
1

Ptychography using Blind Multi-Mode PMACE
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Abstract—Ptychography is an imaging technique that enables
nanometer-scale reconstruction of complex transmittance images
by scanning objects with overlapping X-ray illumination patterns.
However, the illumination function is typically unknown and only
partially coherent, which presents challenges for reconstruction.

In this paper, we introduce Blind Multi-Mode Projected
Multi-Agent Consensus Equilibrium (BM-PMACE) for blind
ptychographic reconstruction. BM-PMACE jointly estimates both
the complex transmittance image and the multi-modal probe
functions associated with a partially coherent probe source. Im-
portantly, BM-PMACE maintains a location-specific probe state
that captures spatially varying probe aberrations. Our method
also incorporates a dynamic strategy for integrating additional
probe modes. Our experiments on synthetic and measured data
demonstrate that BM-PMACE outperforms existing approaches
in reconstruction quality and convergence rate.

Index Terms—Ptychography, consensus equilibrium, inverse
problem, phase retrieval, iterative reconstruction.

I. INTRODUCTION

PTYCHOGRAPHY is a lensless X-ray imaging technique
often used for non-destructive X-ray imaging. By using

X-ray wavelengths typically in the range of 0.2 to 2 nm,
ptychography can achieve nanometer resolution [1]–[5]. More-
over, it can also be combined with advanced imaging modali-
ties, such as tomography [6]–[10], to produce high-resolution
images and provide detailed insights into complex nano-scale
structures. As a result, ptychography has applications in fields
ranging from biomedical imaging [11], [12] to material science
[13]–[15].

In ptychography, a sequence of overlapping regions is
scanned with a coherent or partially coherent light source
known as a probe [16]. At each probe location, the intensity
of the resulting diffraction pattern is measured by an imaging
detector positioned in the far-field plane. These real-valued
diffraction measurements are used to reconstruct the complex
transmission image by solving a phase recovery problem.
Since the phase is lost in measurement, the forward model
for ptychography is non-linear, the reconstruction problem is
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typically ill-posed, and the associated optimization problems
are non-convex and non-smooth [17]. However, the overlap-
ping probe locations provide redundancy in the measurements
that make it possible to solve the associated inverse prob-
lem. Fourier ptychography is a related computational imaging
technique that captures a series of data by illuminating the
sample at varying angles [18], [19]. This difference in data
acquisition requires distinct reconstruction algorithms from the
ptychography considered here.

Accurate reconstruction of the complex transmittance im-
age depends critically on a precise characterization of the
light probe [20]–[22]. However, in real-world experiments,
the probe function is rarely fully-known, and typically only
partially coherent. This partial coherence arises because any
vibration, energy spread in the beam, or environmental in-
terference can disrupt the coherence and lead to incoherent
wave superposition [23], [24]. Reconstruction from partially
coherent data enables the collection of data with higher flux
light sources [25] and fly-scan techniques [26]–[28], both of
which can reduce acquisition time. However, with partially-
coherent data, single-mode ptychographic reconstruction may
fail or produce poor results with artifacts [29], [30]. This
motivates a form of ptychography known as blind reconstruc-
tion, in which the multi-mode complex probe function and the
complex transmittance image are estimated jointly [31], [32].

Table I lists several existing ptychographic reconstruction
algorithms along with relevant characteristics and qualitative
performance. Among the methods that are designed for par-
tially coherent probes, a common approach is to reconstruct
multiple mutually non-coherent probe modes using blind
multi-mode reconstruction. Ptychographic engine (PIE) [2],
[41] and its variants [33], [42], [43], Difference Map (DM)
[44], [45], and SHARP [37], [46] use alternating updates of the
complex transmittance and the probe function. Both ePIE [34],
[47] and DM [36], [48], [49] have been modified to support
blind multi-mode reconstruction. The multi-mode ePIE algo-
rithm employs a serial approach in which each probe location
is updated in sequence. This has the advantage of speeding per-
iteration convergence, since the multi-mode probe estimate is
also updated with each image patch update. However, serial
update is not practical for large ptychography problems, which
may have millions of probe locations [50]. Moreover, gradient-
based algorithms such as ePIE can sometimes exhibit slow
convergence or become trapped in local minima when the data
are noisy and/or sparse [51], [52].

More recent gradient-based frameworks include linear least-
squares maximum likelihood (LSQML) and automatic differ-
entiation (AD) methods. LSQML as described in [53], [54]
supports a variety of formulations and uses gradient-based
methods to approximate the full nonlinear problem with a
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Algorithm Type Blind
Recon.

Multi-Mode
Probe

Performance on
sparse data

Performance on
noisy data

ePIE [33], [34] Serial Yes Yes Fair Fair
DM [35], [36] Parallel Yes Yes Good Good
SHARP [37] Parallel Yes No Good Good

WF/AWF [38] Parallel No No Good Fair
GDP-RAAR/ADMM [16], [39] Parallel Yes Yes Good Good

PMACE [40] Parallel No No Excellent Excellent
BM-PMACE [this paper] Parallel Yes Yes Excellent Excellent

Table I: Comparison of ptychography reconstruction algorithm features.

linear least-squares (LSQ) optimization. These publications
report that LSQML has fast convergence with good reconstruc-
tion quality, but it currently does not support multi-mode probe
estimation. Reference implementations are available from [55],
[56]. Emerging AD methods based on programming languages
such as Pytorch or JAX can compute the exact gradient for
complex and nonlinear forward models [57]–[61]. However,
automatically computed back-propagation algorithms can pose
demanding memory and computational overhead requirements
for large datasets [62], and they can yield unreliable gradients
in regions with sharp discontinuities or near-flat behavior due
to floating-point limitations [63]. Moreover, once the gradient
is computed, a fast algorithm is required for optimization,
which in general depends on the details of the problem being
solved.

Alternatively, DM algorithms allow for parallelization and
also support blind multi-mode reconstruction. These meth-
ods refine the estimate across multiple scan locations si-
multaneously, resulting in more generalized estimates. This
approach improves computational efficiency by leveraging
distributed computation and offers better scalability for large-
scale datasets. However, parallel methods may require addi-
tional iterations to converge compared to serial approaches
[64]. More recent algorithms include GDP-RAAR [39] and
GDP-ADMM [16]. While both algorithms have been demon-
strated to be effective, they both use a non-standard physical
model in which the probe convolution occurs after the energy
detection. While GDP-RAAR and GDP-ADMM also support
parallel processing and blind multi-mode reconstruction, they
may not accurately capture the underlying physics. The orthog-
onal probe relaxation (OPR) method [65], [66] reconstructs
a separate probe for each scanning position and links them
through low-dimensional subspace projection using SVD.
While OPR captures small instabilities across scan locations,
it does not model partial coherence of the illumination source.

