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Dual Stack Filters and the Modified Difference
of Estimates Approach to Edge Detection

Jisang Yoo, Edward J. Coyl&enior Member, IEEEand Charles A. BoumarmMember, IEEE

~ Abstract—The theory of optimal stack filtering has been used  In this approachfwo stack filters are applied to a noisy
in the difference of estimates (DoE) approach to the detection of jmage to obtain local estimates of the dilated and eroded

intensity edges in noisy images. In this paper, the DoE approach \qgjons of the noise-free image. The difference between these
is modified by imposing a symmetry condition on the data used to . . . fth . bsol di
train the two stack filters. Under this condition, the stack filters WO €stimates Is an estimate of the maximum absolute gradient

obtained are duals of each other. Only one filter must therefore inside the window [1]. An accurate edge map is produced by
be trained; the other is simply its dual. This new technique is thresholding this gradient estimate.
called the symmetric difference of estimates (SDoE) approach. |n this paper, two new approaches to the design of edge

The dual stack filters obtained under the SDoE approach are .
shown to be comparable. This allows the difference of these two detectors are developed. Both are motivated by the structure

filters to be represented by a single equivalent edge operator. Of the DOE operator. They are called the symmetric difference
This latter result suggests that an edge operator can be found by Of estimates (SDoE) approach and the threshold Boolean filter
directly training a (possibly nonpositive) Boolean function to be (TBF) approach.

used on each level of the threshold decomposition architecture.  |n the SDoE approach, a symmetry constraint is imposed

This approach, which is called the threshold Boolean filter (TBF) . - .
approach, requires less training time but produces operators that on the data used to train the two stack filters in the DoE

are less robust than those produced by the SDoE approach. This @pproach. It is satisfied if the training data is the union of the
is demonstrated and interpreted via comparisons of results for desired training image and its inverse. With this constraint,

natural images. the two stack filters produced are duals of each other and they
Index Terms—Boolean function, duality, edge detection, ro- Produce statistically unbiased estimates. The fact that the two
bustness, stack filter. filters are duals of each other implies that only one filter need

be trained; the other is obtained as its dual.
It is further shown that the two stack filters produced under
I. INTRODUCTION the hSDthapproachbare a:cl_\livayshcomparable. Th(;ir dirl:fere:c:lt(ej
- is then shown to be a filter that possesses the thresho
N IMPORTANT current emphasis in schemes for th% composition architecture and property of stack filters even

thesedgéecetlsogng I\r/]\/tr?gr?geei?r?sseli;zierglrllacb;?rl?etteec;:tlgonn , S<))ugh the Boolean filter used on each level of the architecture
9 9 P y (i Sio longer positive. This equivalent edge operator thus

!n fact, the structure of the_ edge d_etector Is often heavi lls within the class of nonlinear filters known as threshold
influenced by the type of noise that is expected. As a res :
dolean filters [2], [3].

edge detection schemes that work well for one type of NO1S€This latter result suggests that we consider edge operators

may perform poorly for cher noise types. . that have the threshold decomposition architecture of stack
A robust edge detection scheme called the difference Hf . :
ilters, but in which the Boolean operator on each level

estimates (DoE) approach has been developed [1]. In tEus arbitrary: 6. we no lonaer reauire that it obev the
scheme, the edge detection problem is recast as an estimafior Y, 1€, 9 q Y

problem, and stack filters are used to produce the requirggckmg d ptroperti(. Tth's trl13 oo:jgfafm functlorf1 fr? n g? td:jrectlyd
estimates. The distributional robustness and detail preserv \gned to estimate the diterence of ine dilated an
eroded versions of the noise-free original image on each

capability of stack filters allow very effective edge detection

even in the presence of poorly characterized noise processtg'é.es_hoId level. This approach is called the threshold Boolean
function (TBF) approach.

