MAP Estimation with Gaussian Mixture Markov Random Field Model for Inverse Problems

Ruoqiao Zhang¹, Charles A. Bouman¹, Jean-Baptiste Thibault², and Ken D. Sauer³

1. Department of Electrical and Computer Engineering, Purdue University
2. GE Healthcare Technologies
3. Department of Electrical Engineering, University of Notre Dame
Better Prior Models

- Why do we need better prior models?
 - Better prior models will be needed as data becomes sparser
 - Models must be adaptive to different classes of images
 - Low, mid, and high level representations are needed

- What is needed?
 - More expressive models of images
 - Trained on real data (scientific/medical data)
 - Computationally efficient to implement

- Promising recent approaches:
 - Dictionary learning; kSVD; Non-local means; BM3D; Bilateral filters
 - Many of these are not really consistent prior models
 - Do not quantify multivariate distribution of image
Mission statement:

Formulate a single, consistent, robust, and expressive prior model for any image, x, that can be used in computationally efficient Bayesian estimation algorithms.

$$p_{\theta}(x) = \frac{1}{z} \exp\{-u(x)\}$$

θ - parameterizes model

So we need to construct $u(x)$
Modeling Patches with Gaussian Mixture

- Gaussian mixture model (GMM) for image patches

\[
g(P_s x) = \sum_{k=0}^{K-1} \pi_k \frac{1}{(2\pi)^{p/2}} |B_k|^{1/2} \exp \left\{ -\frac{1}{2} \|P_s x - \mu_k\|_{B_k}^2 \right\}
\]

Advantage: We can approximate any distribution with GMM
Advantage of GMM Patch Model

- Advantage of multivariate Gaussian mixture
 - Can model any distribution with enough GM components
 - Capture multivariate distribution of a patch
 - Model interaction between density and texture
GMM with 2x2 Image Patch

- Dual energy CT example
 - 12 clusters.
 - Display 2 dimensions out of 8
 - Water/iodine decomposition
 - Color-coded scatter plot

![Dual energy CT example diagram](image_url)
Question?

How to build a consistent image model out of GMM patches?
Model 1: Non-Overlapping Tiling with GMM Patches

- Tile image with non-overlapping patches

- Image distribution

\[p_0(x) = \prod_{s \in S_0} g(P_s x) \]

- Energy function

\[u(x) = \sum_{s \in S_0} V(P_s x) \]

\[V(P_s x) = \log g(P_s x) \]
Model 1: Non-Overlapping Tiling with GMM Patches

- Tile image with non-overlapping patches

- Energy function

\[u(x) = \sum_{s \in S_0} V(P_s x) \]

\[V(P_s x) = \log \left\{ \sum_{k=0}^{K-1} \pi_k \frac{1}{(2\pi)^{p/2}} |B_k|^{1/2} \exp \left\{ -\frac{1}{2} \| P_s x - \mu_k \|_{B_k}^2 \right\} \right\} \]
Model 2: Non-Overlapping Tiling with GM Patches

- M^2 different tilings with non-overlapping patches

\[p_0(x) = \prod_{s \in S_0} g(P_s x) \quad p_0(x) = \prod_{s \in S_1} g(P_s x) \quad p_{M^2}(x) = \prod_{s \in S_{M^2}} g(P_s x) \]

- Form a single distribution using the “Product of Experts”

\[p(x) = \frac{1}{Z} \left(\prod_{i=0}^{M^2} p_i \right)^{1/M^2} = \frac{1}{Z} \left(\prod_{s \in S} g(P_s x) \right)^{1/M^2} \]
Model 2: Non-Overlapping Tiling with GM Patches

- M^2 different tilings with non-overlapping patches

\[
p_0(x) = \prod_{s \in S_0} g(P_s x) \quad \quad p_0(x) = \prod_{s \in S_1} g(P_s x) \quad \quad p_{M^2}(x) = \prod_{s \in S_{M^2}} g(P_s x)
\]

- “Product of Experts” energy function

\[
u(x) = \frac{1}{M^2} \sum_{s \in S} V(P_s x)
\]
Final GM-MRF Model

- Prior model
 \[p(x) = \frac{1}{z} \exp\{-u(x)\} \]
- Energy function
 \[u(x) = \frac{1}{M^2} \sum_{s \in S} V(P_s x) \]
 corrects for patch overlap

- Log GMM
 \[V(P_s x) = -\log \left(\sum_{k=0}^{K-1} \pi_k \frac{1}{(2\pi)^{p/2}} |B_k|^{1/2} \exp \left\{ -\frac{1}{2} \|P_s x - \mu_k\|_{B_k}^2 \right\} \right) \]
 sums over all patches
Final GM-MRF Model

- GM-MRF prior model

 \[p(x) = \frac{1}{Z} \exp \left\{ -\frac{1}{M^2} \sum_{s \in S} V(P_s x) \right\} \]

 \[V(P_s x) = -\log \left(\sum_{k=0}^{K-1} \pi_k \frac{1}{(2\pi)^{p/2}} |B_k|^{1/2} \exp \left\{ -\frac{1}{2} \|P_s x - \mu_k\|_{B_k}^2 \right\} \right) \]

- OK, but …
 - Is this really an MRF?
 - Yes, with an \((2M-1) \times (2M-1)\) neighborhood.

 - How do I train the model?
 - Just use your favorite GMM app to fit to patch data.

