsk
, ri;xx)V (41)

∂gf (rsk
, rdm′

;xx,xm)

∂βI(ri)
' −jgm(rdm′

, ri;xm)gx(rsk
, ri;xx)V. (42)

It is possible to solve the fluorescence inverse problem using this parameterization, and then convert

the result into the physical parameters ηµaf
and τ . However, the computation of τ requires a division

of βI by βR, an operation which could result in large noise artifacts in regions where βR is small.

To circumvent this problem, we use the γ and τ parameterization of (6), permitting us to apply

regularization directly to τ . In our sequential update scheme, τ is assumed constant while updates

of γ are performed, and vice versa. As a result, we use the following Fréchet derivative expressions:

∂gf (rsk
, rdm′

;xx,xm)

∂γ(ri)
' gm(rdm′

, ri;xm)gx(rsk
, ri;xx)(1− jωτ̂(ri))V (43)

∂gf (rsk
, rdm′

;xx,xm)

∂τ(ri)
' −jωγ̂(ri)gm(rdm′

, ri;xm)gx(rsk
, ri;xx)V. (44)

After the reconstructions of xx and xm are obtained, Gx(rs, r;xx) and Gm(rd, r;xm) have already

been stored, and the Green’s functions of (43) and (44) need not be recomputed. As the estimates

γ̂ and τ̂ are updated, they are incorporated into the derivative expressions.
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B. Pseudocode for Inversion Algorithm

main {

1. Initialize x̂x, x̂m, and x̂f with background estimates.

2. Repeat until converged: {

(a) α̂x ←
1

Px
|| yx − fx(x̂x) ||2

Λx

(b) For k = 1 : K {

Compute gx(rsk
, r; x̂x) by solving Eq. (1) with source at rsk

}

(c) For m′ = 1 : M {

Compute gx(rdm′
, r; x̂x) by solving Eq. (1) with source at rdm′

}

(d) Form G
(s)
x and G

(d)
x using Eq. (36) and Eq. (37)

(e) x̂x ← ICD update(x̂x, α̂x,G
(s)
x ,G

(d)
x )

}

3. Repeat until converged: {

(a) α̂m ←
1

Pm
|| ym − fm(x̂m) ||2

Λm

(b) For k = 1 : K {

Compute gm(rsk
, r; x̂m) by solving Eq. (3) with source at rsk

}

(c) For m′ = 1 : M {

Compute gm(rdm′
, r; x̂m) by solving Eq. (3) with source at rdm′

}

(d) Form G
(s)
m and G

(d)
m using Eq. (38) and Eq. (39)
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(e) x̂m ← ICD update(x̂m, α̂m,G
(s)
m ,G

(d)
m )

4. Repeat until converged: {

(a) α̂f ←
1

Pf
|| yf − ff (x̂f , x̂x, x̂m) ||2

Λf

(b) x̂f ← ICD update(x̂f , α̂f ,G
(s)
x ,G

(d)
m )

}

}

x̂ ← ICD update(x̂, α̂,G(s),G(d);x)) {

1. For i = 1, . . . , N (in random order), {

(a) Compute [f ′(x̂)]∗(i), as described in Appendix A

(b) Update xi, as described by Ye et al.:24

x̂i ← arg min
xi≥0

{

1

α̂

∣

∣

∣

∣

∣

∣y − f(x̂)−
[

F′(x̂)
]

∗(i) (xi − x̂i)
∣

∣

∣

∣

∣

∣

2

Λ
+

1

paσa
pa

∑

j∈Ni

bi−j |xi − x̂i|
pa

}

}

2. For i = N + 1, . . . , 2N (in random order), {

(a) Compute [f ′(x̂)]∗(i), as described in Appendix A

(b) Update xi, as described by Ye et al.:24

x̂i ← arg min
xi≥0

{

1

α̂

∣

∣

∣

∣

∣

∣y − f(x̂)−
[

F′(x̂)
]

∗(i) (xi − x̂i)
∣

∣

∣

∣

∣

∣

2

Λ
+

1

pbσb
pb

∑

j∈Ni

bi−j |xi − x̂i|
pb

}

}

3. Return x̂.

}
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Fig. 1. Proposed measurement scheme.
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in cm−1 (b) Dx in cm (c) µam
in cm−1 (d) Dm in cm (e) τ in ns (f) ηµaf

in cm−1 (g)
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= 0.01 cm−1 isosurface
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Fig. 3. Grid used for both sources and detectors in the simulation. with the relative location

of the sphere depicted.
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Fig. 8. Phantom box schematic, showing the fibers and the spherical heterogeneity.
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(a) Bottom plate (sources) (b) Top plate (detectors)

Fig. 9. Source and detector layout for experiment. The blackened detector symbols represent

detector positions used in the fluorescence measurements. The relative location of the sphere

is also depicted.
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(a) z=-1.82 cm (b) z=-1.30 cm

(c) z=-0.78 cm (d) z=-0.26 cm

(e) z=0.26 cm (f) z=0.78 cm

(g) z=1.30 cm (h) z=1.82 cm

Fig. 10. True fluorophore location
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in cm−1
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in cm−1
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Fig. 13. Reconstructions of ηµaf
in arbitrary units
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