As discussed in [3], it is difficult to determine a Boolean
function that produces a TBF that achieves the minimum
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only if the Boolean function on each level has the stackingpmposition of an image. Images will be assumed to take
property (is positive). values on a latticeS, with each point in the lattice denoted

Our strategy is then to minimize this bound of the absolutey s € S. A gray scale imageX with pixel values ranging
error between the output of the TBF and the noise-frdmtween 0 and//, may be represented as the sum of a series
edge map. The problem of designing an optimal Boolear binary-valued images,

function is then equivalent to using the MMAE design M
technique on each threshold level. We can, in fact, use the X(s) = Z z(s, 1),
training algorithm developed in [4] by removing the swap =1

operations that enforce the stacking property. The algorithihere, for eachl, the binary imagex(s, I) is obtained by
runs faster when the stacking property is not enforcemreshommgX(s) at level . Then
leading to reduced training time. 1, X(s)>1

Because of the reduced training time required in the TBF x(s, ) = {0’ X(s) <l
approach, it would appear to be superior to the two DoE ) T
approaches. This apparent advantage is reinforced by th&Or @ particular value of, defineWx (s) to be the vector
comparisons in Section IV, which demonstrate that the TEH Pixels in X occurring at the points +r, » € W. If, for
approach often—but not always—yields lower MAE than th_@xample,W is a 2x 2 square, then when its upper left corner
DoE operators when they are applied to the images on whighlocated ats = (s, s2)
thely ;Nerteh tra}:in_eql. U_nfortunateth/, t_lr_lgFerror is c:}ften g)wer Wi ((s1, 52)) =[X((s1, 52)), X((51 + 1, s2)),
only for the training images—the approach produces
Iarger errors, as shgwn ing Section IV via tF;]F; MAE Izriterion (s, 52+ 1)), X((s1+ 1, 52+ 1))
and judgments of edge-map quality, for the target image. The threshold decomposition of the windd#x, when it is
other words, the TBF approach exhibits less robustness tHagated at the poins in the lattice.S, is then,
either of the DoE approaches. One possible explanation for M
this phenomenon is that the removal of the stacking property Wx(s) = Z wx (s, 1),
leads to filters which are no longer cascades and compositions =1

of rank order operators, whose robustness has been well . . . .
established in the statistics literature. where wx (s, [) is the binary window vector at the poimt

There is, thus, a trade-off to be faced when choosilg the binary image:(s, I) obtained by thresholding'(s) at

between the TBF approach and the DoE approaches. If it'5%¢ L. " . .
known that the training image is very similar to the target The threshold decomposition and stacking properties of a

image, and that the noise used in training is similar to tha{ack filterS;(-) can now be defined. Note that the threshold
expected in the target image, then the TBF approach coQi§COMPOsition property is a weak superposition property.
be used since it offers reduced training time. If the targetP€finition 2.1—The Threshold Decomposition Property:
image may differ significantly from the training image, or M
if some mismatch in noise is possible between the training Si[Wx(s)] =8y lz wx (s, l)]
noise and the noise that might be encountered, one of the DoE =1
approaches should be used. M
This paper is organized as follows. The notation used = Z Sylwx (s, 1)]
throughout the paper and a review of the relevant properties =1
of stack filters are provided in Section Il. In Section II, we M
also review the optimal stack filtering algorithm, define the = Z JTwx (s, D]
notion of a symmetric image, and discuss duality in the context =1
of stack filters. In the following section, the DoE approach Definition 2.2—The Stacking Propertyf the output of f
to edge detection is reviewed and the SDoE approach auplied towx (s, 1) is one, then the output of applied to
the TBF approach are introduced. Performance and complexy (s, k) for any & < I must also be one’s. More formally,
ity comparisons between the DoE and TBF approaches éoe all £ < [
provided in Section IV. flwx (s, 1] > flwx (s, D]. (1)
A Boolean function has this property if and only if it is
positive [6]. For the thresholded binary inputs, the operation
of a stack filterSy(-) is the same as the operation of the
positive Boolean functionf(-). We can thus say that the
Stack filters are a class of nonlinear filters that satisfyositive Boolean functiorf defines the stack filte§ ;(-). If, for
two properties: the weak superposition property known as tegample, the stack filter is the median filter, then the positive
threshold decomposition and the ordering property called tBeolean function that defines it is the majority logic operator.
stacking property in [5]. Any Boolean functionf of IV variables can be represented
To define these properties and establish the notation udsda length2” decision vectorD, D = (dy, da, -+ -, don),
throughout this paper, we must introduce the threshold dehered; = f(«;) andc; is one of the binary vectors withy

Il. STACK FILTERS

A. Properties of Stack Filters
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Tmage X _ = we 2 we can design the DoE opergtor with Qn!y one training run.
: 1 condlse | Fﬂndowing ——* »| § —»  This will only occur, though, if the statistics of the training
- R data satisfy a certain symmetry condition.
fputimage [ Vg | f | To define this symmetry condition, lety = {a;: i =
Desired image > adaptation | 1,2, ---, 2N be the set o2 binary vectors of lengthV.

