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Abstract— Multi-slice helical Computed Tomography (CT)
scanning offers the advantages of faster acquisition and wide
organ coverage for routine clinical diagnostic purposes. However,
image reconstruction is faced with the challenges of three-
dimensional cone-beam geometry, high pitches, and low dosage.
Of all available reconstruction methods, statistical iterative re-
construction (IR) techniques appear particularly promising since
they provide the flexibility of accurate physical noise modeling
and geometric system description. In this paper, we present
the application of Bayesian iterative algorithms to real 3D
helical data to demonstrate significant image quality improve-
ment over conventional techniques. Specifically, the reduction of
helical cone-beam artifacts has been achieved, concurrently with
enhanced image resolution and lower noise, as demonstrated
by phantom studies. Clinical results also illustrate the noise
reduction capabilities of the algorithm on real patient data.
Although computational load remains a challenge for practical
development, the superior image quality combined with the
advancements in computing technology make IR techniques a
legitimate candidate for future clinical applications.

I. INTRODUCTION

Multi-slice CT scanning is particularly attractive for clinical
applications due to short acquisition times, thin slices, and
large organ coverage. Those acquisition trajectories produce
projection measurements that pass obliquely through the 2-D
reconstructed image planes. As the pitch increases, the devi-
ation from conventional approximate two-dimensional planar
data is further amplified. The accurate handling of this geom-
etry is critical to the elimination of unwanted artifacts in the
reconstructions and overall clinically acceptable image quality.
Recent developments in analytical inversion algorithms give
reason to hope that for many applications, image quality
may be adequate under single-pass, deterministic inversion
culminating in data backprojection. Imaging applications arise,
however, in which characteristics of the scanner hardware
places a limit on quality of reconstructions [1]. Helical streaks
artifacts originate from portions of patient’s anatomy, partic-
ularly in the case of abrupt edges in high-contrast materials,
such as bones and prosthetics.

Jean-Baptiste Thibault is with the CT Reconstruction Group, GE Healthcare
Technologies, 3000 N Grandview Bvd, W-1200, Waukesha, WI 53188.
Telephone: (262) 312-7404. Email: jean-baptiste.thibault@med.ge.com

Ken Sauer is with the Department of Electrical Engineering, 275 Fitz-
patrick, University of Notre Dame, Notre Dame, IN 46556-5637. Telephone:
(574) 631-6999. Email: sauer@nd.edu

Charles Bouman is with the School of Electrical Engineering, Purdue
University, West Lafayette, IN 47907-0501. Telephone: (765) 494-0340.
Email: bouman@ecn.purdue.edu

Jiang Hsieh is with the Applied Science Laboratory, GE Healthcare Tech-
nologies, 3000 N Grandview Bvd, W-1200, Waukesha, WI 53188. Telephone:
(262) 312-7635. Email: jiang.hsieh@med.ge.com

Traditionally, images have been reconstructed from CT
data using so-called direct reconstruction algorithms such as
filtered backprojection (FBP) or convolution backprojection
(CBP). The FBP approach to image reconstruction from helical
data that is currently used in commercial CT scanners relies
heavily on helical view weighting interpolation schemes to
account for helical geometry and thus address image arti-
facts [2]. However, approximations are intrinsic to any view
data interpolation approach, and even with many refinements,
CBP and other non-iterative variants are not likely ever to
be able to completely resolve helical cone-beam artifacts.
More complex techniques, such as the Feldkamp algorithm
[3], attempt to address cone beam artifacts by doing three-
dimensional filtered backprojection but do not consider the
exact geometry of acquisition. The algorithms of Katsevich
[4] provide an analytic solution to the helical cone beam scan
inversion, but are derived under assumption of continuously
sampled detector surfaces, not the discrete form necessary with
hardware realizable in the foreseeable future.

As an attempt to provide more flexibility in the reconstruc-
tion choices, iterative reconstruction (IR) algorithms have been
recently introduced for multi-slice helical CT images [5]. Al-
though they typically imply a greater amount of computation
than conventional methods, IR techniques offer the potential
to produce images with significantly reduced artifacts. Rather
than manipulating data to force it to conform to traditional
direct reconstruction models, statistical methods attempt, to
the degree possible, to explicitly include non-idealities in
the problem description. This view of image reconstruction
requires only that we have a description of the way in which
each measurement is influenced by unknown image values.
Errors and incompleteness in data are fully expected and their
description built into the reconstruction process. Rather than
treating all measurements with equal weighting, a statistical
model allows differing degrees of credibility among data. This
gives statistical methods a robustness not easily duplicated in
backprojection techniques. Statistical methods offer flexibility
in dealing with the various non-idealities in the data, as long
as these can be accurately modeled.