 - How do I use this?
 - Hmm, good point. We’ll give you a surrogate function.
MAP Estimation with GM-MRF Model

- MAP estimate
 \[\hat{x} = \arg \min_x \{ -\log p(y \mid x) + u(x) \} \]

- MAP estimate with surrogate prior
 \[\hat{x} = \arg \min_x \{ -\log p(y \mid x) + u(x; x') \} \]
 where
 \[u(x') = u(x'; x') \]
 \[u(x) \geq u(x; x') \]

How do we find \(u(x'; x') \)?

\(x' \) is the current state of \(x \)

Perform surrogate optimization iteratively, updating \(x' \) with each iteration.
Lemma: Surrogate Functions for Logs of Exponential Mixtures

Lemma: surrogate functions for logs of exponential mixtures
Let \(f : \mathbb{R}^N \rightarrow \mathbb{R} \) be a function of the form,
\[
f(x) = \sum_k w_k \exp\{-v_k(x)\}
\]
(13)
where \(w_k \in \mathbb{R}^+ \), \(\sum_k w_k > 0 \), and \(v_k : \mathbb{R}^N \rightarrow \mathbb{R} \). Furthermore \(\forall (x, x') \in \mathbb{R}^N \times \mathbb{R}^N \) define the function
\[
q(x; x') \triangleq -\log f(x') + \sum_k \tilde{\pi}_k (v_k(x) - v_k(x'))
\]
(14)
where \(\tilde{\pi}_k = \frac{w_k \exp\{-v_k(x')\}}{\sum_j w_j \exp\{-v_j(x')\}} \). Then \(q(x; x') \) is a surrogate function for \(-\log f(x)\), and \(\forall (x, x') \in \mathbb{R}^N \times \mathbb{R}^N \),
\[
q(x' ; x') = -\log f(x')
\]
(15)
\[
q(x ; x') \geq -\log f(x)
\]
(16)

• Each \(v_k(x) \) is quadratic, so the resulting surrogate function, \(q(x; x') \), is also quadratic
Surrogate Prior for GM-MRF Model

• Original energy function
\[
u(x) = \frac{1}{\eta} \sum_{s \in S} V(P_s x)
\]
\[
V(P_s x) = -\log \left(\sum_{k=0}^{K-1} \pi_k \frac{1}{(2\pi)^{p/2}} |B_k|^{1/2} \exp \left\{ -\frac{1}{2} \|P_s x - \mu_k\|_{B_k}^2 \right\} \right)
\]

• Surrogate energy function
\[
u(x; x') = \frac{1}{2\eta} \sum_{s \in S} \sum_{k=0}^{K-1} \tilde{w}_k \|P_s x - \mu_k\|_{B_k}^2 + c(x')
\]

where the weights are given by
\[
\tilde{w}_k = \frac{\pi_k |B_k|^{1/2} \exp \left\{ -\frac{1}{2} \|P_s x' - \mu_k\|_{B_k}^2 \right\}}{\sum_{j=0}^{K-1} \pi_j |B_j|^{1/2} \exp \left\{ -\frac{1}{2} \|P_s x' - \mu_j\|_{B_j}^2 \right\}}
\]

\(x': \) current state of \(x\)

• The weights, \(\tilde{w}_k\), are soft classifications into the GMM classes
Experiments

- Denoising experiments with the GM-MRF model
 1. high dosage CT images with artificially added white noise;
 2. low dosage CT images, containing real reconstruction noise.

- Compared with the following methods
 • q-GGMRF model (8-point neighborhood, p=2, q=1.2, c=10)
 • K-SVD method (7x7 patch, 512 dictionary entries)
 • BM3D method (8x8 patch)

- The GM-MRF model was trained from clean high dosage CT images, with 30 subclasses and patch size 5x5.

- Parameters adjusted for lowest RMSE values (Experiment 1) and comparable noise level in homogeneous region (Experiment 2) for all methods.
MAP classification with Learned GM-MRF

- Color-codes the most probable subclass for each patch with the learned GMM parameters
- Shows that the GMM parameters capture different materials along with different edges
Experiment 1: High Dosage CT Images

- GM-MRF model achieves
 - lowest RMSE
 - less salt/pepper noise and sharper edges than q-GGMRF model
 - less aggressive and preserves more details in soft tissues than K-SVD and BM3D

<table>
<thead>
<tr>
<th>Methods</th>
<th>RMSE (HU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>noisy</td>
<td>40.05</td>
</tr>
<tr>
<td>GM-MRF</td>
<td>17.02</td>
</tr>
<tr>
<td>Q-GGMRF</td>
<td>20.48</td>
</tr>
<tr>
<td>K-SVD</td>
<td>18.68</td>
</tr>
<tr>
<td>BM3D</td>
<td>17.25</td>
</tr>
</tbody>
</table>
Experiment 2: Low Dosage CT Images

- GM-MRF achieves
 - sharper edges than q-GGMRF model
 - less artifacts and better texture in soft tissues than K-SVD and BM3D
Experiment 2: Low Dosage Difference Images

- GM-MRF model shows the ability to regularize different materials/structures differently:
 - more regularization in soft tissue
 - less regularization in bone/lung tissue
Conclusions

- **GM-MRF (Gaussian Mixture MRF)**
 - Is an MRF
 - Can be trained for any image
 - Captures full multivariate distribution of image

- **How is the GM-MRF used?**
 - Is constructed with POE trick (geometric mean of distributions)
 - Surrogate function for an mixture distribution

- **Medical applications**
 - It can capture both mean and texture characteristics for medical applications
 - MAP optimization looks like it uses an adaptive quadratic prior