Then for every positiors in the lattice and every threshold

levell, the binary window vectowx (s, {) is contained in4 y.

For eachi, defineOx(a;) to be the number of occurrences of

elements. Therefore, the problem of finding a positive Booledine binary vector; in the imageX.

function that defines an optimal stack filter is equivalent to Definition 2.5: An image X is said to be symmetric if and

finding the decision vector for this function. only if Ox(a;) = Ox(a;) for all ¢, whereg, is the binary
Since a stack filter is completely specified by its positiveector obtained by complementing each entryupf

Boolean function, a dual stack filter can be defined by the Although mostimages are not symmetric in the above sense,

Fig. 1. Block diagram of the adaptive stack filtering algorithm.

dual of this positive Boolean function. it is not difficult to generate symmetric training images. The
Definition 2.3: The dual of a Boolean functiotf(a), de- image shown in Fig. 2(a) is the 258 256 natural image
noted by f4(a), is defined as “couple” with 256 gray levels. Its inverse, which is obtained by
d - taking the 256’s complement of each of its pixels (replace each
fa) = f(@) pixel value by 256 minus that value), is shown in Fig. 2(b).
wherea = (ay, ag, --+, ay) is a binary input vector ang  The union of these two images is a symmetric image.Tet
andg are the inversion of anda, respectively. be the lattice defining the location of the pixels in a symmetric

If a Boolean functionf is positive, then its duaf is also image. Then” has two sublatticed? and@) with " = PUQ,
positive. This implies that if a Boolean function defines a stadkhich correspond to the locations of the pixels in the original
filter, then its dual also defines a stack filter. image and its 256’s complement, respectively.

Definition 2.4: The dual of a stack filtetS; is the stack  The optimal stack filtering problem being considered must
filter defined by f¢, the dual off. This dual stack filter is be generalized in the following fashion in order to discuss the
denoted bygd DoE approach to edge detection. Defiiés) to be the image

For mstance the dual of the max filter is the min filterobtained when the stack filte; is applied to a noise-free
The dual of the median filter is the median filter; that is, th&hage X (s); that is,Y(s) = Sg[Wx(s)] for eachs. Our goal

median is self-dual. is to find a stack filterSy, which achieves the following:
B. Optimal Stack Filtering MAE, Inln[E{|Sf[ ()] =Y (s)| }]
Optimal adaptive stack filtering is one approach to the M

design of stack filters [4]. Fig. 1 illustrates the procedure for — min

adaptive stack filtering. I
For a particular window size, the goal of the optimal filtering

problem is to find a stack filter that minimizes the mean = min

absolute error (MAE) between the output of the stack filter S

and the desired image. W and X (s) are jointly stationary

random processes, then the cost to be minimized by propenyhich X(s) is the noise-corrupted version of the image

> Bl /Twx(s, D] = (s, l)l}]
=1

> E{| flwg (s, D] = glwx (s, l)]l}]

=1

choice of f is X(s), andy(s, 1) is the binary image obtained by thresholding
MAE _E{ |S¢[We(s)]— X(s)|} Y(s) at Iev_ell. We then say t_haffopt is an optlmal stack_fllter
for estimatingS,(.X), or equivalently, thaff,,; is an optimal
_ Z E{| flwe(s, D] —z(s, )|} ) pz)s)itive Boolean function (binary stack filter) for estimating
glx).

Theorem 2.1:If a symmetric image is used to train a stack
whereX is a desired image andl is the corrupted version of filter Sy... which is an optimal stack filter for estimating

X. The optimal filtering problem is thus equivalent to findings_( x «(X), then Sd is an optimal stack filter for estimating
the positive Boolean functiorf which minimizes (2). S9(X) Jore
o .

) Proof: Assume that the symmetric imag€& (X) has
C. Duality been obtained as described above—by taking the union of
In the DoE approach, two stack filters must be trained. Otiee original image (noise corrupted image) and its 256's
is trained to estimate the dilated version (maximum) of trmomplement. LetI” be the lattice defining the location of
noise-free image; the other is trained to estimate the erodéé pixels in X, which has twice as many pixels as the
version (minimum) of the noise-free image [1]. original image. This lattice has two sublatticésand ) with
Consider a stack filtet;, which optimally estimates the 1" = P U @, which correspond to the locations of the pixels
dilated version of the noise-free image. If the dualﬂ}[ is in the original image and its 256’s complement, respectively.
optimal for the eroded version of the noise-free image, théiso, each pixel takes on one of thd + 1 values from 0 to
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@ (b)

Fig. 2. (a) 256x 256 natural image “couple” with 256 gray levels and (b) the inverse of (a). These images are used together to obtain symmetric
training of filters.

