Bending Out of the Box: The Marriage of Sensors and Computational Imaging

Charles A. Bouman, Purdue ECE/BME 2023 International Image Sensors Workshop May 24, 2023

In collaboration with:

Greg Buzzard, Purdue Math Soumendu Majee, Purdue ECE Thilo Balke, Purdue ECE Brendt Wohlberg, LANL Craig Kemp, Eli Lilly Singanallur V Venkatakrishnan, ORNL

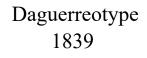
†Thank you to Showalter Foundation, ORNL, LANL, NSF, GE Healthcare, AFRL, Eli Lilly, and DHS

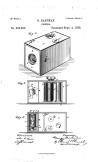
Introduction to Computational Imaging

- What is Computational Imaging
- MBIR for Solving Inverse Problems
- o Thin Manifold View of Inverse Problems

Imaging Over the Years*

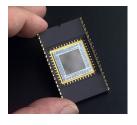
silver halide





Eastman film 1885

vidicon tube



cellphone cameras

holography

X-ray CT

electron microscopy

ptychography

neutron imaging

EHT Telescope

Webb Telescope

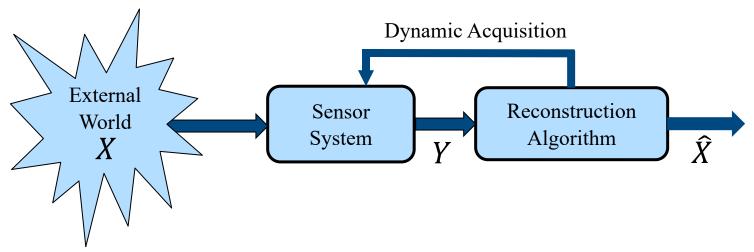
Chemical Imaging

Electronic Imaging

Computational Imaging

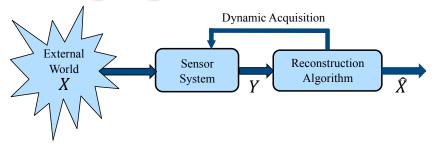
*Reproductions from Wikipedia

What is Computational Imaging?



- Computational Imaging:
 - Engineering and science of turning data into images
 - Requires the solution to an inverse problem
- •Co-design: Jointly optimize the sensor and algorithm
- Dynamic acquisition: Use results to optimize sensor parameters

Philosophy of Computational Imaging



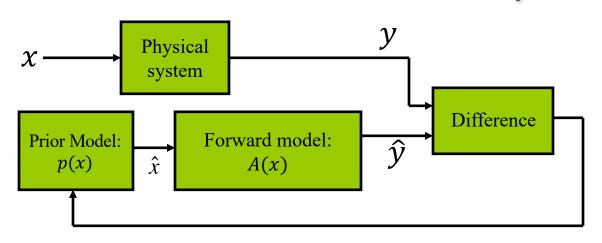
Philosophy:

- Traditional sensor design is reaching its limits
- Make the most informative rather than "purest" measurement

•Mick Jagger's Theorem:

 You can't always get what you want, but if you try sometimes, you might get what you need.

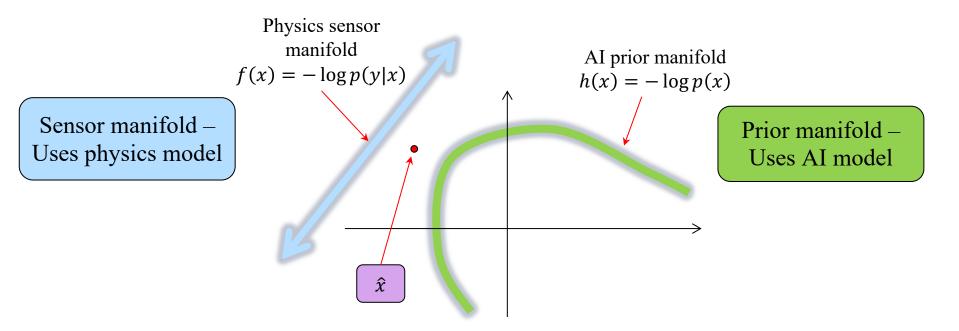
MBIR Reconstruction (Model-Based Iterative Reconstruction)



$$\hat{x} \leftarrow \arg\min_{x} \{ \log p(y|x) + \log p(x) \}$$
forward model prior model

 \hat{x} – Reconstructed object y – Measurements from physical system

MBIR: "Thin Manifold" View



MBIR Reconstruction:
$$\hat{x} = \arg\min_{x} \{ f(x) + h(x) \}$$

ML/AI in Computational Imaging

- Strengths/Weaknesses of ML/AI
- o Direct versus Plug-and-Play Reconstruction
- The profound role of denoisers

Strengths/Weakness of ML/Al Methods

- Very detailed representations of data and systems
 - Can accurately model the distribution of real data
 - Can estimate the input/output behavior of complex systems
 - Can generate samples from sample distributions