Finally, Wirtinger flow (WF) [38] and Projected Multi-
Agent Consensus Equilibrium (PMACE) [40], [67] have been
proposed with a focus on reconstruction of the complex
transmittance image, without providing a well-defined strategy
for probe estimation. However, despite the lack of probe
estimation, the PMACE algorithm has been shown to pro-
vide more accurate reconstructions than alternative algorithms
when the probe locations are sparse or contain positional errors
[40], [67].

In this paper, we introduce Blind Multi-Mode Projected

Multi-Agent Consensus Equilibrium (BM-PMACE) for blind
ptychographic reconstruction.1 BM-PMACE jointly estimates
both the complex transmittance image and the multi-modal
probe functions associated with a partially coherent probe
source. Importantly, BM-PMACE maintains a location-specific
probe state that captures spatially varying probe aberrations.
Moreover, we demonstrate that by keeping local probe es-
timates for each patch, the BM-PMACE algorithm achieves
much faster and more robust per-iteration convergence for
blind multi-mode reconstruction with respect to comparison
algorithms based on a global probe state.

Since BM-PMACE is based on PMACE, it allows for fast
and parallel reconstruction of the transmission image and
produces good quality reconstructions with sparse and noisy
data. It is also parallelizable for practical application on large
data sets.

More specifically, we make the following contributions:
• Formulate the BM-PMACE algorithm for blind multi-

mode ptychographic reconstruction based on the PMACE
algorithm; Introduce a multi-mode probe estimate based
on a distributed state that accounts for local variations in
the probe;

• Introduce a method for dynamic addition of probe modes.
Introduce a scan position refinement approach for correct-
ing positional errors of recorded scan locations.

Our experimental results on both synthetic and measured
ptychography data demonstrate that the distributed probe
estimates consistently result in faster and more robust per-
iteration convergence and better reconstructed image quality
than competing methods.

II. OVERVIEW OF BLIND MULTIMODE PTYCHOGRAPHY

Figure 1 illustrates how ptychography is performed. A
coherent radiation source, such as soft X-rays or electrons,
is used to generate a “probe” that illuminates a series of
overlapping patches in a larger flat object. For each probe
location, the intensity of the resulting far-field diffraction
pattern is measured. The 2D image is then reconstructed by
estimating the complex transmittance image as part of a larger
phase recovery problem.

To first order, the phase of the reconstructed 2D image
changes in proportion to the thickness of the sample and hence

1A reference open-source implementation of BM-PMACE is available at
https://github.com/cabouman/ptycho pmace.

https://github.com/cabouman/ptycho_pmace
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Figure 1: Illustration of ptychography with coherent and
partially coherent light sources. On the left, the coherent light
source illuminates part of the sample, resulting in a uniform
and sharp diffraction pattern. On the right, the partially coher-
ent light source produces a superimposed diffraction pattern.

gives precise information about sample thickness for a known,
single-component material. This fact is due to the phase shift
induced by the sample, which depends on both its refractive
index and thickness.

In blind multi-mode ptychography, we assume that the
illumination source is both unknown and partially coherent.
In this case, the probe is not fully coherent, so we model the
probe as consisting of multiple, mutually incoherent modes.
These modes are summed in energy, and a 2D complex probe
cross section must be estimated for each mode individually.

A. Notation and Forward Model

We let x ∈ CN1×N2 denote the complex transmittance
function of the object being imaged, where N1 and N2

represent the number of pixels along the horizontal and
vertical dimensions of the object. We let dk ∈ CNp×Np , k ∈
{0, . . . ,K−1} represent the set of multiple probe modes used
to illuminate the sample, where Np represents the number
of pixels along each dimension of the probe mode and K
denotes the total number of probe modes. Furthermore, let
Dk = diag(dk) denote the diagonal matrix representing the
complex illumination function of the kth probe mode. Then
the forward model of the diffraction pattern from the kth mode
of the jth probe location is given by

Īj,k = |FDkvj |2 = |FDkPjx|2 ,

where Pj : CN1×N2 → CNp×Np denotes the linear projection
operator that extracts the localized patch associated with jth
probe location, vj = Pjx represents the corresponding patch,
Dk multiplies by the complex probe intensity, and F denotes
the 2D orthonormal discrete Fourier Transform. Note that the
intensity is proportional to the square of the electric field.

The detector measurements Ij are then Poisson-distributed
random variables with means that are proportional to the sum
of the energy from all the modes. Since the probe modes are

not coherently related, the phases are relatively random and
the modes are additive in energy. Consequently, we have that

Ij = Pois

(
K−1∑
k=0

Īj,k

)

= Pois

(
K−1∑
k=0

|FDkvj |2
)

, (1)

where Pois (λ) denotes an array of independent Poisson dis-
tributed random variables with means parameterized by the
array λ. We note that GDP-RAAR [39] and GDP-ADMM
[16] make the approximation of interchanging the non-linear
operator | · |2 and the linear operator Dk.

While some methods directly process the Poisson measure-
ments [68], we apply a variance-stabilizing transformation to
the detector measurements by taking the square root [69].
Therefore, the forward model for our multi-mode ptychog-
raphy system is given by

yj =

√√√√Pois

(
K−1∑
k=0

|FDkvj |2
)

. (2)

This transformation simplifies the forward model of our ap-
proach.

In the following sections, we extend the PMACE framework
of [40], [67] to the case of blind multi-mode reconstruc-
tion of ptychography data. To do this, we first derive the
PMACE algorithm for non-blind multi-mode reconstruction
in Section III. We then derive the corresponding algorithms
for PMACE reconstruction of the probe modes in Section IV.
Finally, in Section V we introduce an integrated algorithm for
blind, multi-mode PMACE (BM-PMACE) reconstruction.

III. IMAGE RECONSTRUCTION USING PMACE

In this section, we derive a PMACE algorithm for multi-
mode reconstruction of the transmission image x, assuming
that we know the probe modes, dk, k = 0, . . .K − 1. We
discuss probe estimation in Section IV-B.

Figure 2 illustrates the PMACE pipeline for object refine-
ment and gives a conceptual overview of how the complex
transmittance image, patch estimates, data-fitting agents, and
the pixel-weighted averaging operator interact to drive the
iterative reconstruction process. We give more detail below,
but roughly, each patch represents a local region of the object,
and updates are performed individually by the agent F I

j (·)
to refine the complex transmittance patches based on the
measured diffraction patterns. The pixel-averaging operator
GI(·) enforces agreement between overlapping patches by
averaging the estimates from the agents.

A. Image Update Pipeline

To specify the image update algorithm, recall that Pj is a
linear operator that extracts the jth patch from the image x.
We can then stack these patch states vj = Pjx into a larger
collection given by

v = [v0, . . . , vJ−1]
t
. (3)
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Figure 2: Conceptual overview of the PMACE pipeline for
patch refinement. The state x is divided into overlapping com-
ponents vj , and distributed to multiple agents F I

j (·) for local
enhancement. These local reconstructions are then combined
using a pixel-weighted averaging operator GI(·) to create an
integrated global reconstruction, which ensures consistency
within overlapping regions.

