
1634 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 12, DECEMBER 1997
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Abstract—The theory of optimal stack filtering has been used
in the difference of estimates (DoE) approach to the detection of
intensity edges in noisy images. In this paper, the DoE approach
is modified by imposing a symmetry condition on the data used to
train the two stack filters. Under this condition, the stack filters
obtained are duals of each other. Only one filter must therefore
be trained; the other is simply its dual. This new technique is
called the symmetric difference of estimates (SDoE) approach.
The dual stack filters obtained under the SDoE approach are
shown to be comparable. This allows the difference of these two
filters to be represented by a single equivalent edge operator.
This latter result suggests that an edge operator can be found by
directly training a (possibly nonpositive) Boolean function to be
used on each level of the threshold decomposition architecture.
This approach, which is called the threshold Boolean filter (TBF)
approach, requires less training time but produces operators that
are less robust than those produced by the SDoE approach. This
is demonstrated and interpreted via comparisons of results for
natural images.

Index Terms—Boolean function, duality, edge detection, ro-
bustness, stack filter.

I. INTRODUCTION

A N IMPORTANT current emphasis in schemes for the
detection of intensity edges is the reliable detection of

these edges even when the image has been corrupted by noise.
In fact, the structure of the edge detector is often heavily
influenced by the type of noise that is expected. As a result,
edge detection schemes that work well for one type of noise
may perform poorly for other noise types.

A robust edge detection scheme called the difference of
estimates (DoE) approach has been developed [1]. In this
scheme, the edge detection problem is recast as an estimation
problem, and stack filters are used to produce the required
estimates. The distributional robustness and detail preserving
capability of stack filters allow very effective edge detection,
even in the presence of poorly characterized noise processes.
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In this approach,two stack filters are applied to a noisy
image to obtain local estimates of the dilated and eroded
versions of the noise-free image. The difference between these
two estimates is an estimate of the maximum absolute gradient
inside the window [1]. An accurate edge map is produced by
thresholding this gradient estimate.

In this paper, two new approaches to the design of edge
detectors are developed. Both are motivated by the structure
of the DoE operator. They are called the symmetric difference
of estimates (SDoE) approach and the threshold Boolean filter
(TBF) approach.

In the SDoE approach, a symmetry constraint is imposed
on the data used to train the two stack filters in the DoE
approach. It is satisfied if the training data is the union of the
desired training image and its inverse. With this constraint,
the two stack filters produced are duals of each other and they
produce statistically unbiased estimates. The fact that the two
filters are duals of each other implies that only one filter need
be trained; the other is obtained as its dual.

It is further shown that the two stack filters produced under
the SDoE approach are always comparable. Their difference
is then shown to be a filter that possesses the threshold
decomposition architecture and property of stack filters even
though the Boolean filter used on each level of the architecture
is no longer positive. This equivalent edge operator thus
falls within the class of nonlinear filters known as threshold
Boolean filters [2], [3].

This latter result suggests that we consider edge operators
that have the threshold decomposition architecture of stack
filters, but in which the Boolean operator on each level
is arbitrary; i.e., we no longer require that it obey the
stacking property. This Boolean function can be directly
designed to estimate the difference of the dilated and
eroded versions of the noise-free original image on each
threshold level. This approach is called the threshold Boolean
function (TBF) approach.

As discussed in [3], it is difficult to determine a Boolean
function that produces a TBF that achieves the minimum
error under either the mean square error criterion or the mean
absolute error criterion. If, however, the error criterion is
chosen to be the sum over all threshold levels of the absolute
error on each level, this problem can be solved by using
minimum mean absolute error (MMAE) stack filter design
techniques [4]. Note that the multilevel mean absolute error
is always less than or equal to the sum of the mean absolute
errors on each threshold level. Equality is achieved if and
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only if the Boolean function on each level has the stacking
property (is positive).