M; the window used by the filtet;, , is denoted by¥; and, Corollary 2.1: If Sy, , is obtained with symmetric images,

the window used by5, is denoted byl the total absolute error between the outputsSef, and .S,
Since fop: is an optimal estimator foy(X), and since is the same as the total absolute error between the outputs of
|h— k| = |h — k| for any two Boolean functiong and & S, a and sd.

and their inverseg andk, the (minimum) total absolute error

between the outputs of,,; andg is
[Il. M ODIFIED DIFFERENCE OFESTIMATES OPERATORS

37 foptlwg (s, D] = glux(s, D A. Symmetric Difference of Estimates Operator
seT I=
© . In the Difference of Estimates approach, two stack filters,

M

Z 1T opelws (s, D] = glox (s, D] Sy, and Sy, are trained to produce local estimates of the

=1 dilated noise-free image and the eroded noise-free image,

M respectively. LetX be a noise-free training image wiflf + 1

Z 7. opt [0 (5, D] = glux (s, D] gray levels. Assume thaX is not directly available, so that

=1 the noisy imageX must be used to determine edge locations.
The DoE operator is defined as

ZZ pilws (s, Dl = glox (s, D]l ()
SEQ 1=

1 DoEx (s) _Sfd Wx(s)] = Sr[Wx(s)]
Since X and X are symmetric, (3) can be rewritten as = Z{fd (5, D] = felwz (s, DI} (4)
follows.

- o where, as beford} is the window used for both stack filters.

Z Z [fope[w (s D] = glox (s, D] This window W is usually larger than the & 2 window used

s€Q =1 by the max and min filters to produce the eroded and dilated
versions of the noise-free image [1].
+2 Z [ Fopt[@x (5, D] = glox (s, D] The objective is to choos&;, andS;, so that the difference
SEPI 1

of estimates, Dok, is a good approximation to the difference,
Dy, of the outputs of the 2x 2 maximum and minimum

=2 Z [fope [Tz (s, D] = glox (s, D filters with the noiseless image as input—note that this latter
difference is the largest magnitude assumed by the gradient
. Z Z 7L fwe (s, ] = ¢ (s, 1] when it is computed in all directions inside thex22 window.

opt WX X The estimated edge map is produced by thresholding the output
of the DoE operator.
Therefore, if fopt gives the optimal estimate of the output of Since the difference operator does not have the stacking
g then its dual,f¢ ., gives the optimal estimate far'. O property, we cannot directly use the methods of optimal stack

SETI 1

seT I=1

opt?
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( ; O Y 3 MAh- [ [ O Threshuldmg
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(b) {

‘4 Sty 'ﬁ . Fig. 4. Block diagram of the SDoE approach. (a) Data flow for training a
+vY Edge Map : : :

Image Z PN ) stack filter to estimate the maximum and (b) Structure of the SDoE operator.
e & Thresholding i'”"‘** The symmetrizer is used to generate symmetric training images.

4. Sy

‘ Windowing ’ max

€

If the procedure described in Section 1I-C is used to ensure
© that the images{ and X are symmetric, Corollary 2.1 can be

Fig. 3. Block diagram of the DoE edge detection scheme. (a) and (b) Dgjged to bound the total absolute error of the SDoE operator:
flow for training stack filters to serve the role of max (dilation) and min

(erosion) operators, respectively. (c) Structure of the stack filter based DoE < — msa
operator. ImageZ may be an arbitrary observed image. Espo E(fd 2 Z |Sfl ( )] mrLX{VX( )}|

sES
filter design. Therefore, we bound the total absolute error as =2 Z |Sf“ (5)] — min{Vx(s)}[. (6)
follows: 5€5
In (6), the positive Boolean functiorfy for the optimal
Boce(fa, fo) = ze;c IDoEx Dx ()l estimate of the maximum is designed and its dfgais used to
. estimate the minimum. The corresponding stack filtgrsand
- Z S5 Wx ()] = S5 Wz ()]} Sfd are used for the optimal estimators in the DoE operator
€S ] given in (4). This SDoE scheme for robust edge detection
— [max{Vx ()} — min{Vx (s)}]| is shown in Fig. 4. The block labeled “symmetrizer” in this
< Z IS5, [W4(s)] — max{Vx(s)}| figure takes an input imag& and puts out the union ok
scsS and its 256’s complement, which is a symmetric image.