Not flexible

- Difficult to adapt
- Difficult to incorporate physics
- Require copious training data

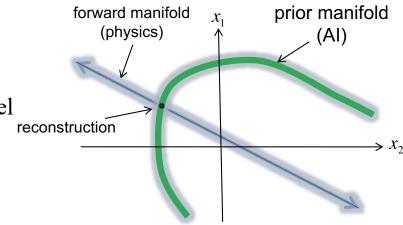
Two Approaches to AI in Computational Imaging

Direct AI reconstruction

- Fast and can be accurate with sufficient training
- Not flexible (tuning hell)
- Does not incorporate physics

Plug-and-Play reconstruction

- Models prior with AI denoiser
- Alternates AI denoising with physics model
- Modular and flexible

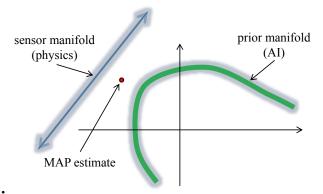


Variable Splitting

MBIR Reconstruction:

$$\hat{x} = \arg\min_{x=v} \{ f(x) + h(v) \}$$

- Split variables
- ADMM:
 - Alternating minimization of f and h
 - Augmented Lagrangian term enforces consistency.
 - Uses proximal maps

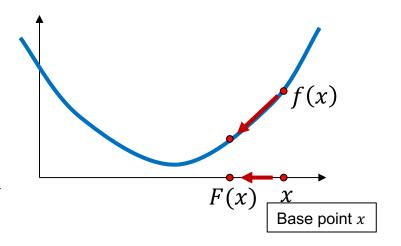


Proximal Maps

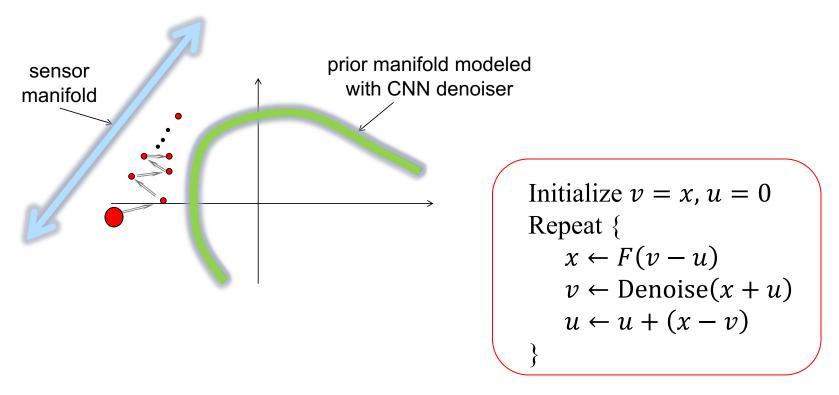
Minimize a function subject to a quadratic penalty on the distance (proximity) to a given base point.

• Proximal map of f with base point x:

$$F(x) = \arg\min_{z} \left\{ f(z) + \frac{1}{2\sigma^2} ||z - x||^2 \right\}$$
Minimize a function Quadratic distance penalty



PnP Intuition and Convergence



[1] S. Venkat Venkatakrishanan, Charles A. Bouman, and Brendt Wohlberg, "Plug-and-Play Priors for Model Based Reconstruction," IEEE Global Conference on Signal and Information Processing (GlobalSIP), Austin, Texas, USA, December 3-5, 2013.

[2] Suhas Sreehari, S. Venkat Venkatakrishnan, Brendt Wohlberg, Gregery T. Buzzard, Lawrence F. Drummy, Jeffrey P. Simmons, and Charles A. Bouman, "Plug-and-Play Priors for Bright Field Electron Tomography and Sparse Interpolation," IEEE Transactions on Computational Imaging, vol. 2, no. 4, Dec. 2016.

PnP circa 2013

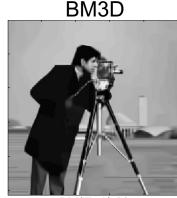
Forward model: match selected noisy subsamples

$$f(x) = \frac{1}{2} ||x - y||^2$$

Ground Truth

Prior model: denoising algorithm

K-SVD

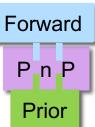


RMSE: 12.56

TV

q-GGMRF

Noise std. dev:5% of max signal



RMSE:14.54

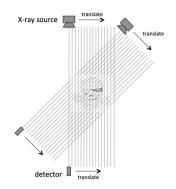
RMSE: 15.50

RMSE:15.72

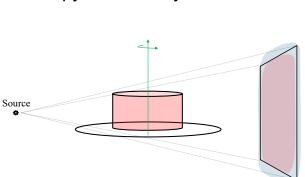
MBIR - Model Based Iterative Reconstruction