Then the PMACE equilibrium for the stacked patches is the
solution, v∗, to the equations

FI(v∗) = GI(v∗) , (4)

where FI(·) and GI(·) are operators introduced below and
described in more detail in Section III-B.

The agent operator FI(·) is a stack of individual agents
F I
j (·) expressed as

FI(v) =
[
F I
0 (v0), . . . , F

I
J−1(vJ−1)

]t
. (5)

The agent F I
j (·) refines the patch estimate vj = Pjx to

make it more consistent with the measured data for the jth
probe location. Notice that F I(·) depends on the probe modes,
dk; however, we suppress this dependency for notational
simplicity.

The consensus operator GI(v) updates each patch using a
weighted average that accounts for the current probe estimates
and the patch overlaps in the image. Importantly, the consensus
operator has the property that GI(GI(v)) = GI(v) for all v.
Intuitively, this property means that averaging twice yields the
same result as averaging once.

To solve the PMACE equations (4), we reformulate it as a
fixed point problem. It is shown in [40] that Mann iterations
can be applied to iteratively update v and converge to a fixed
point of TI = (2GI − I)(2FI − I) using

v← (1− ρ)v + ρTIv , (6)

where I denotes the identity operator, and ρ ∈ (0, 1) denotes
the Mann averaging parameter. The choice of ρ controls the

step size toward the fixed point. When TI is non-expansive,
this iterative calculation guarantees convergence to a solution
of the PMACE equation if it has at least one fixed point
solution.

B. Image Patch Update Agent

In this section, we define the agents in FI(·) and GI(·)
of Eq. (4). To derive an expression for F I

j (vj), we first
observe that if yj is the measured data, and vj is a reasonably
accurate estimate of the current patch, then Eq. (2) together
with an assumption that the Poisson measurement is close to

its mean implies that yj ≈
√∑K−1

m=0 |FDmvj |2. Hence, for
the kth mode, we can incorporate the yj into a new, probe-
dependent estimate of the patch by replacing the equality
vj = D−1

k,ϵF∗(FDkvj) with the update

ṽj,k = D−1
k,ϵF

∗

 yj√∑K−1
m=0 |FDmvj |2

◦ FDkvj


= D−1

k,ϵF
∗

yj ◦
FDkvj√∑K−1

m=0 |FDmvj |2

 , (7)

where ◦ denotes point-wise multiplication, F∗ denotes the
inverse (i.e., adjoint) Fourier transform, and D−1

k,ϵ denotes a
numerically stable inversion of Dk.2

Using Eq. (7), we define the agent Fj as a weighted sum

F I
j (vj) = (1− α1)vj + α1

K−1∑
k=0

wk ◦ ṽj,k , (8)

where

wk =
∥Dk∥22∑K−1

m=0 ∥Dm∥22
. (9)

Note that wk is a scalar that weights the estimates in proportion
to their power, and α1 is a parameter that controls the
weighting between the previous and new patch estimates. We
stack the data-fitting agents in Eq. (8) to create the data-fitting
operator that updates the complex transmittance patches.

The consensus operator GI(v) = [P0v̄, . . . , PJ−1v̄]
t is

computed by using PT
j to position each patch in context in

the full image, and forming a weighted average using the
probe pixel-wise intensities and the probe power weights as
in Eq. (9). This gives

v̄ =

K−1∑
k=0

wkΛ
−1
k

J−1∑
j=0

PT
j |Dk|κvj , (10)

where Λk =
∑J−1

j=0 PT
j |Dk|κPj , and 1 ≤ κ ≤ 2 is a parameter

that effectively controls the weighting as a function of the
probe strength. It is easily shown that GI has the required
property that GI(GI(v)) = GI(v). Intuitively, GI results in
a pixel-weighted and mode-weighted average of the patches.
The solution v∗ is then computed using iterative updates as
shown in Eq. (6).

2We compute the numerically stable inverse of the diagonal entries as
d−1
ϵ = d∗/(|d|2 + ϵ) where ϵ = 10−6

√
∥d∥2/dim(d).
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IV. PROBE RECONSTRUCTION USING PMACE
A key feature of BM-PMACE is the use of separate probe

estimates at each probe location and a consensus operator
that produces a single probe estimate from these individual
estimates. This approach makes efficient use of the com-
plementary information inherent in patches with different
transmission images while also producing a single estimate
that informs each individual estimate.

Figure 3 illustrates the PMACE pipeline for probe refine-
ment. An initial probe estimate is distributed to multiple
agents, each associated with a specific scan position. Each
agent makes adjustments to its probe estimate using the associ-
ated patch transmittance estimate and corresponding measure-
ments. As in the pipeline in Figure 3, these local estimates are
then averaged to update the global probe, ensuring consistency
between different scan locations.

Intuitively, this algorithm maintains local and global probe
mode estimates through dj,k and d̄k, respectively. The local
estimate, based on the characteristics of the reconstructed
image and data in a patch, allows the probe modes to adapt
to specific variations encountered at each scan location. The
global estimate, formed by the average of these local esti-
mates, averages out local variations and is used to update the
transmission image. In the results section, we show that by
keeping this combination of local and global probe estimates,
our algorithm achieves fast and robust convergence to a high-
quality reconstruction.
A. Probe Update Pipeline

In this section, we outline the PMACE algorithm used to
estimate the probe modes assuming a known transmission
image, x. In Sec. IV-B, we describe the local probe update
agent, and in Sec. V we combine probe and patch estimation.

For probe estimation, we define the collection of probe
modes indexed by k, which is formed from the estimates at
each of J probe locations to yield

dk = [d0,k, . . . , dJ−1,k]
t
. (11)
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Figure 3: Illustration of the PMACE pipeline for multi-mode
probe estimation, illustrated here for a single mode. The
pipeline starts by distributing the global probe estimate d to
multiple agents. Each probe agent then performs a localized
adjustment using its own update function FP

j (·). The locally
refined probe estimates are then averaged by GP (·) to form
an array of identical estimates.

For the estimate of the kth mode at the jth location, we
define an associated agent FP

j,k (described in Sec. IV-B) that
updates the corresponding probe estimate. This allows the
local probe updates to be performed independently based
on the associated measurements and patch transmittance. We
stack these individual updates to form the operator

FP
k (dk) =

[
FP
0,k(d0,k), . . . , F

P
J−1,k(dJ−1,k)

]t
. (12)

Each FP
j,k depends on the patch xj , but we suppress this

dependence for simplicity.
We define the consensus operator for the probes to be a

simple average of the local probe mode estimates given by

GP (dk) =
[
d̄k, . . . , d̄k

]
, (13)

where d̄k = 1
J

∑J−1
j=0 dj,k.