+155. Wi ()] - min{Vx ()} (5)

whereW is the window for the stack filters arid is the 2x 2
square window for the max and min operators. The methodIn this section, it is shown that the stack filters used in
of optimal stack filter design may now be used to minimizéhe SDoE approach are dual-comparable. As a result, the
each of the two bounding terms in (5) by using two Separdﬂgference of the OUtpUtS of two stack filters used in the SDoE
training operations. After the positive Boolean functiohs approach can be produced by a single operator that directly
and f. are determined, the corresponding stack filters are u@imates the difference of the dilated and eroded versions
in the DoE edge operator as shown in Fig. 3. of the noise-free original image. This single operator will be

To avoid having to train two separate stack filters for thghown to obey the threshold decomposition property.

DoE operator, and to further our understanding of the use ofSome notation is needed in order to define dual compara-
stack filters in edge detection, we propose a new method baBéty-

on the duality of the optimal stack filters when the images Definition 3.1: Let f and g be Boolean functions. If any
used for training are symmetric. This new approach is call@nary vectora satisfyingf(a) = 1 also satisfieg(a) = 1 but

the Symmetric DoE (SDoE) approach. In the SDoE approadhe reverse does not necessarily hold, we write

we design a stack filter for the maximum (minimum) estimate

. - ; : f<y
with a symmetric image and then use its dual as the estimator
for the minimum (maximum). The estimator for the minimunand we say that is implied by f [8].
is then optimal because of the duality of the optimal stack Note that this extends the notation in (1) defining the
filters proven in Theorem 2.1. stacking property of positive Boolean functions.

The advantages of the SDoE operator are that it can beDefinition 3.2: If there is an implication relation between
designed with just one training run, and that it produces Boolean functionf and its dualfd, i.e., if either f < fd
unbiased estimates because of the symmetry of the trainmgf > f<4 holds, thenf is said to be dual-comparable and
data [7]. Now, the bound of the total absolute error given iso is f¢ [8].

(5) can be minimized by minimizing the total absolute error Not all Boolean functions are dual-comparable. In fact, there
for either the maximum or the minimum. are dual-comparable functions that are not unate and unate

B. Dual Comparability
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functions that are not dual-comparable [8]. Therefore, not all z)

positive Boolean functions are dual-comparable, since they ‘*’ fbﬂ
are a subclass of unate functions. For example, the followilfgjs* # |22 P ,,jEdgC Map
. . . " : : Ih —- T - H -
positive Boolean functiory is not dual-comparable: =| Thresholding =~ -2 /:\2/‘” Thresholding ; -
. +
L]
flai, a2, a3, as) = a1 -az+az-ay Zm |:
— fh h

where- and + denote the logicaAND and OR, respectively. Fig. 5. Block diagram of the TBF operator based on the Boolean function
To see this, note theﬁ((), 0, 1, 1) =1 andfd(O, 0, 1, 1) =0 fv.ImageZ is an arbitrary observed image.
while £(0, 1, 1, 0) = 0 and f4(0, 1, 1, 0) = 1.

The positive Boolean functions that arise in the SDOE  pqof- Since f, is dual-comparable and is implied by its

approach are always dulall comparable. ' dual £4, fa(-) > fi(-) is always true. Therefore,
Theorem 3.1:Any positive Boolean functionfy(f.) that

is optimal for estimating the dilated (eroded) version of the SrWx(8)] = Spa[Wx(s)]
original image in the SDoE approach is dual-comparable. M ¢
Proof: The outputs produced by the max and min filters _ Z Falws (s, D] - f&l[wi{(& 0]

when they are applied to the noise-free image are the desired
images used in the training ¢f; and f., respectively. Note M
that since the same image is used as input for both the max — Z | falwg (s, D] — fjl[w)g(S, D]
and min filters, the output of the max filter is greater than that =1

of the min filter at every point in the latticg. M

In the adaptive stack filtering algorithm [4], the element of = Z falwz(s, D] @ fiws(s, D]

the filter decision vector corresponding to the binary vector =1

observed at the current threshold value and position of the M

filter window is incremented or decremented according to the = Z folwz (s, D).