Since the introduction of IR methods to CT, much of the
effort has been devoted to demonstrating the feasibility of
the proposed techniques and illustrating some of its benefits
in the general case. The results in this paper focus on the
performance of iterative reconstruction relative to the specific
issue of helical cone-beam artifacts, while demonstrating lower
noise at equivalent or greater resolution in all reconstructed
images.



II. STATISTICAL MODEL FOR IMAGE RECONSTRUCTION

The objective of IR algorithms is to rely on successive
operations of forward and backward projections in order to
obtain the convergence of a derived optimization criterion
describing the best match with the the measured projections.
Let y be the measurement data, and let x be the unknown
image to be reconstructed. In general, there will be a matrix
A such that

E[y] = ȳ = Ax

where ȳ is the noise free value of the measurement. The ex-
pression E[y] indicates the statistical average, or mean value,
of the data y. Statistical reconstruction methods generally
work by finding a solution to the problem

min
x

[

∑

i

di(yi − [Ax]i)
2 + U(x)

]

, (1)

where di may reflect the inherent variations in credibility of
data, and U(x) is a regularization term which encourages
smoothness in the solution.

The crucial advantage of statistical reconstruction methods
is that they allow any choice of the matrix A. Any scanning
geometry can be accurately modeled by proper computation of
the entries in A, regardless of the three-dimensional sampling.
The model can be designed to be as close as possible to reality,
although this may come at the cost of great computational
expense. Because it is necessary to include the non-planar
character of the measurements of the helical scan into the
forward model, the computation of the elements of A must
be done in the three spatial dimensions. This is a fundamental
component to our approach. It requires software retracing of
the slices of the scan during reconstruction in order to calculate
the interaction between volumetric elements of reconstruction
with X-rays at arbitrary angles in three dimensions. A crude
but workable model involves the calculation of the intersection
between scanner rays and voxels in the reconstruction space.
An alternate technique with greater appeal in computation time
and minimal loss in resolution involves resampling voxel and
detector boundaries to calculate the contributions [6].

Because statistical reconstruction relies heavily on modeling
of the “forward” process of data collection in the scanner, the
greatest amount of effort must be applied to developing an
accurate, yet manageable statistical description of the scanner’s
behavior. The elements di in quadratic form of (1) represent
a measure of data credibility. For example, if a particular
measurement yi is photon-starved by some highly attenuating
object, a problem which may cause artifacts in conventional
images, by reducing the corresponding di, the statistical model
reduces any error associated with that measurement.

The regularization term U(x) enforces smoothness in the
reconstructed images, independently of the formulation of
the forward model. This penalty, normally extremely simple,
is meant only to encourage the state in which neighboring
entries in the image have similar values. Its parameters provide
another level of control over the noise and resolution of the
final image estimate. In order to account for interdependence

of the neighboring planes in the three-dimensional acquisition
volume, the formulation of the regularization must include all
the neighbors of a given element in three-dimensional space.
The Generalized Gaussian Markov Random Field (GGMRF)
[7] has the desired effect and allows different level of edge-
preservation by tuning the exponent parameter:

U(x) =
1

pσp

∑

{j,k}∈C

bj,k|xj − xk|
p (2)

C is the set of all neighboring pixel pairs in three-dimensions,
and σ is a measure of the standard deviation of the noise
in the measurements. Equation (2) ensures that sharp edges
are increasingly well preserved as the exponent 1 ≤ q ≤ 2
decreases, and maintains the desirable convex nature of the
overall problem formulation.