As before, we find the PMACE solution for each probe
mode as the fixed point of the operator TP

k = (2GP
k −

I)(2FP
k − I) using Mann iterations

dk ← (1− ρ)dk + ρTP
k dk . (14)

B. Local Probe Update Agent

For the local probe update, we need to incorporate the
existing probe estimate, dj , with the patch measurements, yj ,
and the patch transmittance estimate, Pjx. We multiply the
probe mode by the transmittance, take the Fourier transform,
multiply by the measured values normalized by the full probe
amplitude, then take the inverse Fourier transform and divide
by the patch to get the new probe mode update. This gives

d̃j,k = X−1
j,ϵ F

∗

yj ◦
FXjdj,k√∑K−1

m=0 |FXjdj,m|2

 , (15)

where Xj = diag(Pjx) is a diagonal matrix representing the
patch transmittance and X−1

j,ϵ denotes the stable inverse of Xj

with ϵ added for numerical stability. The full update for dj,k
is then

FP
j,k(dj,k) = (1− α2)dj,k + α2d̃j,k , (16)

where α2 controls the balance between the current estimate of
the mode and the new estimate.

Note that our probe update agent uses all probe modes
d̃ (dj,∗), along with the current image patches, vj = Pjx, in
its update. However, each agent refines one specific mode at
a time. For clarity, we suppress this dependency in Eq. (16).
The probe data-fitting agent makes localized adjustments that
are specific to the characteristics of the data collected at that
position.

V. INTEGRATED PMACE ALGORITHM FOR BLIND
MULTI-MODE RECONSTRUCTION

In this section, we integrate the PMACE algorithms for
reconstruction of the transmission image, x and the probe
modes, dk, for k = 0, . . .K − 1. We first present the pseudo-
code for implementation, followed by an explanation of the
initialization process and the adaptive mode addition strategy.
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Algorithm 1 BM-PMACE algorithm.

Input: Initialization: x(0) ∈ CN1×N2 , d(0) ∈ CNp×Np , K = 1
Design parameters: κ = 1.25, ρ = 0.5

Output: Final Reconstruction: x̂ ∈ CN1×N2 ; d̂k ∈ CNp×Np

w = z = v = [v
(0)
0 , . . . , v

(0)
J−1], where v

(0)
j = Pjx

(0)

r0 = s0 = u0 = [d
(0)
0 , . . . , d

(0)
J−1],

while not converged do
// Update the image patches
w← FI(v;u∗)
z← GI(2w − v;u∗)
v← v + 2ρ(z−w)
// Update K probe modes
for k = 0 to K − 1 do
rk ← FP

k (sk; s∗, z)
uk ← GP (2rk − sk)
sk ← sk + 2ρ(uk − rk)

end for
// Adaptive mode addition
if more modes needed then

Add mode using Eq. (19)
K ← K + 1

end if
end while
return x̂←

∑K−1
k=0 wkΛ

−1
k

∑J−1
j=0 PT

j |Dk|κvj ;
d̂∗ ←

∑J−1
j=0 sj,∗

Algorithm 1 provides the pseudo-code for computing the
BM-PMACE solution. The algorithm starts with an initial
estimate of the complex transmittance image x(0) and an initial
estimate of a single complex probe function d(0). The number
of probe modes, K, is initialized to 1. We set ρ = 0.5 as
the default value for the Mann averaging parameter, which
provides a practical balance between convergence speed and
stability. The probe weight parameter is set as κ = 1.25
since we find that it provides fast convergence speed and high
reconstruction quality.

The initial vectors w and v are created from the projections
of x(0), and the vectors r0, s0 and u0 are created from d(0).
Within each iteration, the algorithm performs updates to the
complex transmittance image and probe function alternatively
and the main loop continues until convergence is achieved.
Note that FI(·) and FP

k (·) both depend on all current probe
modes denoted by u∗. This implies that image patches are
updated using all current probe modes, and each probe mode is
then updated using the new patch estimates and the other probe
modes, and FP

k (·) also depends on the current transmission es-
timate denoted by z. Additional modes are added if necessary
for better reconstruction quality. The final reconstruction is
obtained by computing x̂ from the weighted average of the
complex transmittance patches, vj .

The computational complexity of BM-PMACE is dominated
by FFTs performed during image and probe updates. For
each iteration, each patch and probe mode require forward
and inverse FFTs at every probe location. The per-iteration
complexity is O(J ·K ·N2

p logNp). The memory needed for
distributed probe storage is O(J · K · N2

p ). And the object
patches at each scan location requires additional storage of

O(J ·N2
p ). As each agent’s update can be computed indepen-

dently, BM-PMACE is well-suited for distributed computing
environments.

Notice that the BM-PMACE algorithm interlaces updates
associated with the image patch agent, FI , and each probe
mode agent, FP

k . These updates are performed in sequence,
which aids in fast convergence, but each agent allows parallel
updates at each location of the probe. We note that standard
proofs of mathematical convergence no longer apply with
interlaced updates. However, in practice, we have empirically
observed that the algorithm converges robustly as demon-
strated in Section VI.

A. Initialization Method

Initialization is a critical step in ptychographic reconstruc-
tion that can significantly impact the reconstruction speed,
quality, and robustness, particularly when dealing with large
datasets or noisy datasets.

We start by setting the initial probe mode to

d(0) ← Uη,z,△x

 1

J

J−1∑
j=0

(Pj1)
−1 F∗yj

 , (17)

where 1 is a vector of ones, Uη,z,△x denotes Fresnel prop-
agation as a function of source wavelength η, propagation
distance z and sampling rate △x. Our practical experience
has shown that introducing some phase information through
the Fresnel propagator facilitates efficient reconstruction and
fast convergence to favorable results. Next, we initialize the
transmittance image using the formula:

x(0) ← Λ−1
0

J−1∑
j=0

PT
j

(
∥yj∥
∥d(0)∥

1

)
, (18)

where Λ0 =
∑J−1

j=0 PT
j Pj and 1 is a column vector of 1s. This

approach ensures the initialized images match the strength of
the data collected at different scan locations.

B. Adding Probe Modes

To perform reconstruction with multiple modes, we first
run reconstruction algorithms with initialized images for an
adequate number of iterations. Subsequent to these iterations,
we incorporate the additional modes as needed. We then add
additional probe modes through the following calculation

dK ← Uη,z,△x

 1

J

J−1∑
j=0

X−1
j

[
F∗
√

max (0, Ires)
] , (19)

where Ires = Ij −
∑K−1

k=0 |FDkxj |2 calculates the residual
intensity, the max(·) function ensures the argument of the
square root function is non-negative.