pixel value at the same position in the desired image. If the =1

pixel value in the desired image is greater than or equal é‘?nce|f _ gl = f @ g for any two Boolean functiong and

the threshold value, the element of the decision vector Ts. . . ) , L
. ) . s .. g, itis always possible to find a Boolean functigp which is
incremented; otherwise, it is decremented. After a decision . : d

e}glvalent to theexclusive-ORof fq and fg. O

=1

vector is _updated, swap c_Jperatlons are performed to enfprc ince the Boolean functiorfi, in Theorem 3.2 is not
the stacking constraint. Since each pixel value of the desire . " . . .
. ) necessarily positive, the corresponding multilevel operator is
image for f; is always greater than or equal to that ffy, . . -
. . not necessarily a stack filter. As shown in Fig. 5, the output of
each entry of the decision vector fdy is always greater than . ) X ) X
; . - the SDoE operator is obtained by decomposing an input image
the corresponding entry in the decision vector for Then, . . . : . o
. d L into a set of binary images, carrying out the binary filtering
since f{(-) = fe(-) by Theorem 2.1, it is always true that . . .
fa() > £ operation with the Boolean functiofy, on each threshold level,
a() > fL0).

The dual of all the preceding statements shows thais anql t_hen summing up the result_s: The SDoE opgrator thus
satisfies the threshold decomposition property, which means
also dual-comparable.

Theorem 3.1 can now be used to show that the output tg]at I IS aTBF as defined in [2.]' This corresponding multilevel
operation is, of course, the difference between the outputs of

the SDoE operator is the sum of the outputs produced whery 'a ; :

nonpositive Boolean function is used on each threshold Ie\}eF stack filters defined by, and fe.

of the operator. This implies that the SDoE operator obeys )

the threshold decomposition property even though it is nota Threshold Boolean Function Approach

stack filter. Theorem 3.2 at the end of the preceding subsection suggests
Theorem 3.2:If f4 and f.(= f) are the positive Boolean that an edge operator could be designed directly by assuming it

functions defining the stack filters in the SDoE operator, théras the threshold decomposition architecture and then finding

this operator can be represented by the sum of the outputsadqpossibly nonpositive) Boolean function to put on each level

the (possibly nonpositive) Boolean functigip = fq — f{ as of this architecture. The resulting operator is known as a

follows: Threshold Boolean Function (TBF) [2], and when this operator
is designed to estimate gradients, we call it the TBF approach
SDOEg (s) =54, [Wx ()] — Spa[Wx ()] to edge detection.
M Since the TBF approach subsumes the SDoE approach, it
= Z Tolwg (s, D] should be able to produce operators that yield a better estimate
=1 of the gradient. Unfortunately, designing a TBF to minimize

B the mean absolute error or some other standard error criterion
where X (s) is an observed image andy (s, 1) is the thresh- is difficult, as discussed in [3]. The problem encountered with
olded window vector of the imag&. The SDoE operator thus the mean absolute error criterion is that the loss of the stacking
satisfies the threshold decomposition property. constraint means the multilevel absolute error can not be
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() (b)

Fig. 6. Training images used in experiments. (a) Noise corrupted training im@gée;,,. The noise is impulsive with an occurrence probability of
0.1 and an absolute magnitude of 200. (b) Inverse of (a).

decomposed into the sum over all levels of the absolute eresige detection [1]. Therefore, in the experiments described

on each level of the threshold decomposition architecture. here, we just compare the performance of the TBF operators
If, however, a nonstandard error criterion is used, the optd the performance of the DoE and SDoE operators. The

mization problem becomes tractable. The new error criterionrisbustness of each method is also tested by training filters

the sum, over all levels, of the absolute error on each threshoideach approach with images and noise distributions that are

level. Note that the multilevel mean absolute error is alwaysfferent from those used for testing.

upper bounded by the sum of the mean absolute error on each

threshold level. This new strategy could then be viewed as

minimizing a bound of the absolute error A. Designing the Edge Operators
Ersr(f) = Z |TBF ¢ (s) — Dx(s)] The training of thewo stack filters in the DoE scheme was
scs done with the 256x 256 natural image “couple” shown in
M Fig. 2(a) and the noisy version shown in Fig. 6(a), which was
= Z Z{f[wff(s’ D] corrupted by impulsive noise with occurrence probability of
ses | =1 0.1 and an absolute magnitude of 200. We denote this noise
corrupted imageouple;, ;. A pair of 4 x 4 stack filters were
—[max{vx (s, )} — min{vx (s, H}} designed to estimate the results of the max or min operations

with 2 x 2 square windows on the original noiseless image.