Our strategy is then to minimize this bound of the absolute
error between the output of the TBF and the noise-free
edge map. The problem of designing an optimal Boolean
function is then equivalent to using the MMAE design
technique on each threshold level. We can, in fact, use the
training algorithm developed in [4] by removing the swap
operations that enforce the stacking property. The algorithm
runs faster when the stacking property is not enforced,
leading to reduced training time.

Because of the reduced training time required in the TBF
approach, it would appear to be superior to the two DoE
approaches. This apparent advantage is reinforced by the
comparisons in Section IV, which demonstrate that the TBF
approach often—but not always—yields lower MAE than the
DoE operators when they are applied to the images on which
they were trained. Unfortunately, the error is often lower
only for the training images—the TBF approach produces
larger errors, as shown in Section IV via the MAE criterion
and judgments of edge-map quality, for the target image. In
other words, the TBF approach exhibits less robustness than
either of the DoE approaches. One possible explanation for
this phenomenon is that the removal of the stacking property
leads to filters which are no longer cascades and compositions
of rank order operators, whose robustness has been well
established in the statistics literature.

There is, thus, a trade-off to be faced when choosing
between the TBF approach and the DoE approaches. If it is
known that the training image is very similar to the target
image, and that the noise used in training is similar to that
expected in the target image, then the TBF approach could
be used since it offers reduced training time. If the target
image may differ significantly from the training image, or
if some mismatch in noise is possible between the training
noise and the noise that might be encountered, one of the DoE
approaches should be used.

This paper is organized as follows. The notation used
throughout the paper and a review of the relevant properties
of stack filters are provided in Section II. In Section II, we
also review the optimal stack filtering algorithm, define the
notion of a symmetric image, and discuss duality in the context
of stack filters. In the following section, the DoE approach
to edge detection is reviewed and the SDoE approach and
the TBF approach are introduced. Performance and complex-
ity comparisons between the DoE and TBF approaches are
provided in Section IV.

II. STACK FILTERS

A. Properties of Stack Filters

Stack filters are a class of nonlinear filters that satisfy
two properties: the weak superposition property known as the
threshold decomposition and the ordering property called the
stacking property in [5].

To define these properties and establish the notation used
throughout this paper, we must introduce the threshold de-

composition of an image. Images will be assumed to take
values on a lattice , with each point in the lattice denoted
by . A gray scale image with pixel values ranging
between 0 and , may be represented as the sum of a series
of binary-valued images,

where, for each , the binary image is obtained by
thresholding at level . Then

For a particular value of , define to be the vector
of pixels in occurring at the points , . If, for
example, is a 2 2 square, then when its upper left corner
is located at

The threshold decomposition of the window , when it is
located at the point in the lattice , is then,

where is the binary window vector at the point
in the binary image obtained by thresholding at
level .

The threshold decomposition and stacking properties of a
stack filter can now be defined. Note that the threshold
decomposition property is a weak superposition property.

Definition 2.1—The Threshold Decomposition Property:

Definition 2.2—The Stacking Property:If the output of
applied to is one, then the output of applied to

for any must also be one’s. More formally,
for all

(1)

A Boolean function has this property if and only if it is
positive [6]. For the thresholded binary inputs, the operation
of a stack filter is the same as the operation of the
positive Boolean function . We can thus say that the
positive Boolean function defines the stack filter . If, for
example, the stack filter is the median filter, then the positive
Boolean function that defines it is the majority logic operator.

Any Boolean function of variables can be represented
by a length decision vector , ,
where and is one of the binary vectors with
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Fig. 1. Block diagram of the adaptive stack filtering algorithm.

elements. Therefore, the problem of finding a positive Boolean
function that defines an optimal stack filter is equivalent to
finding the decision vector for this function.

Since a stack filter is completely specified by its positive
Boolean function, a dual stack filter can be defined by the
dual of this positive Boolean function.

Definition 2.3: The dual of a Boolean function , de-
noted by , is defined as

where is a binary input vector and
and are the inversion of and , respectively.

If a Boolean function is positive, then its dual is also
positive. This implies that if a Boolean function defines a stack
filter, then its dual also defines a stack filter.

Definition 2.4: The dual of a stack filter is the stack
filter defined by , the dual of . This dual stack filter is
denoted by .