After that, we scale the power of all the probes to ensure
that the total power matches the original total power prior
to the incorporation of the new mode. This step is critical
to maintaining a consistent power distribution across the
probes and preventing a single mode from dominating the
reconstruction process.
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VI. EXPERIMENTAL RESULTS

In this section, we present the results of experiments using
both synthetic and measured data3.. We introduce our data
simulation process and show experiment results using both
single and multiple probe modes for different light sources.
Our findings demonstrate that BM-PMACE improves the
quality of reconstructions and the robustness of convergence
across a range of imaging scenarios.

In all experiments, with both synthetic and measured data,
we used ρ = 0.5, κ = 1.25, and α2 = 0.6. For the single-
mode cases, we used α1 = 0.6, and in the two-mode cases,
we used α1 = 0.5.

A. Single-Mode Blind Reconstruction: Synthetic Data

1) Single-Mode Data Simulation: The ground truth image
is complex-valued and consists of an 800 × 800 array of
pixels that models the transmission characteristics of a 5-layer
composite material. The ground truth probe used for sampling
the object image was simulated with a photon energy of 8.8
keV and has dimensions of 256 × 256 pixels. We show the
plot of the ground truth images and probes in Figure 4.

(a) (b) 

(c) (d) 
Figure 4: Simulated single-mode ground truth image (top)
and probe function (bottom): (a) Magnitude and (b) phase in
radians of the complex ground truth object; (c) Magnitude
and (d) phase in radians of the probe function. This image
and probe are used for results in Figures 5–10.

We used the following formula to simulate the measure-
ments for the jth probe location

ŷj ←

√
Pois

(
rp

Ij
maxi(∥Ii∥∞)

+ λ

)
, (20)

where Ij =
∑K−1

k=0 |FDkPjx|2, ∥ · ∥∞ denotes the infinity
norm, and maxi(·) denotes the maximum value over all i. For
our simulation of coherent data, we assumed a photon detector
with 14-bit dynamic range and the presence of a half-bit of
dark current, using K = 1, rp = 104 and λ = 0.5.

We generate random probe locations on a rectangular grid
separated by a nominal distance of 36 pixels, but with random

3The code for reproducing experimental results is available at https://github.
com/cabouman/ptycho pmace papers.

offsets uniformly chosen within the range [-5, 5] pixels for
each point. This approach resembles practical ptychographic
experiments and helps avoid periodic reconstruction artifacts
[42]. This resulted in a probe overlap ratio of rovlp ≈ 44%
using the definition of probe overlap ratio defined in [40].

2) Single-Mode Reconstruction Results: Blind reconstruc-
tions were performed using the ePIE, AWF, SHARP, and BM-
PMACE approaches. We optimized the algorithmic parameters
for each method using grid search and ran each method for 100
iterations. To quantitatively assess the reconstruction quality,
we use the normalized root mean square error (NRMSE) value
between the complex-valued reconstructed image x̂ and the
ground truth image x using

NRMSE = min
c∈C\{0}

∥cx̂− x∥
∥x∥

, (21)

(a) ePIE (b) DM (c) SHARP (d) BM-PMACE

(a) NRMSE = 0.077 (b) NRMSE = 0.071 (c) NRMSE = 0.082 (d) NRMSE = 0.038

Figure 5: Single-mode reconstructions of complex-valued ob-
ject from data in Figure 4 using multiple algorithms. Top:
Phase (in radians) of the reconstructed complex transmit-
tance images from synthetic single-mode data. Bottom: Differ-
ence between the reconstructed and ground truth phase, with
NRMSE for the complex-valued reconstructions indicated in
the subcaptions. BM-PMACE achieves the lowest NRMSE
among these methods.

(a) NRMSE = 0.077 (b) NRMSE = 0.071 (c) NRMSE = 0.082 (d) NRMSE = 0.038

(a) ePIE (b) DM (c) SHARP (d) BM-PMACE

Figure 6: Single-mode reconstructions of complex-valued ob-
ject from data in Figure 4 using multiple algorithms. Top:
Magnitude of the reconstructed complex transmittance images
from synthetic single-mode data. Bottom: Amplitudes of error
between the complex reconstructions and ground truth. BM-
PMACE visually outperforms the other methods.

https://github.com/cabouman/ptycho_pmace_papers
https://github.com/cabouman/ptycho_pmace_papers
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where c accounts for possible nonunit gain and an unknown
phase shift (since ptychographic measurements are invariant
to a constant phase shift in the image domain).

Figures 5 and 6 show the reconstructed phases and magni-
tudes for the transmittance image obtained using ePIE, DM,
SHARP, and BM-PMACE. The NRMSE values are included
in the bottom caption of each image; these are NRMSE for
the complex volume and so are the same in Figures 5 and
6. In each case, BM-PMACE produced substantially lower
reconstruction error than the alternative methods.

Figures 7 and 8 show the reconstructions and reconstruction
error for both the phase and magnitude of the probe resulting
from ePIE, DM, SHARP, and BM-PMACE. The reconstructed
phase using ePIE exhibits significant noise, while DM re-
construction mainly shows noise in the border region. The
SHARP probe contains artifacts near the edges. Again, the

(a) NRMSE = 0.106 (b) NRMSE = 0.045 (c) NRMSE = 0.074 (d) NRMSE = 0.031

(a) ePIE (b) DM (c) SHARP (d) BM-PMACE

Figure 7: Single-mode reconstructions of complex-valued
probe from data in Figure 4 using multiple algorithms.
Top: Phase (in radians) of the reconstructed probes from
synthetic single-mode data. Bottom: Difference between the
reconstructed and ground truth phase, with NRMSE for the
complex-valued probe indicated in the subcaptions. BM-
PMACE achieves the most accurate reconstruction.

(a) NRMSE = 0.106 (b) NRMSE = 0.045 (c) NRMSE = 0.074 (d) NRMSE = 0.031

(a) ePIE (b) DM (c) SHARP (d) BM-PMACE

Figure 8: Single-mode reconstructions of complex-valued
probe from data in Figure 4 using multiple algorithms. Top:
Magnitude of the reconstructed probes from synthetic single-
mode data. Bottom: Amplitudes of error between the complex
reconstructions and ground truth. BM-PMACE shows reduced
error artifacts in the bottom-right.

BM-PMACE reconstructions have substantially lower recon-
struction error than the alternative methods.

Figure 9: Reconstruction accuracy of complex-valued object
from synthetic single-mode data in Figure 4. Plotted is the
NRMSE between reconstructed object images and ground
truth as a function of the number of iterations on synthetic
single-mode data with probe overlap ratio 44%. The lower
NRMSE indicates better reconstruction performance.

Figure 9 presents the convergence of the NRMSE as a
function of the number of iterations for ePIE, DM, SHARP,
and BM-PMACE. BM-PMACE demonstrates a significantly
faster convergence rate and reaches stable solutions within
about 50 iterations. This indicates the efficiency of BM-
PMACE and also its robustness to the presence of noise.

Figure 10: Convergence of patch updates in BM-PMACE
tracked by the error metric Ec as a function of iterations. Ec

decreases rapidly at the beginning and stabilizes at a low value
of 10−3, indicating consistent refinement over iterations.