M The resulting operator is calledoE.
<SOOD  flwg(s, D] A Boolean function of 16 variables (a & 4 square
s€S =1 window), which characterizes a multilevel threshold Boolean

— [max{vx (s, )} & min{vx(s, D}]|. (7) function in the TBF approach was also designed with the
_— L .training datacoupley, ;, used to train the DoE operator. The
The prq?le_m of fmc'jamg al TSF \.’tvf:mh IS blest undd_fe_r :_h'%perator that was produced is call€d I',.,,. The adaptive
error criterion can be solved with a simp'e modifica IorE.-';\Igorithm from [4]—without the swap operations—was used

of th&f minimum mean absolute error (MMAE) filter desg_qo design this operator. The Boolean function of 16 variables
techniques already developed for stack filters [4]. The StaCk'Q%s directly designed to estimate the difference of the outputs

constraint is no longer required, so the swap operations Pthe max and min operators with 2 2 square windows
the algorithm can be eliminated. The resulting algorithm Wi@n the original noiseless image. As mentioned in Section IlI-
clear!y run faste_r than the algor_ithm for training a stack filte , the computational requirements of the adaptive algorithm
As will be seen in the next section, though, the TBF approa ed in the TBF approach is significantly lower than that of
does not always lead to Iov_ver absolute error than the D adaptive stack filtering algorithm used in the DoE scheme
approac_:h, and even when it does, the loss of the StaCk'lggcause the swap operations are not performed.
constraint leads to filters that are not robust. In the SDoE approach, one stack filter must be trained with
the algorithm in [4]. The images shown in Figs. 2 and 6 were
used to train a 4x 4 stack filter to estimate the result of the
It has already been shown that the DoE approach wonkex operation with a 2x 2 square window on the original
very well when compared to a variety of existing methods faoiseless image. Its dual was then used for the optimal estimate

IV. EXPERIMENTAL RESULTS
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(b)

© (d)

Fig. 7. Test images used in experiments. (a) Aerial photograph with>2%56 resolution. (b) Lenna with 51 512 resolution. (C)Aerial;g.o5¢7.9-
(d) Lennarg.osc7.9- (€) Reference edge map of (a). (f) Reference edge map of (b). Test images in (c) and (d) are simultaneously corrupted by impulse
noise with an occurrence probability of 0.05, and by Gaussian noise with a standard deviation of 7.9.
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Fig. 8. For the test imageerial o o5G7.9, results of applying the (a) DoE operator, (B)3 F'asym operator, (¢) SDoE operator, ()5 Fsym operator,

(e) Canny operator, and (f) prefiltered Canny operator wittk 3 median filter.
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(@ (b)

Fig. 9. For the test imagéenna;o.05¢7.9, results of applying the (a) DoE operator, (B)3 Fasym Operator, (c) SDoE operator, (d)5 Fsym operator,
(e) Canny operator, and (f) prefiltered Canny operator wittk 3 median filter.
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TABLE | TABLE I
COMPARISON OF THEMEAN ABSOLUTE ERRORS FOR THEDOE AND TBF COMPARISON OF ERRORS INCURRED BY THE DOE AND
SCHEMES WITH BOTH SYMMETRIC AND ASYMMETRIC TRAINING IMAGES TBF SCHEMES FORVARIOUS TRAINING AND TEST IMAGES
Training image | Operator | Absolute Error Aerailjyosare Lennarggsare
Asymmetric DoE 2.89 Training Image DoFE | SDoE | TBF | DoE | SDok | TBF
TBFysym 2.65 Asymmetric Couple | 7.25 - 7.34 1 4.93 B 5.23
Symmetric SDoF 2.93 Symmetric Couple - 7.30 7.33 - 1.94 5.10
TBFym 2.80 Test Image 7.05 - 6.39 | 4.64 - 4.69