For instance, the dual of the max filter is the min filter.
The dual of the median filter is the median filter; that is, the
median is self-dual.

B. Optimal Stack Filtering

Optimal adaptive stack filtering is one approach to the
design of stack filters [4]. Fig. 1 illustrates the procedure for
adaptive stack filtering.

For a particular window size, the goal of the optimal filtering
problem is to find a stack filter that minimizes the mean
absolute error (MAE) between the output of the stack filter
and the desired image. If and are jointly stationary
random processes, then the cost to be minimized by proper
choice of is

MAE

(2)

where is a desired image and is the corrupted version of
. The optimal filtering problem is thus equivalent to finding

the positive Boolean function which minimizes (2).

C. Duality

In the DoE approach, two stack filters must be trained. One
is trained to estimate the dilated version (maximum) of the
noise-free image; the other is trained to estimate the eroded
version (minimum) of the noise-free image [1].

Consider a stack filter which optimally estimates the
dilated version of the noise-free image. If the dual of is
optimal for the eroded version of the noise-free image, then

we can design the DoE operator with only one training run.
This will only occur, though, if the statistics of the training
data satisfy a certain symmetry condition.

To define this symmetry condition, let
be the set of binary vectors of length .

Then for every position in the lattice and every threshold
level , the binary window vector is contained in .
For each , define to be the number of occurrences of
the binary vector in the image .

Definition 2.5: An image is said to be symmetric if and
only if for all , where is the binary
vector obtained by complementing each entry of.

Although most images are not symmetric in the above sense,
it is not difficult to generate symmetric training images. The
image shown in Fig. 2(a) is the 256 256 natural image
“couple” with 256 gray levels. Its inverse, which is obtained by
taking the 256’s complement of each of its pixels (replace each
pixel value by 256 minus that value), is shown in Fig. 2(b).
The union of these two images is a symmetric image. Let
be the lattice defining the location of the pixels in a symmetric
image. Then, has two sublattices, and with ,
which correspond to the locations of the pixels in the original
image and its 256’s complement, respectively.

The optimal stack filtering problem being considered must
be generalized in the following fashion in order to discuss the
DoE approach to edge detection. Define to be the image
obtained when the stack filter is applied to a noise-free
image ; that is, for each . Our goal
is to find a stack filter which achieves the following:

MAE

in which is the noise-corrupted version of the image
, and is the binary image obtained by thresholding
at level . We then say that is an optimal stack filter

for estimating , or equivalently, that is an optimal
positive Boolean function (binary stack filter) for estimating

.
Theorem 2.1:If a symmetric image is used to train a stack

filter which is an optimal stack filter for estimating
, then is an optimal stack filter for estimating
.

Proof: Assume that the symmetric image ( ) has
been obtained as described above—by taking the union of
the original image (noise corrupted image) and its 256’s
complement. Let be the lattice defining the location of
the pixels in , which has twice as many pixels as the
original image. This lattice has two sublattices,and with

, which correspond to the locations of the pixels
in the original image and its 256’s complement, respectively.
Also, each pixel takes on one of the values from 0 to



YOO et al.: DUAL STACK FILTERS 1637

(a) (b)

Fig. 2. (a) 256� 256 natural image “couple” with 256 gray levels and (b) the inverse of (a). These images are used together to obtain symmetric
training of filters.

; the window used by the filter is denoted by ; and,
the window used by is denoted by .

Since is an optimal estimator for , and since
for any two Boolean functions and

and their inverses and , the (minimum) total absolute error
between the outputs of and is

(3)

Since and are symmetric, (3) can be rewritten as
follows.

Therefore, if gives the optimal estimate of the output of
then its dual, , gives the optimal estimate for .

Corollary 2.1: If is obtained with symmetric images,
the total absolute error between the outputs of and
is the same as the total absolute error between the outputs of

and .