- o Flow diagram
- Medical CT example

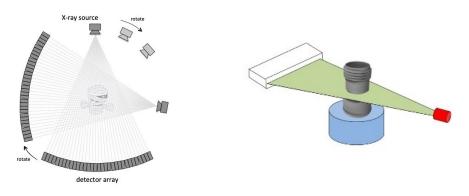
Computed Tomographic (CT) Imaging



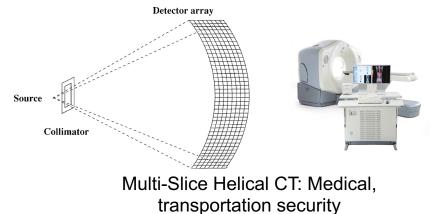
Parallel Beam CT: synchrotrons, electron microscopy, nano-X-ray sources



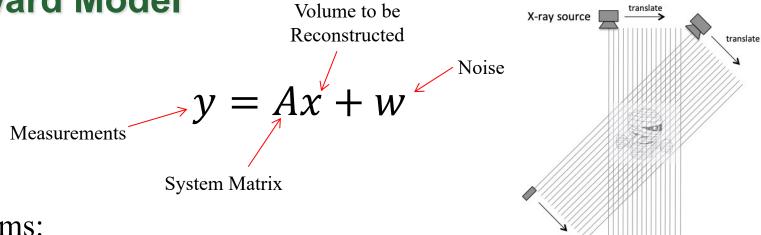
Cone Beam CT: Industrial CT, C-arm Scanners



Fan Beam CT: Industrial CT



CT Forward Model



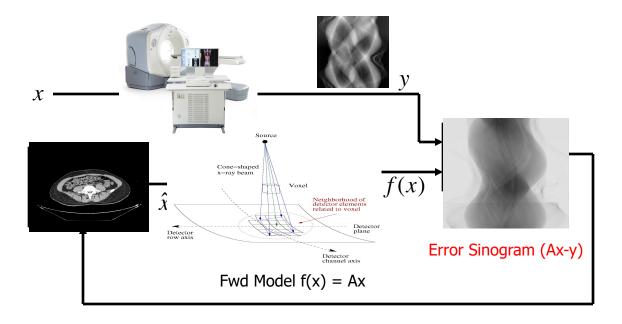
Problems:

- Not enough measurements: sparse or missing views, etc.
- Low quality data: high noise, low dosage, short exposure, etc.
- Model mismatch: metal, beam-hardening, scatter, poly-energetic, etc.
- Resolution loss: detector blur, motion blur, X-ray spot size, etc.

Applications:

Medical, scientific, industrial, and security

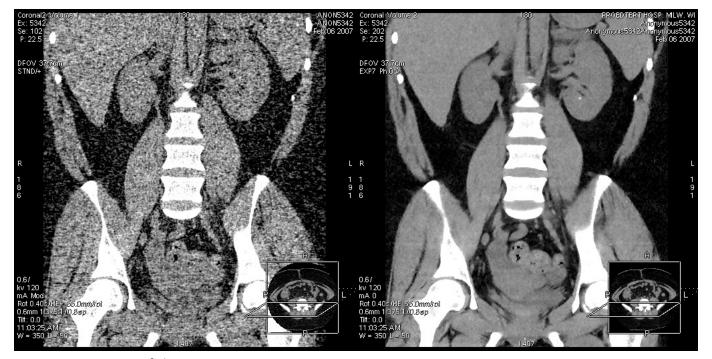
Model-Based Iterative Reconstruction (MBIR)



$$\hat{x} = \arg\min_{x \ge 0} \left\{ -\log p(y \mid x) - \log p(x) \right\}$$

$$= \arg\min_{x \ge 0} \left\{ \frac{1}{2} \|y - Ax\|_{\Lambda}^{2} + u(x) \right\}$$

MBIR for 64 slice GE VCT Scanner circa 2011



State-of-the-art 3D Recon

GE MBIR Purdue/Notre Dame/GE algorithm

•Limitations:

Simple prior model

- Very slow
- Difficult to implement and use in scientific applications

Time Interlaced Model Based Iterative Reconstruction (TIMBIR)

K. Aditya Mohan, LLNL

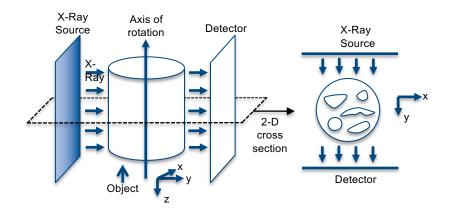
John Gibbs, Northwestern University Peter Voorhees, Northwestern University