III. DERIVATION OF THE SOLUTION

The best optimization method to minimize the functional (1)
is independent of the form of the estimator. Its choice must be
based on its efficiency to reach the solution, while the final im-
age is fully determined by (1). Statistical methods have a great
advantage in the high-pitch multi-slice helical case, in having
little dependence in their implementation on the geometry of
data collection. We attack the estimation/optimization of (1)
in the same manner regardless of the scan pattern represented
by A or the selected prior U(x). We propose to optimize over
the full 3D volume through a sequence of one-dimensional
updates where the image estimate x̂ is

x̂=arg min
x∈Ω





∑

i

di (yi − [Ax]i)
2

+
1

qσq

∑

{j,k}∈C

bj,k|xj − xk|
q





and Ω is the convex set of positive reconstructions. This
approach, called Iterative Coordinate Descent (ICD) [8], has
shown rapid convergence properties provided a good choice
of initial conditions, such as the FBP images. While the cost
of each iteration remains high relative to FBP, a full 3D
reconstruction typically converges in fewer than 20 iterations.

IV. RESULTS

For this study, the reduction of helical streak artifacts has
been a major goal of applying iterative techniques to CT. The
various origins of these artifacts pose a significant difficulty for
all algorithms. To illustrate this, we first selected a rib phantom
scanned in 8x1.25mm collimation mode at helical pitch 13.4
on a Lightspeed scanner. The orientation of the Teflon ribs
in three dimensions creates rapid variation of density in the
z direction. Figure 1 illustrates how IR can remove nearly all
the artifacts around the ribs caused by such variation. Greater
accuracy in the forward model and some tuning of the prior
parameters were necessary. Interestingly, IR techniques may
also benefit more than FBP from increased spatial sampling
of the reconstructions: simply by decreasing the size of the
voxels, Figure 1 shows improvement in the resolution of rib
details. In the FBP image, blurring of the ribs is evident when



Fig. 1. Rib Phantom: 2D FBP (left) vs. Iterative (right), 8 × 1.25 Helical,
Pitch 13.4, 320mA, 0.5 sec/rotation, WW=400; Iterative parameters: ∆x =

∆y = 0.479mm, ∆z = 0.625mm, q = 1.2

compared to the better defined edges and smaller in-plane size
of the ribs in the IR image.

In helical scans, IR is not inherently limited to spatial res-
olution matching the detector spacing, and gains in resolution
are achievable beyond the limits of traditional methods like
FBP by reconstructing smaller voxels. This is demonstrated
more dramatically in Figure 2 from a 16x1.25mm scan of
a head phantom at pitch 15. To further induce the artifact,
the scan parameters were chosen beyond the recommended
limits for clinical diagnostic scanning of this anatomy. The
phantom itself, with the cracks in the skull varying rapidly
from plane to plane, was also selected as a typical source of a
high level of artifacts. The top-left image shows the artifact-
free FBP for reference. In order to illustrate that the root cause
of the artifact does not lie in geometric inaccuracies in the
reconstruction method, we reconstructed the other images with
major approaches proposed to tackle the multi-slice helical
problem: a Feldkamp-based approach, Katsevitch’s algorithm,
and MAP-ICD. Even though all of them treat the exact
geometry of acquisition with varying degrees of accuracy, the
artifacts remain highly visible with all methods but IR. The IR
images show better definition of the breaks in the bone which
cause artifacts, as well as attenuating the streaks themselves.
Appropriate prior modeling combined with increased spatial
resolution through sub detector row width voxel sampling
generates the benefit.

In addition to reducing helical cone-beam artifacts, the
results in Figures 1 and 2 seem to qualitatively indicate the
potential of IR methods to achieve greater resolution while sig-
nificantly reducing the noise level in the reconstructed images.
The gain in resolution/noise trade-off with iterative methods
remains to be demonstrated by quantitatively comparing with
conventional FBP. For this purpose, we considered the GE
performance phantom scanned in 8x2.5mm helical mode at
pitch 7 and 100mA. The wire section and resolution bars
provide means to accurately measure the modulation transfer
function (MTF), while the standard deviation of noise can
be measured in the homogeneous regions of the phantom
(water and plexiglass). The results are shown in Figure 3 and
Table I. We compare both the standard kernel and the bone

Fig. 2. Head Phantom: reference FBP (top left); Feldkamp-based (bottom
left); Katsevich-based (top right); Iterative (bottom right); 16 × 1.25 Helical,
Pitch 15.0, 320mA, 1 sec/rotation, WW=400; Iterative parameters: ∆x =