III. M ODIFIED DIFFERENCE OFESTIMATES OPERATORS

A. Symmetric Difference of Estimates Operator

In the Difference of Estimates approach, two stack filters,
and , are trained to produce local estimates of the

dilated noise-free image and the eroded noise-free image,
respectively. Let be a noise-free training image with
gray levels. Assume that is not directly available, so that
the noisy image must be used to determine edge locations.

The DoE operator is defined as

DoE

(4)

where, as before, is the window used for both stack filters.
This window is usually larger than the 2 2 window used
by the max and min filters to produce the eroded and dilated
versions of the noise-free image [1].

The objective is to choose and so that the difference
of estimates, DoE, is a good approximation to the difference,

, of the outputs of the 2 2 maximum and minimum
filters with the noiseless image as input—note that this latter
difference is the largest magnitude assumed by the gradient
when it is computed in all directions inside the 22 window.
The estimated edge map is produced by thresholding the output
of the DoE operator.

Since the difference operator does not have the stacking
property, we cannot directly use the methods of optimal stack
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(a)

(b)

(c)

Fig. 3. Block diagram of the DoE edge detection scheme. (a) and (b) Data
flow for training stack filters to serve the role of max (dilation) and min
(erosion) operators, respectively. (c) Structure of the stack filter based DoE
operator. ImageZ may be an arbitrary observed image.

filter design. Therefore, we bound the total absolute error as
follows:

DoE

(5)

where is the window for the stack filters and is the 2 2
square window for the max and min operators. The method
of optimal stack filter design may now be used to minimize
each of the two bounding terms in (5) by using two separate
training operations. After the positive Boolean functions
and are determined, the corresponding stack filters are used
in the DoE edge operator as shown in Fig. 3.

To avoid having to train two separate stack filters for the
DoE operator, and to further our understanding of the use of
stack filters in edge detection, we propose a new method based
on the duality of the optimal stack filters when the images
used for training are symmetric. This new approach is called
the Symmetric DoE (SDoE) approach. In the SDoE approach,
we design a stack filter for the maximum (minimum) estimate
with a symmetric image and then use its dual as the estimator
for the minimum (maximum). The estimator for the minimum
is then optimal because of the duality of the optimal stack
filters proven in Theorem 2.1.

The advantages of the SDoE operator are that it can be
designed with just one training run, and that it produces
unbiased estimates because of the symmetry of the training
data [7]. Now, the bound of the total absolute error given in
(5) can be minimized by minimizing the total absolute error
for either the maximum or the minimum.

(a)

(b)

Fig. 4. Block diagram of the SDoE approach. (a) Data flow for training a
stack filter to estimate the maximum and (b) Structure of the SDoE operator.
The symmetrizer is used to generate symmetric training images.

If the procedure described in Section II-C is used to ensure
that the images and are symmetric, Corollary 2.1 can be
used to bound the total absolute error of the SDoE operator:

(6)

In (6), the positive Boolean function for the optimal
estimate of the maximum is designed and its dualis used to
estimate the minimum. The corresponding stack filtersand

are used for the optimal estimators in the DoE operator
given in (4). This SDoE scheme for robust edge detection
is shown in Fig. 4. The block labeled “symmetrizer” in this
figure takes an input image and puts out the union of
and its 256’s complement, which is a symmetric image.

B. Dual Comparability

In this section, it is shown that the stack filters used in
the SDoE approach are dual-comparable. As a result, the
difference of the outputs of two stack filters used in the SDoE
approach can be produced by a single operator that directly
estimates the difference of the dilated and eroded versions
of the noise-free original image. This single operator will be
shown to obey the threshold decomposition property.

Some notation is needed in order to define dual compara-
bility.

Definition 3.1: Let and be Boolean functions. If any
binary vector satisfying also satisfies but
the reverse does not necessarily hold, we write

and we say that is implied by [8].
Note that this extends the notation in (1) defining the

stacking property of positive Boolean functions.
Definition 3.2: If there is an implication relation between

a Boolean function and its dual , i.e., if either
or holds, then is said to be dual-comparable and
so is [8].