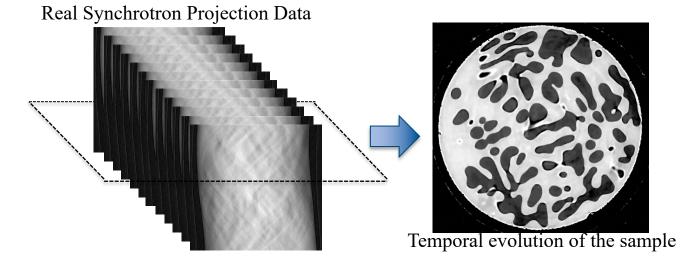
Marc De Graef, CMU

Xianghui Xiao, APS

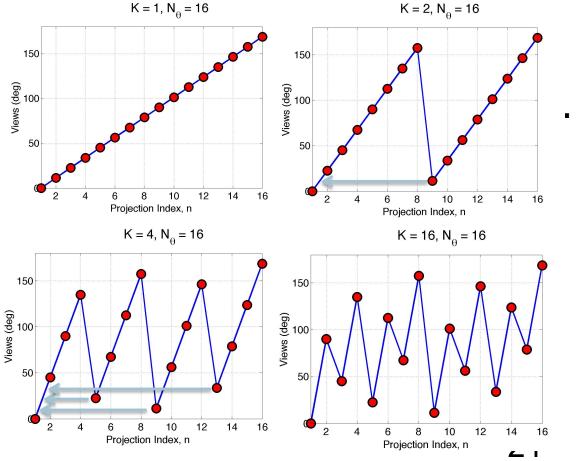
Charles Bouman, Purdue

Synchrotron Imaging of Time-Varying Sample





Examples of Interlaced Views



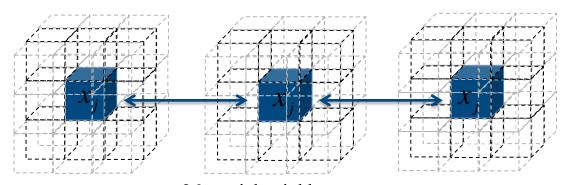
 Total number of discrete angles used is a constant.

The time taken for rotation of object by 180 degrees decreases as K increases (or L decreases).

4D Prior Model in Space and Time

Markov Random Field based model

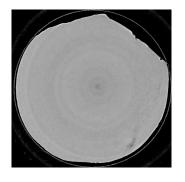
$$-\log p(x) = \sum_{j=1}^{L} \sum_{\{k,l\} \in N} w_{kl} \rho(x_{j,k} - x_{j,l}) + \sum_{k=1}^{P} \sum_{\{j,i\} \in \Gamma} w_{kl} \rho(x_{j,k} - x_{i,k}) + \text{constant}$$

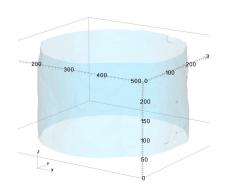


26 spatial neighbors and 2 temporal neighbors of x_i

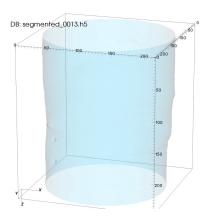
TIMBIR Experimental Results:

■16x Speed-Up





■32x Speed-Up (k=16)



APS Experiment

- Solidification of aluminum and copper mixture
- •Temperature decreased at 2^o Celsius per minute
- •2000 views in a frame, interlaced over 16 sub-frames
- 16x speed up

Reconstruction

- ■(2048 x 2048 x 1000) space x 16 time
- • $(0.65 \mu m)^3$ voxel size
- ■1.8 sec time step
- Image scaling: 10000 HU to 60000 HU

APS Experiment

- •Solidification of aluminum and copper mixture
- •Temperature decreased at 5^o Celsius per minute
- ■2000 views in a frame, interlaced over 32 sub-frames
- ■32x speed up

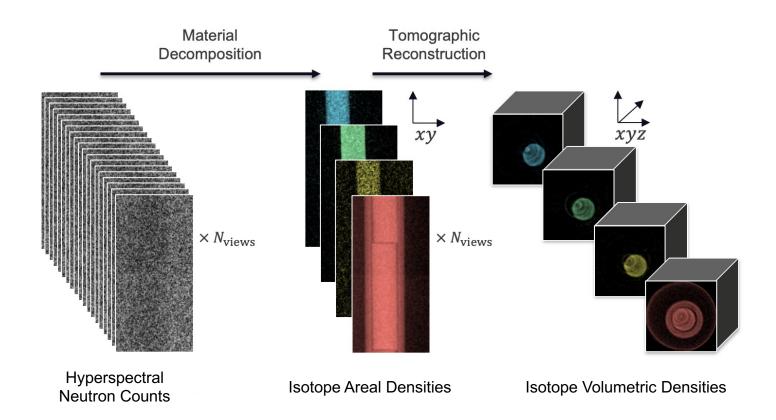
Reconstruction

- •(2048 x 2048 x 1000) space x 16 time
- • $(0.65 \mu m)^3$ voxel size
- ■0.9 sec time step
- Image scaling: 10000 HU to 60000 HU