Figure 10 illustrates the convergence of BM-PMACE as
a function of the number of iterations. Here, convergence is
measured by the quantity Ec =

1
J ∥z−w∥2, where w and z

are variables introduced in Algorithm 1 and J is the number
of patches. Notice that as Ec approaches zero, the output of
FI(·) and GI(·) become equal, and the desired equilibrium
condition of Eq. (4) holds. Consequently, the plot of Figure 10
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indicates that the BM-PMACE algorithm converges to an
equilibrium, up to some inherent uncertainty.

B. Multi-Mode Blind Reconstruction: Synthetic Data

1) Multi-Mode Data Simulation: Figure 11 shows the K =
2 probe modes used for the simulation along with the 256×256
pixel ground truth image. As with the single-mode experiment,
this ground truth image is based on a simulated transmission
measurement through a composite material. The probe modes
are 256×256 pixels and were used in Eq. (20) with K = 2 to
generate the simulated data. As in the single-mode experiment,
probe locations were generated on a rectangular grid with
randomized offset and an average probe spacing of 36 pixels.
The probe modes were constructed so that the main probe
mode occupied 90% of the total energy, resulting in an overlap
ratio of the main probe mode of rovlp ≈ 65%.

(a) (b) 

(c) (d) 

(e) (f) 
Figure 11: Simulated multi-mode ground truth image and
mutually incoherent probe modes. The complex ground truth
object’s (a) magnitude and (b) phase; The main probe mode
function’s (c) magnitude and (d) phase; The secondary probe
mode function’s (e) magnitude and (f) phase. These images
are used for results in Figures 12–15.

2) Multi-Mode Reconstruction Results: We performed re-
construction using ePIE, DM, and BM-PMACE, each for 200
iterations. For all methods, the initializations followed our
approach, and the secondary probe mode was initialized and
introduced to the reconstruction process after 20 iterations.

Figures 12 and 13 show the reconstructed phases and
magnitudes obtained using the ePIE, DM, and BM-PMACE
methods. Also, the left column in both figures shows the
reconstructed images using BM-PMACE with single-mode,
which does not fully capture the details in ground truth image.
Note that the transmittance phase is typically more important
than magnitude in many applications. This is because phase

information often provides much higher contrast than magni-
tude information. In addition, the phase shift is directly related
to the optical path length through the object, which provides
quantitative information about the sample’s thickness and
refractive index. Our results indicate that BM-PMACE method
produces images with significantly fewer artifacts compared to
the other approaches and substantially lower NRMSE.

Figure 14 shows the reconstructed probe images, including
the reconstructed magnitudes and phases of both the main
probe mode and the secondary probe mode. These figures
illustrate the detailed structure of the reconstructed probe
modes for each method. BM-PMACE consistently captures
the complex features of the illumination with greater precision,
while ePIE and DM exhibit more distortions and less accurate
probe mode representations.

Figure 15 shows convergence plots for synthetic multi-mode
data. ePIE exhibits fast initial convergence but fails to reach
an optimal solution. DM converges to a better solution than
ePIE but requires significantly more iterations. DM continues
to improve after 200 iterations, which can result in excessively

(b) NRMSE = 0.120 (c) NRMSE = 0.084 (d) NRMSE = 0.044

(b) ePIE (c) DM (d) BM-PMACE

(a) NRMSE = 0.054

(a) Single-mode result

Figure 12: Multi-mode reconstructions of complex-valued
object from data in Figure 11 using multiple algorithms. Top:
Phase (in radians) of the reconstructed complex transmittance
images. Bottom: Difference between the reconstructed and
ground truth phase. BM-PMACE achieves the lowest NRMSE
among the tested methods.

(b) NRMSE = 0.120 (c) NRMSE = 0.084 (d) NRMSE = 0.044

(b) ePIE (c) DM (d) BM-PMACE

(a) NRMSE = 0.054

(a) Single-mode result

Figure 13: Multi-mode reconstructions of complex-valued
object from data in Figure 11 using multiple algorithms.
Top: Magnitude of the reconstructed complex transmittance
images. Bottom: Amplitdues of error between the complex
reconstructions and ground truth. BM-PMACE exhibits the
least residual error in the difference image.
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(a) ePIE (main mode) (b) DM (main mode) (c) BM-PMACE (main mode)

(d) ePIE (second mode) (e) DM (second mode) (f) BM-PMACE (second mode)

(a) ePIE (main mode) (b) DM (main mode) (c) BM-PMACE (main mode)

(d) ePIE (second mode) (e) DM (second mode) (f) BM-PMACE (second mode)

Figure 14: Multi-mode reconstructions of complex-valued
probes from data in Figure 11 using multiple algorithms. Top
row: Magnitudes of the reconstructed complex probe functions
for the main mode, using ePIE, DM, and BM-PMACE. Second
row: Phase (in radians) of the reconstructed complex probe
function for the main mode. Third and fourth rows: Magni-
tudes and phases (in radians) of the reconstructed complex
probe function for the secondary mode from multi-mode data.
BM-PMACE reconstructs both the main and secondary probe
modes with greater clarity and fewer artifacts.

long computational time. BM-PMACE has substantially faster
convergence as compared to ePIE and DM and the solution it
reaches has much lower NRMSE than ePIE and DM.

C. Scan Position Refinement

The ptychographic reconstruction algorithms critically de-
pend on accurate scan position information. The scan position
errors due to mechanical drift or calibration inaccuracies can
significantly degrade reconstruction quality. In this section,
we present the scan position refinement algorithm integrated
with the BM-PMACE framework. Our approach iteratively
optimizes scan positions using a grid-based search and parallel
computation.

For each scan position, a grid search is performed in a local
Ns×Ns pixel neighborhood (e.g. 5 x 5) to find the offset that
minimizes intensity error. We evaluate the quality of candidate
scan positions by comparing simulated intensity from the
current object and probe estimate with measured intensity data

Figure 15: Reconstruction accuracy of complex-valued object
from synthetic multi-mode data in Figure 11. Plotted is the
NRMSE between reconstructed object images and ground
truth as a function of number of iterations on synthetic multi-
mode data. BM-PMACE achieves faster convergence and
higher accuracy in reconstructing the object.

using the Frobenius norm as the error metric. After identifying
the optimal offset, we update the scan position and continue
BM-PMACE reconstruction with refined positions.

Large scan position errors may require multiple refinement
iterations. Our scan position refinement algorithm allows users
to specify exactly at which reconstruction iterations scan
position refinement should be performed. In the following
experiments, we first run the main BM-PMACE reconstruction
for 10 iterations to allow the object and probe to achieve
initial improvement and then trigger scan position refinement
at user-defined iterations. After refinement steps, the finalized
scan positions are recorded and consistently used for all
reconstruction approaches for comparative analysis.