Not all Boolean functions are dual-comparable. In fact, there
are dual-comparable functions that are not unate and unate
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functions that are not dual-comparable [8]. Therefore, not all
positive Boolean functions are dual-comparable, since they
are a subclass of unate functions. For example, the following
positive Boolean function is not dual-comparable:

where and + denote the logicalAND and OR, respectively.
To see this, note that and
while and .

The positive Boolean functions that arise in the SDoE
approach are always dual comparable.

Theorem 3.1:Any positive Boolean function ( ) that
is optimal for estimating the dilated (eroded) version of the
original image in the SDoE approach is dual-comparable.

Proof: The outputs produced by the max and min filters
when they are applied to the noise-free image are the desired
images used in the training of and , respectively. Note
that since the same image is used as input for both the max
and min filters, the output of the max filter is greater than that
of the min filter at every point in the lattice.

In the adaptive stack filtering algorithm [4], the element of
the filter decision vector corresponding to the binary vector
observed at the current threshold value and position of the
filter window is incremented or decremented according to the
pixel value at the same position in the desired image. If the
pixel value in the desired image is greater than or equal to
the threshold value, the element of the decision vector is
incremented; otherwise, it is decremented. After a decision
vector is updated, swap operations are performed to enforce
the stacking constraint. Since each pixel value of the desired
image for is always greater than or equal to that for,
each entry of the decision vector for is always greater than
the corresponding entry in the decision vector for. Then,
since by Theorem 2.1, it is always true that

.
The dual of all the preceding statements shows thatis

also dual-comparable.
Theorem 3.1 can now be used to show that the output of

the SDoE operator is the sum of the outputs produced when a
nonpositive Boolean function is used on each threshold level
of the operator. This implies that the SDoE operator obeys
the threshold decomposition property even though it is not a
stack filter.

Theorem 3.2:If and are the positive Boolean
functions defining the stack filters in the SDoE operator, then
this operator can be represented by the sum of the outputs of
the (possibly nonpositive) Boolean function as
follows:

SDoE

where is an observed image and is the thresh-
olded window vector of the image . The SDoE operator thus
satisfies the threshold decomposition property.

Fig. 5. Block diagram of the TBF operator based on the Boolean function
fb. ImageZ is an arbitrary observed image.

Proof: Since is dual-comparable and is implied by its
dual , is always true. Therefore,

Since for any two Boolean functions and
, it is always possible to find a Boolean function which is

equivalent to theexclusive-ORof and .
Since the Boolean function in Theorem 3.2 is not

necessarily positive, the corresponding multilevel operator is
not necessarily a stack filter. As shown in Fig. 5, the output of
the SDoE operator is obtained by decomposing an input image
into a set of binary images, carrying out the binary filtering
operation with the Boolean function on each threshold level,
and then summing up the results. The SDoE operator thus
satisfies the threshold decomposition property, which means
that it is a TBF as defined in [2]. This corresponding multilevel
operation is, of course, the difference between the outputs of
the stack filters defined by and .

C. Threshold Boolean Function Approach

Theorem 3.2 at the end of the preceding subsection suggests
that an edge operator could be designed directly by assuming it
has the threshold decomposition architecture and then finding
a (possibly nonpositive) Boolean function to put on each level
of this architecture. The resulting operator is known as a
Threshold Boolean Function (TBF) [2], and when this operator
is designed to estimate gradients, we call it the TBF approach
to edge detection.

Since the TBF approach subsumes the SDoE approach, it
should be able to produce operators that yield a better estimate
of the gradient. Unfortunately, designing a TBF to minimize
the mean absolute error or some other standard error criterion
is difficult, as discussed in [3]. The problem encountered with
the mean absolute error criterion is that the loss of the stacking
constraint means the multilevel absolute error can not be
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(a) (b)

Fig. 6. Training images used in experiments. (a) Noise corrupted training imagecoupleI10. The noise is impulsive with an occurrence probability of
0.1 and an absolute magnitude of 200. (b) Inverse of (a).

decomposed into the sum over all levels of the absolute error
on each level of the threshold decomposition architecture.