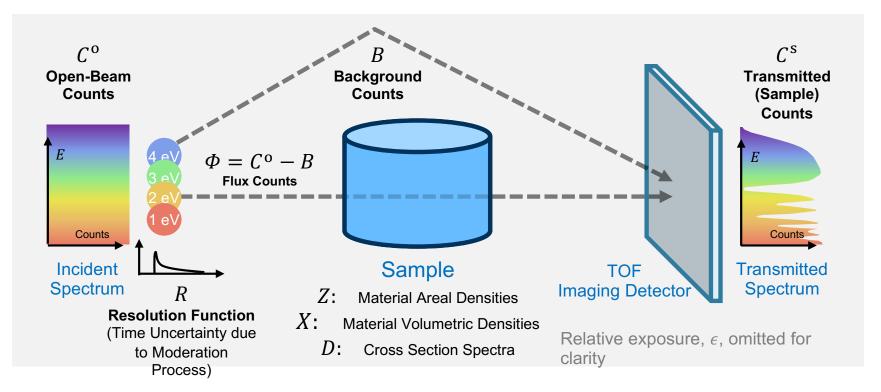
Neutron Imaging

Thilo Balke, Purdue/LANL Alexander M. Long, LANL Sven C. Vogel, LANL Brendt Wohlberg, LANL Charles A. Bouman, Purdue

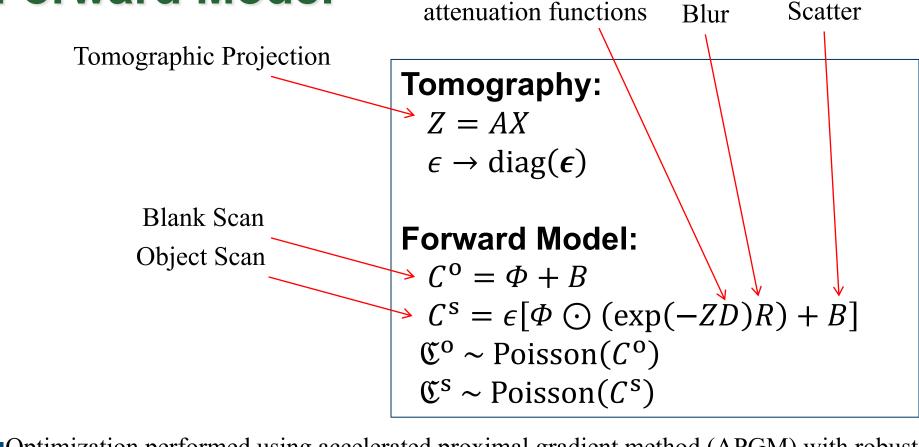
Overview



Measurement Model



•Detector collects 2000 frames at 30nsec per frame (33 MHz) designed by Anton Tremsin, Space Sciences Laboratory, University of California, Berkeley



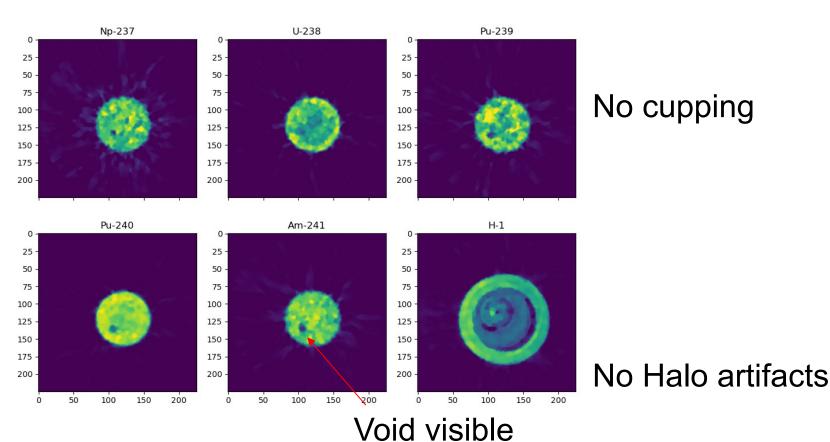
Dictionary of mass

Forward Model

[•]Optimization performed using accelerated proximal gradient method (APGM) with robust line search as part of the scientific computational imaging code (SCICO) software package.