of the output of the min operator. The resulting operator is The reference edge maps (from the noise-free images) for
called SDoE the aerial photograph and Lenna are shown in Fig. 7(e) and
The advantage of the SDoE operator over the DoE operatfr They were produced by setting threshold values so that the
is that only one filter must be trained in the SDoE approaclargest 12% and 8% gray-value pixels were selected for the
while two must be trained in the DoE approach. Thereforagrial photograph and Lenna, respectively.
the computational costs of designing an SDoE operator are a&ig. 8(a)—(f) are the results of the DOEBF ,eym, SDOE,
little as half of that of a DoE operator when the same siZEBF.,.,, Canny, and prefiltered Canny approaches with the
training image is used to design both operators. test imageaerialrg.osg7.0- The threshold for edge detection
Finally, a TBF operator with a 4« 4 square window was was set at a level which selected the largest 12% of gray-value
designed with the same symmetric training data used to tragitxels for each operator. A & 3 median filter was used as
the SDoE operator. The operator which was produced is calledrefilter with the Canny operator. Fig. 9(a)—(f) shows the
TBF . results when the same operators are applied to the test image
Lennajo.osa7.0 with an 8% threshold.
, The difference in the noise sensitivity of the DoE and SDoE
B. Performance Comparison operators is difficult to detect in the test images. Both operators
Table | shows the minimum average absolute error per pix@thibit a significant degree of robustness; they perform about
in the estimates of the maximum of the gradient produced kg well on the test images as on the training image. The TBF
the edge operators designed in the previous subsection whbeerator, on the other hand, shows a lack of robustness. The
these operators are applied to th@ining imagecouple;, ;.  edge maps it produces when the target image is different from
As shown in Table I, TBF operators yielded less error thahe training image are noisier than those obtained from either
those of the DoE and SDoE operators for this specific st DoE or SDoE operators. Note, though, that despite its
of training images. This is not always the case. As shown lack of robustness when compared with the DoE operator,
Table II, the DoE operator outperforms the TBF operator whehe TBF operator produces much better edge maps than the
a different training image is used. The reason for this behaviéanny operator when impulsive noise is present. Even though
is that both operators only minimize an upper bound on thiee prefiltered Canny operator with 3 3 median filter has
error for estimating the maximum gradient in the window. lfess noise sensitivity, it loses the most detail in the reference
the case of the TBF, the upper bound is that given in (7@dge maps of the test images shown in Fig. 7(e) and (f). In
in the case of the DoE, the upper bound is that given in (Jarticular, notice that the engines and the shadows of the
The speed with which the TBF filter can be designed, thoughings in Fig. 7(e) have been more clearly detected by the
would seem to outweigh this consideration. DoE and TBF operators than by the Canny and prefiltered
It is important to note that the edge operators were compar@€ednny operators.
against each other by applying them to the images used to traif\s a final result, Table Il shows the error incurred by the
them. This gives some idea of the relative performance of tb®E and modified DoE operators for the different images
operators when the type of image and noise encountered sinewn above, and for the case in which the filters were trained
the same as those used in the design process. It does antthese images instead of on the couple image. The last two
however, test these operators for robustness. Such testseateies in the bottom row show that the TBF operator is not
critical since the target image and the noise corrupting it magiways better than the DoE operator when they are applied
for a variety reasons, differ significantly from those used ito the image used to train them. The robustness of the DoE
training. In this section, such tests are also carried out.  operator is shown in the errors given in the first two rows,
Two natural images, the aerial image and the Lenna phehich correspond to operators trained on the image couple.
tographs shown in Fig. 7(a) and (b), were used to test tfide error for the DoE and SDoE operators is significantly less
DoE, SDoE, and TBF operators. As a benchmark, the Cantinan that of the TBF operator.
operator [9] was also tested—elaborate comparisons betweeiihe results of these experiments indicate that if sufficient
the DoE and other edge operators can be found in [1].  time is available to train a DoE or SDoE operator, then they
The noisy images in Fig. 7(c) and (d) were formed bghould be used instead of the TBF operator. Recent work on
adding both impulsive noise with an occurrence probabilithe stack filter training algorithm has resulted in significant
of 0.05 and absolute magnitude of 200, and Gaussian nosgeedups, particularly if a parallel machine such as a MASPAR
with standard deviation of 7.9 to the noiseless original imagé4P-1 is available. In fact, DoE operators with-44 windows
in Fig. 7(2) and (b). These two noisy images are callethn now be trained in less than a minute. If sufficient time for
aerial jo.0sc7.0 and Lennayg.osa7.9, respectively. training the SDoOE operator is still not available, then the TBF
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operator could be used. One would then have to hope that
target image and noise are not much different than those u
in the training stage.

There is thus a trade-off to be faced when choosing betwe
the TBF approach and the DoE approaches. If it is known t
the training image is very similar to the target image, and t
the noise used in training is similar to that expected in the t
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