1) Single-mode Blind Reconstruction with Scan Position
Refinement: To simulate experimental uncertainties, scan po-
sitions are perturbed by adding Gaussian noise with a standard
deviation of 2 pixels, which is about 5.6% of the average 36-
pixel distance between neighboring scan points.

The experiment proceeded in two stages. First, we per-
formed PMACE recosntruction for 10 iterations, then enabled
scan position refinement for 3 iterations, allowing the algo-
rithm to correct scan position errors using a 3x3 grid search
with a one-pixel step size. The refined scan positions were
saved and used for the following reconstructions. Next, we
conducted reconstruction using the corrected positions.

Figures 16 and 17 show the reconstructed phase and
magnitude images for the synthetic noisy data using single-
mode approaches with corrected scan positions. BM-PMACE
achieves the lowest NRMSE and provides the most accurate
results among the tested algorithms.

Figure 18 presents convergence comparison for tested algo-
rithms. The impact of scan position errors is visualized by the
dashed blue line. The position errors degrade the performance
of BM-PMACE, both in terms of convergence speed and final
accuracy. The algorithms shown with solid lines, including
ePIE, DM, SHARP, and BM-PMACE, are evaluated and tested
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with corrected scan positions. The plot demonstrates that the
position-corrected BM-PMACE consistently outperforms the
other methods.

(a) ePIE (b) DM (c) SHARP (d) BM-PMACE

(a) NRMSE = 0.082 (b) NRMSE = 0.075 (c) NRMSE = 0.088 (d) NRMSE = 0.044

Figure 16: Position-corrected single-mode reconstructions of
complex-valued object from data in Figure 4. Top: Phase
(in radians) of the reconstructed images. Bottom: Difference
between reconstructed and ground truth phase.

(a) NRMSE = 0.082 (b) NRMSE = 0.075 (c) NRMSE = 0.088 (d) NRMSE = 0.044

(a) ePIE (b) DM (c) SHARP (d) BM-PMACE

Figure 17: Position-corrected single-mode reconstructions of
complex-valued object from data in Figure 4. Top: Magnitude
of the reconstructed complex transmittance images. Bottom:
Amplitudes of error between reconstructions and ground truth.

2) Two-mode Blind Reconstruction with Scan Position Re-
finement: Building on the single-mode setup, we simulate
experimental uncertainties to the multi-mode experiment as
before. The scan positions are perturbed by adding Gaussian
noise with a standard deviation of 2 pixels.

We first corrected the perturbed scan positions by running
BM-PMACE for 10 iterations to jointly update the object and
single probe mode. This was followed by 3 iterations of scan
position refinement, using a 3x3 grid search with one-pixel
step size. The refined scan positions were saved and used for
the final reconstructions. All reconstruction methods shared
the same corrected scan positions, initialization as described
in Section V-A, and adaptive mode incorporation strategy
outlined in Section V-B.

Figures 19 and 20 presents the results of position-corrected
multi-mode reconstructions of the complex-valued transmit-
tance image using ePIE, DM, and BM-PMACE, with the first
column in both figures illustrating the reconstruction results
using perturbed scan positions. The results from perturbed scan
locations exhibit degraded image quality with artifacts and loss

of details in both phase and magnitude reconstructions. Fol-
lowing scan position refinement, the reconstructions produced
by BM-PMACE exhibit the clearest structural details and the
smallest error maps among the reconstruction methods.

Figure 21 compares the convergence of multi-mode algo-
rithms. The blue dashed line represents BM-PMACE with
perturbed scan locations. Compared to the position-corrected
BM-PMACE in red solid line, the perturbed version shows
significantly higher NRMSE throughout the iterations. After
scan position refinement, the NRMSEs at the object plane
as a function of the number of iterations are shown in solid
lines. BM-PMACE consistently achieves faster convergence
and lowest final NRMSE.

D. Experimental Methods on Measured Data

In this section, we use the Ptychography Gold Ball Example
Dataset that was collected by Marchesini using Lawrence
Berkeley Laboratory’s Advanced Light Source (ALS) [70].
The scans were performed on a 20 × 40 grid, with adjacent
scans spaced 30 nm apart. A total of 800 ptychographic
measurements were captured by the detector positioned 0.112
m downstream from the sample of nanometer-sized gold balls.
Based on previous investigations with this dataset, the illumi-
nation overlap ratio is approximately 84%, which is sufficient
to achieve high-quality reconstructions in ptychography [40].

In the preprocessing of the raw data, we subtracted the
average of 20 dark scans from each intensity measurement.
This step is critical for mitigating the influence of noise.
Subsequently, a subset of 6 measurements exhibiting signifi-
cant deviations are identified as outliers and excluded from
the dataset. This step is crucial to mitigate the impact of
inconsistencies in the data and to improve the fidelity of the
reconstruction. For fast calculation of Fourier Transform, we

Figure 18: Convergence comparison of single-mode ap-
proaches using synthetic single-mode data in Figure 4. The
plot contrasts BM-PMACE using perturbed scan locations
(dashed blue) against approaches using corrected scan posi-
tions. Position-corrected BM-PMACE outperforms other ap-
proaches and achieves higher accuracy.
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(b) NRMSE = 0.123 (c) NRMSE = 0.111 (d) NRMSE = 0.049

(b) ePIE (c) DM (d) BM-PMACE

(a) NRMSE = 0.062

(a) Perturbed result

Figure 19: Position-corrected multi-mode reconstructions of
complex-valued object from data in Figure 11 using multi-
ple algorithms. Top: Phase (in radians) of the reconstructed
complex transmittance images from synthetic multi-mode data.
Bottom: Difference between the reconstructed and ground
truth phase, with NRMSE values indicated in the subcaptions.

(b) NRMSE = 0.123 (c) NRMSE = 0.0111 (d) NRMSE = 0.049

(b) ePIE (c) DM (d) BM-PMACE

(a) NRMSE = 0.062

(a) Perturbed result

Figure 20: Position-corrected multi-mode reconstructions of
complex-valued object from data in Figure 11 using multi-
ple algorithms.Top: Magnitude of the reconstructed complex
transmittance images from synthetic multi-mode data. Bottom:
Amplitdues of error between the complex reconstructions and
ground truth.

cropped each measurement and reduced the dimensions from
621×621 pixels to 512×512 pixels. While cropping diffraction
pattern reduces the maximum scattering angle captured, this
is an acceptable trade-off as the cropped data still contains
sufficient high-frequency component for the reconstruction.
To further enhance the data quality, we suppress noise by
multiplying a 2D Tukey window to each of these diffraction
measurements. The 2D Tukey window was generated by
rotating a 1D Tukey window with shape parameter of 0.5. The
resulting data set contains 794 preprocessed and high-quality
diffraction measurements.