Tomographic Reconstruction

Tomographic Reconstruction, slice 27



Neutron Imaging

Diyu Yang, Purdue

Shimin Tang, LANL

Singanallur V. Venkatakrishnan, LANL

Mohammad S. N. Chowdhury, Purdue

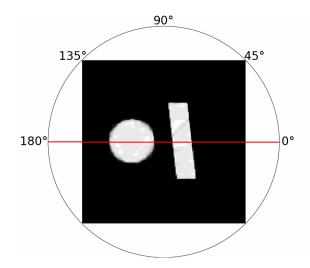
Yuxuan Zhang, LANL

Hassina Z. Bilheux, LANL

Gregery T. Buzzard, Purdue

Charles A. Bouman, Purdue

Conventional View Selection in CT

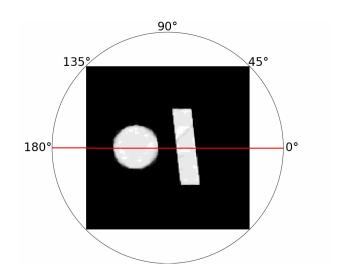


Equally spaced view angle

$$\Delta\theta = \frac{180^{\circ}}{N_{n}}$$

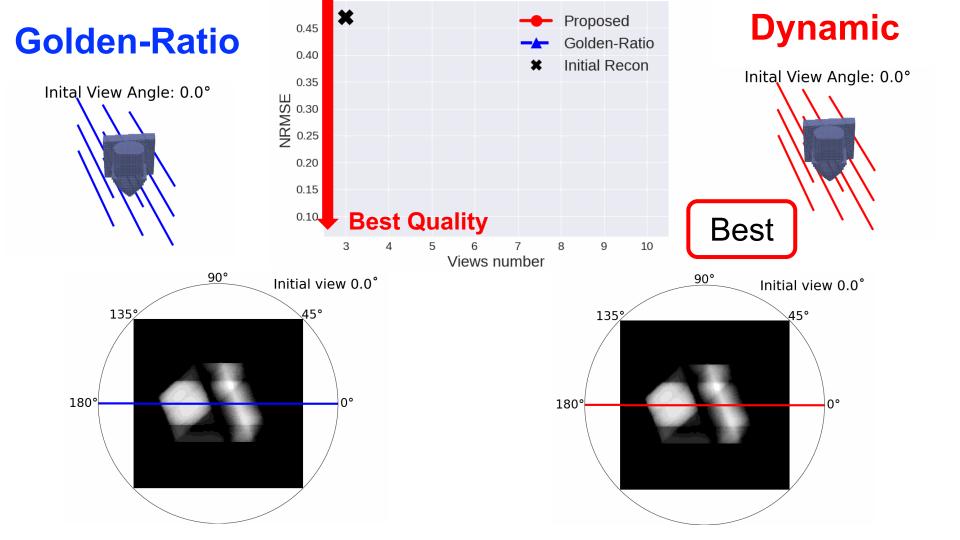
$$\theta_n = n \cdot \Delta \theta$$
, $n = 0, ..., N_v - 1$

Good



Golden angle $\theta_{golden} \approx 137.51^{\circ}$ $\theta_n = (n \cdot \theta_{golden}) \ mod \ 180$

Better



4D Recon using PnP/MACE

Soumendu Majee, Purdue

Thilo Balke, Purdue

Craig A. J. Kemp, Eli Lilly

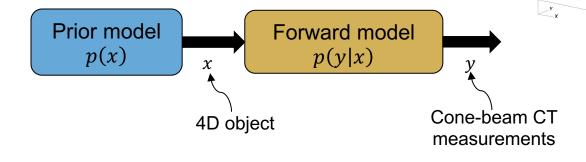
Gregery T. Buzzard, Purdue

Charles A. Bouman, Purdue

4D MBIR Reconstruction

TIMBIR:

- Showed 16x increase in temporal resolution
- Based on simple 4D MRF prior



200 300 ...

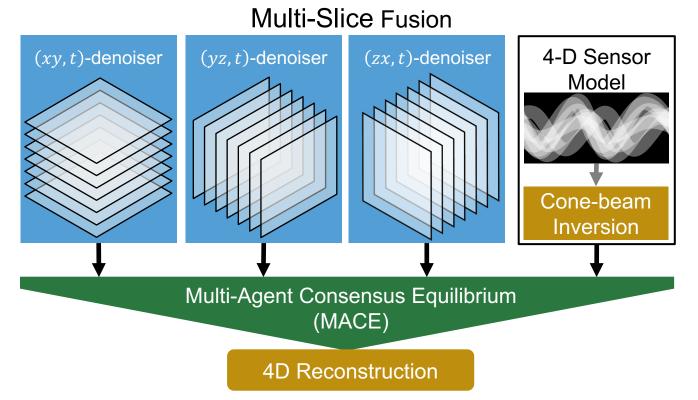
1400 500 0

4D MBIR reconstruction:

$$\hat{x} \leftarrow \arg\min_{x} \{-\log p(y|x) - \log p(x)\}$$

Can we do better with advanced 4D priors?

Multi-Slice Fusion



- Fuse multiple CNN denoisers to implement 4D prior
- Use 2D convolutions: fast and implementable
- No 4D training data required

Experimental Setup

Scanner Model North Star Imaging X50

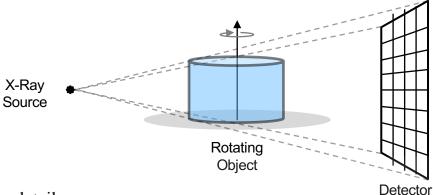
Source-Detector Distance 839 mm **Magnification** 5.57