∆y = 0.479mm, ∆z = 0.625mm, q = 1.3

FBP Standard FBP Bone Iterative
50% MTF (line pair/cm) 4.18 8.79 8.95
10% MTF (line pair/cm) 6.92 13.02 14.84

Water Std. Dev. 12.54 66.67 2.69
Plexiglass Std. Dev. 12.02 77.33 1.95

TABLE I

COMPARISON OF FBP AND IR FOR MEASUREMENT OF MTF AND NOISE

kernel for conventional FBP to the IR images. The iterative
reconstruction image may be regularized slightly too heavily,
as witnessed by some loss of the fine resolution in the square
hole at the lower left region of the bottom image of Figure
3. Nonetheless, the measured MTF is comparable to that of
the FBP image reconstructed with bone kernel, while noise
attenuation is 50% or more better in the IR image than in the
FBP image with standard kernel.

Finally, the results of this study would not hold without
successful application to real clinical data. For this, we se-
lected a clinical head scan, in order to observe both soft tissue
and bone. Figure 4 confirms that on clinical data as well, IR
allows some improvements in resolution while dramatically
reducing the noise level. Small structures present in the fat and
soft tissue at the bottom of the head or the side of the orbits
appear clearly in the IR image while they remain hidden by
noise in the FBP images. The improvement in resolution is
particularly visible around the sinus area, where the thin walls
between the sinus cavities are clearly visible in the IR image.



Fig. 3. Performance phantom: FBP standard kernel (top); FBP bone kernel
(center); Iterative (bottom), 8 × 2.5 Helical, Pitch 7, 100mA, 1 sec/rotation,
WW=400; Iterative parameters: ∆x = ∆y = 0.122mm, ∆z = 1.0mm, q =

1.1

Meanwhile, the reduction of noise in the posterior fossa region
allows better examination of the brain tissue. The fine detail in
soft tissue is better preserved, but small variations in the bone
are also compromised at a different window level. This points
to some aspects of the non-Gaussian image model which may
need to be adapted for better bone imaging.

V. CONCLUSION

We have presented a statistical framework for iterative
image reconstruction for CT that produces very good image
results. As the reconstruction technique remains independent
from the exact form of the forward model, this method is
applicable to any geometry, and particularly the multi-slice
helical problem. Through appropriate selection of reconstruc-
tion parameters, iterative reconstruction achieves significant
helical artifact reduction, at improved resolution and lower
noise. Phantom results are confirmed on clinical data.

REFERENCES

[1] M. Silver and K. Taguchi, “Windmill artifacts in multislice helical CT,” in
Proc. of SPIE Conf. on Med. Imag., vol. 5032, May 2003, pp. 1918–1927.

Fig. 4. Clinical Head: FBP (left) vs Iterative (right) 16 × 0.625 Axial,
single slice reconstruction, WL=50, WW=400; Iterative recon params: ∆x =

∆y =0.479mm, ∆z =0.625mm, q =1.3

[2] J. Hsieh, T. Toth, P. Simoni, B. Grekowicz, and G. Seidenschnur, “A gen-
eralized helical reconstruction algorithm for multi-slice CT,” Radiology
221(p), p. 217, 2001.

[3] L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam
algorithm,” J. Opt. Soc. Am. A, vol. 1, no. 6, pp. 612–619, 1984.

[4] A. Katsevich, “Analysis of an exact inversion algorithm for spiral cone-
beam CT,” Phys. Med. Biol., vol. 47, pp. 2583–2597, 2002.

[5] J. Thibault, K. Sauer, C. Bouman, and J. Hsieh, “High quality iterative
image reconstruction for multi-slice helical CT,” in Proc. Int. Conf. on
Fully 3D Reconstruction in Rad. and Nuc. Med., June 29 - July 4 2003.

[6] B. Deman and S. Basu, “Distance-driven projection and backprojection
in three-dimensions,” Phys. Med. Biol., vol. 49, pp. 2463–2475, 2004.

[7] C. A. Bouman and K. Sauer, “A generalized Gaussian image model
for edge-preserving map estimation,” IEEE Trans. on Image Processing,
vol. 2, pp. 296–310, July 1993.

[8] K. Sauer and C. A. Bouman, “A local update strategy for iterative
reconstruction from projections,” IEEE Trans. on Signal Processing,
vol. 41, no. 2, February 1993.


