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Abstract

Sparse-view CT is important in a wide range of applications because of its potential to reduce acquisition time
and dosage. Analytical reconstruction methods perform poorly with sparse views, so until recently the only practi-
cal approach to sparse-view reconstruction has been iterative methods such as model-based iterative reconstruction
(MBIR). MBIR can produce high quality reconstructions from sparse data [0, 2] and can also incorporate prior
models based on deep neural networks (DNNs) [8]. However, MBIR tends to be computationally intensive.

Over the past few years, image reconstruction using DNNs has emerged as a fundamentally new approach with
the advantages that a) it can dramatically reduce computation, and b) given sufficient training data, it can be directly
trained to incorporate complex prior information. Methods for DNN reconstruction fall into four groups [5]: (i)
image domain methods, which post-process the analytical reconstruction using a DNN[10]; (ii) sensor-domain
methods, which pre-process the sinogram data [3, 4]; (iii) hybrid-domain learning methods that process in both
domains [1]; and (iv) direct, end-to-end DNN reconstruction methods, which go directly from the sinogram data
to the reconstructed image. Among these methods, direct reconstruction methods, such as AUTOMAP [9], offer
the greatest potential for high-quality sparse view reconstruction, but they are very computationally expensive and
difficult to train.
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Figure 1: Conceptual view of stacked backprojection and SBP-LSTM: Individual, single-view projections are
back projected (left), then collected into a tensor called the stacked backprojection (top right) for input to a CNN.
At the bottom right, the individual backprojected views are shown as input to the LSTM, prior to further processing
by a U-Net.
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In this poster, we build on the ideas in [7] and propose the LSTM-based stacked back projection (SBP-LSTM),
which allows for computationally efficient direct DNN reconstruction going directly from the sinogram to the
image. Illustrated in Figure 1, the key innovation of SBP-LSTM is that by individually back-projecting the views
of the full sinogram into the image domain, it is possible to implement full direct reconstruction, while maintaining
a computationally efficient structure. We compare several deep neural network structures including CNN, U-Net,
and a novel LSTM U-Net architecture. Our experimental results demonstrate that SBP-LSTM using a U-Net
structure results in the best overall quality reconstructions with reduced streaking artifacts and modest training
data requirements.

Figures 2 and 3 compare the results of SBP-LSTM to alternative sparse-view reconstruction algorithms on both
simulated and real CT data. Results indicate that the proposed SBP-LSTM algorithm can sharpen the reconstruc-
tion while reducing streaking artifacts.

(a) Ground Truth (b) FBP+U-Net with MSE (c) MBIR(q = 1.2,0,, = 0.8)  (d) SBP+LSTM+U-Net with MSE
0.045/0.886 0.051/0.816 0.037/0.912

Figure 2: 16-view Reconstruction on Simulated Sinogram: Comparisons to ground truth using RMSE/SSIM
values. a) Reference full-view MBIR reconstruction; b) Sparse-view MBIR reconstruction; ¢) FBP with U-Net
post processing; d) Stacked Back Projection (SBP) with U-Net processing; d) SBP with LSTM + U-Net process-
ing. Display range is from O (air) to 2000 Hounsfield units (HU). SBP+LSTM+U-Net can resolve the edges of the
rings better than FBP+U-Net, SBP+U-Net, and MBIR on simulated data.
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