Cropped Detector Array 731×91, (0.254 mm)²

Detector resolution at ISO45.7 μmNumber of Views per Rotation150

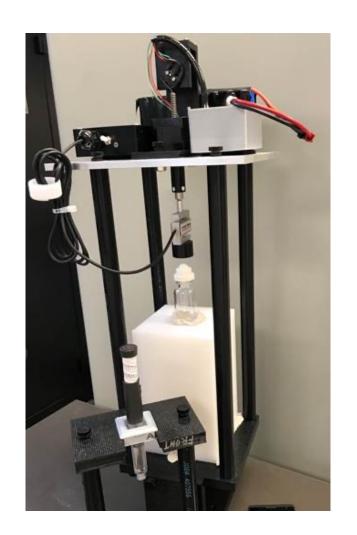
Voxel Size $(45.7 \mu m)^3$

Reconstruction Size (x, y, z, t) 731×731×91×16

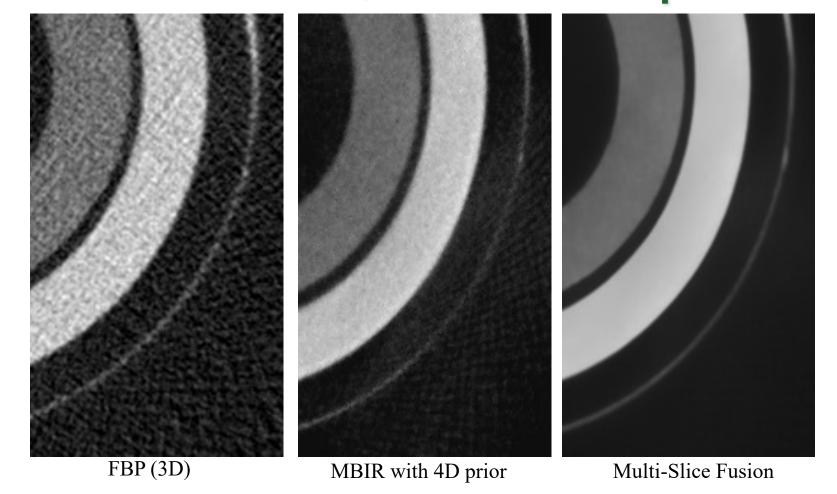


Other details:

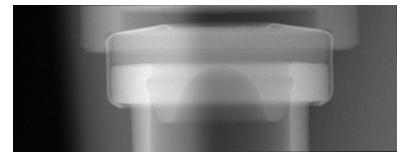
- Object held in place by fixtures: artifacts
- All 4D results undergo preprocessing to correct for jig artifacts



Multi-Slice Fusion: Qualitative Comparison



Vial Scan with Force-Curve



Sinogram View

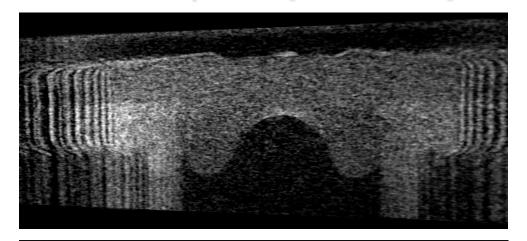
•Scanner parameters:

- 758 ×290 pixels, 3750 views, 25 full rotations
- Detector spacing: $0.254 \times 0.254 \text{ mm}^2$
- Source-object distance: 152 mm
- Object-detector distance: 695 mm
- Magnification: ≈ 5.57

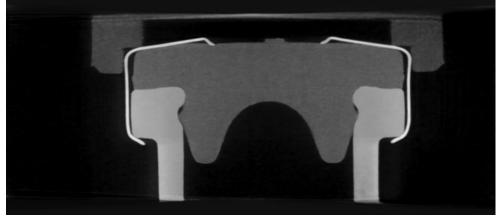
•Image Parameters (ROR)(rotations 5-8):

- $-758\times758\times290\times4$ voxels
- Voxel size: $(0.05 \text{ mm})^3$
- Field of view: 38 mm (758 voxels)

Reconstruction (180° per time-point)



FBP

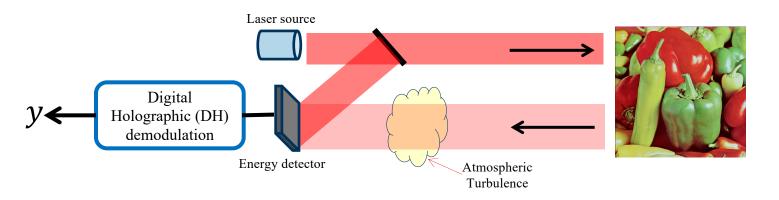


Multi-Slice Fusion

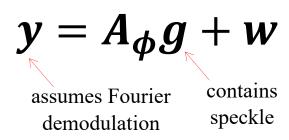
Digital Holographic Imaging and Wavefront Sensing