We refined the scan positions using BM-PMACE. This
process involves 10 reconstruction iterations followed by 3
refinement iterations with 3x3 grid and one-pixel step size.
Then we performed reconstructions using single-mode, K =
1, and two-mode, K = 2, approaches. For the single-mode
reconstruction, we compared ePIE, DM, SHARP, and BM-
PMACE; but for the two-mode reconstruction, we only com-
pared ePIE, DM, and BM-PMACE, since SHARP does not
support multi-mode reconstruction. To quantitatively compare

Figure 21: Convergence comparison of multi-mode approaches
using synthetic multi-mode data in Figure 11. Plotted is the
NRMSE between reconstructed object images and ground
truth as a function of number of iterations on synthetic multi-
mode data. Position-corrected BM-PMACE achieves faster
convergence and lower NRMSE in reconstructing the object.

the different methods, we calculated the forward-propagated
NRMSE metric in which we evaluated the NRMSE between
the measured data and the estimated measurements obtained
by passing the reconstruction and estimated probes through
the forward model. Each method was run for a total of
100 iterations and parameters were selected to minimize the
forward-propagated NRMSE. Initialization was performed as
described in Section V-A.

E. Single-Mode and Multi-Mode Results: Measured Data

Figures 22 and 23 show the reconstructed phase and mag-
nitude images for the Gold Ball dataset using single-mode
and two-mode approaches. ePIE achieves good image quality
in the central region, but has poor quality across the larger
field-of-view. SHARP and DM are able to reconstruct features
in a relatively larger field of view. However, they tend to
reconstruct images with blurry details, especially near the edge
of reconstructed images. BM-PMACE reconstructs the features
across the largest field-of-view and exhibits significantly less
noise compared to the other methods. In general, the two-mode
reconstructions are superior to the one-mode reconstructions.

Figure 24 presents the probe estimates using ePIE, DM,
SHARP, and BM-PMACE under the coherent probe assump-
tion, where a single probe was reconstructed along with the
object transmittance image. As the illumination overlap ratio
is high and the data is sufficient for reconstruction, all methods
produce high-quality probes with reliable and similar density
distributions and wavefront shapes.

Figure 25 shows the reconstructed main mode and sec-
ondary mode using ePIE, DM, and BM-PMACE under the
multiple probe modes condition, with the secondary probe
introduced after 10 iterations. All reconstructed main probes
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(a) ePIE (single-mode) (b) DM (single-mode) (c) SHARP (single-mode) (d) BM-PMACE (single-mode)

(e) ePIE (two-mode) (f) DM (two-mode) (g) BM-PMACE (two-mode)

Figure 22: Phase reconstructions (in radians) using single-mode and multi-mode algorithms from measured data.
The top row features the reconstructed images using ePIE, DM, SHARP, and BM-PMACE, using a single probe mode. The
Bottom row shows the reconstructed images using ePIE, DM, and BM-PMACE, using two probe modes. BM-PMACE produces
cleaner transmittance images than competing algorithms.

(a) ePIE (single-mode) (b) DM (single-mode) (c) SHARP (single-mode) (d) BM-PMACE (single-mode)

(e) ePIE (two-mode) (f) DM (two-mode) (g) BM-PMACE (two-mode)

Figure 23: Magnitude reconstructions of complex-valued object using single-mode and multi-mode algorithms from measured
data.
The top row features the reconstructed images using ePIE, DM, SHARP, and BM-PMACE, using a single probe mode. The
Bottom row shows the reconstructed images using ePIE, DM, and BM-PMACE, using two probe modes. Two-mode BM-
PMACE results show better feature preservation and clarity.
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(a) ePIE (b) DM (c) SHARP (d) BM-PMACE 

(a) ePIE (b) DM (c) SHARP (d) BM-PMACE 

Figure 24: Single-mode reconstructions of complex-valued
probe from real data. Top: Magnitudes of reconstructed com-
plex probe functions in single-mode reconstruction using ePIE,
DM, SHARP, and BM-PMACE. Bottom: Phase (in radians) of
the reconstructed complex probe functions.

(a) ePIE (main mode) (b) DM (main mode) (c) BM-PMACE (main mode)

(d) ePIE (second mode) (e) DM (second mode) (f) BM-PMACE (second mode)

(a) ePIE (main mode) (b) DM (main mode) (c) BM-PMACE (main mode)

(d) ePIE (second mode) (e) DM (second mode) (f) BM-PMACE (second mode)

Figure 25: Two-mode reconstructions of complex-valued
probes from real data. Top row: Magnitudes of the recon-
structed complex probe functions for the main mode, using
ePIE, DM, SHARP, and BM-PMACE. Second row: Phase (in
radians) of the reconstructed complex probe function for the
main mode. Third and fourth rows: Magnitudes and phases
(in radians) of the reconstructed complex probe function for
the secondary mode from measured data. BM-PMACE yields
reconstructions with more defined features in both modes.

capture more than 95% of the total energy. However, the
secondary mode exhibited notable differences. The secondary
mode reconstructed using ePIE has low density and carries

subtle phase information, and thus appears dim in Figure 25.
The secondary mode reconstructed using DM provides more
information but still lacks detail. BM-PMACE produces a
secondary mode with more detailed density and phase infor-
mation, demonstrating its ability to capture complex features
in multi-mode reconstructions. We limit our experiment to two
probe modes, as adding more modes did not further improve
reconstruction quality.

Method Reconstruction
Single-mode Two-mode

ePIE 0.094 0.087
DM 0.090 0.075

SHARP 0.081 -
BM-PMACE 0.079 0.067

Table II: Comparison of forward-propagated NRMSE for
each reconstruction method under single-mode and two-mode
conditions. The ”-” indicates that the reconstruction condition
is not supported by the method.

Table II displays the forward-propagated NRMSE val-
ues for both single-mode and two-mode cases. BM-PMACE
achieves the lowest NRMSE of all of the methods in both
the single-mode and two-mode cases, indicating that it fits
the measurements most effectively. Notably, all methods show
improvement when an extra mode is incorporated into the
reconstruction.

VII. CONCLUSION

In this paper we presented BM-PMACE for blind ptycho-
graphic reconstruction. Our method offers a robust, efficient,
and flexible framework for accurately estimating complex
transmittance images and probe functions, leveraging the ben-
efit of local refinement of probe estimate while maintaining
the parallel structure among the agents. Additionally, it ac-
commodates multiple probe modes, which enables effective
reconstruction in scenarios with partially coherent illumina-
tion.

We applied BM-PMACE to blind ptychography on both
synthetic noisy data and measured data. The results indicate
that BM-PMACE achieves high-quality reconstruction with
fewer iterations compared to existing methods, potentially
reducing computational time and resources. Additionally, BM-
PMACE exhibited rapid convergence to a stable state, even in
the presence of noise in data. Overall, BM-PMACE provides
a reliable framework for accurate and efficient ptychographic
reconstruction.
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