Casey Pellizzari, USAFA Mark Spenser, AFRL Charles A. Bouman, Purdue

Digital Holography



Sensing model:



y – Complex measurement

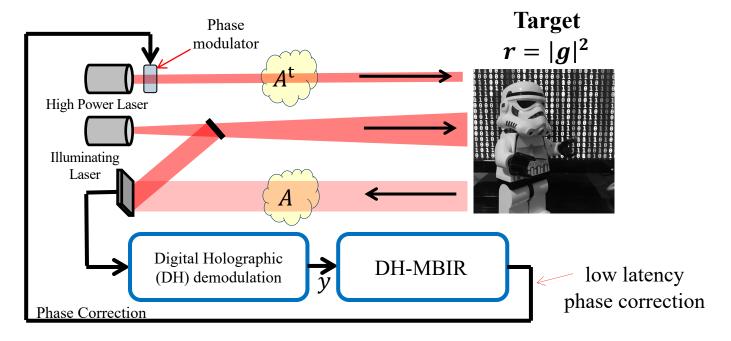
g – Complex reflectance coefficient

 \mathbf{w} – Complex noise

 A_{ϕ} – Linear propagation model

 ϕ – Unknown phase distortion

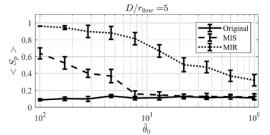
DH Wavefront Correction



Scary fact:

- You can always increase throughput with more hardware
- You <u>can't always reduce latency</u> with more hardware

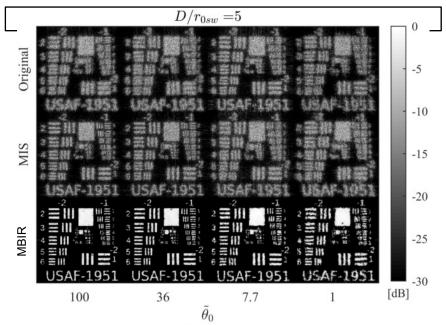
DH-MBIR Reconstruction: Anisoplanatic Simulation Data

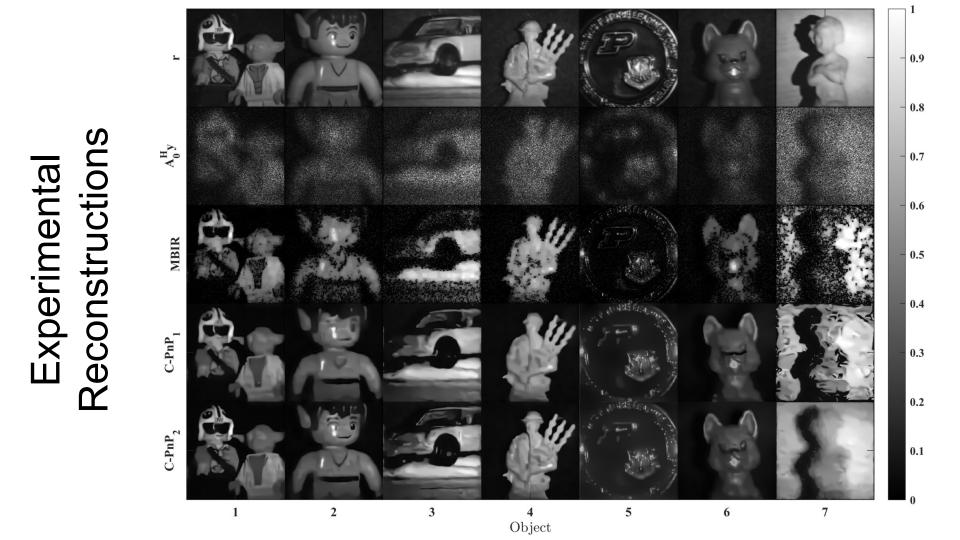


Peak Strehl ratio vs. $\tilde{\theta}_0$, averaged over 10 i.i.d. realizations

Simulation Parameters:

- 256x256 images
- 3 phase screens
- $\left(\frac{\lambda}{D}\right) = 1 \ pixel$





Take Aways

- Computational Imaging
 - Every sensing problem is an inverse problem
 - Make the most informative measurement
- Fusing physics-based and ML models
 - Plug-and-Play: Use denoiser as prior model
 - MACE: Integrate multiple physics and data models
- MBIR/PnP can be used to dramatically improve CT quality
 - Sparse data
 - Nonlinear forward problems
 - Dynamic measurements

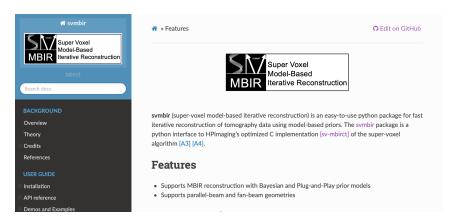
What are the opportunities?

•How can co-design of algorithms/sensors improve performance?

•What opportunities exists for collaboration between our communities?

SV-MBIR Software Package

- Much (but not all) of this was done using SV-MBIR software
 - Open source BSD 3-clause software for:
 - Fast parallel and fan beam reconstruction of 3D volumes
 - Based on super-voxel algorithm that gives 100x to 1000x speedup
 - Nominated for 2017 Gordan Bell prize at SC17
 - Easy-to-use python interface
 - Fast multithreaded C code for multi-core CPUs
 - Available from conda-forge, PyPI or direct package installation.



• URL:

- https://github.com/cabouman/svmbir
- https://svmbir.readthedocs.io/en/latest/install.html