If, however, a nonstandard error criterion is used, the opti-
mization problem becomes tractable. The new error criterion is
the sum, over all levels, of the absolute error on each threshold
level. Note that the multilevel mean absolute error is always
upper bounded by the sum of the mean absolute error on each
threshold level. This new strategy could then be viewed as
minimizing a bound of the absolute error

TBF

(7)

The problem of finding a TBF which is best under this
error criterion can be solved with a simple modification
of the minimum mean absolute error (MMAE) filter design
techniques already developed for stack filters [4]. The stacking
constraint is no longer required, so the swap operations in
the algorithm can be eliminated. The resulting algorithm will
clearly run faster than the algorithm for training a stack filter.
As will be seen in the next section, though, the TBF approach
does not always lead to lower absolute error than the DoE
approach, and even when it does, the loss of the stacking
constraint leads to filters that are not robust.

IV. EXPERIMENTAL RESULTS

It has already been shown that the DoE approach works
very well when compared to a variety of existing methods for

edge detection [1]. Therefore, in the experiments described
here, we just compare the performance of the TBF operators
to the performance of the DoE and SDoE operators. The
robustness of each method is also tested by training filters
in each approach with images and noise distributions that are
different from those used for testing.

A. Designing the Edge Operators

The training of thetwo stack filters in the DoE scheme was
done with the 256 256 natural image “couple” shown in
Fig. 2(a) and the noisy version shown in Fig. 6(a), which was
corrupted by impulsive noise with occurrence probability of
0.1 and an absolute magnitude of 200. We denote this noise
corrupted image . A pair of 4 4 stack filters were
designed to estimate the results of the max or min operations
with 2 2 square windows on the original noiseless image.
The resulting operator is calledDoE.

A Boolean function of 16 variables (a 4 4 square
window), which characterizes a multilevel threshold Boolean
function in the TBF approach was also designed with the
training data, , used to train the DoE operator. The
operator that was produced is called . The adaptive
algorithm from [4]—without the swap operations—was used
to design this operator. The Boolean function of 16 variables
was directly designed to estimate the difference of the outputs
of the max and min operators with 2 2 square windows
on the original noiseless image. As mentioned in Section III-
C, the computational requirements of the adaptive algorithm
used in the TBF approach is significantly lower than that of
the adaptive stack filtering algorithm used in the DoE scheme
because the swap operations are not performed.

In the SDoE approach, one stack filter must be trained with
the algorithm in [4]. The images shown in Figs. 2 and 6 were
used to train a 4 4 stack filter to estimate the result of the
max operation with a 2 2 square window on the original
noiseless image. Its dual was then used for the optimal estimate
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Test images used in experiments. (a) Aerial photograph with 256� 256 resolution. (b) Lenna with 512� 512 resolution. (c)AerialI0:05G7:9.
(d) LennaI0:05G7:9. (e) Reference edge map of (a). (f) Reference edge map of (b). Test images in (c) and (d) are simultaneously corrupted by impulse
noise with an occurrence probability of 0.05, and by Gaussian noise with a standard deviation of 7.9.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. For the test imageaerialI0:05G7:9, results of applying the (a) DoE operator, (b)TBF asym operator, (c) SDoE operator, (d)TBF sym operator,
(e) Canny operator, and (f) prefiltered Canny operator with 3� 3 median filter.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. For the test imageLennaI0:05G7:9, results of applying the (a) DoE operator, (b)TBF asym operator, (c) SDoE operator, (d)TBF sym operator,
(e) Canny operator, and (f) prefiltered Canny operator with 3� 3 median filter.
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TABLE I
COMPARISON OF THEMEAN ABSOLUTE ERRORS FOR THEDOE AND TBF
SCHEMES WITH BOTH SYMMETRIC AND ASYMMETRIC TRAINING IMAGES

of the output of the min operator. The resulting operator is
called SDoE.

The advantage of the SDoE operator over the DoE operator
is that only one filter must be trained in the SDoE approach,
while two must be trained in the DoE approach. Therefore,
the computational costs of designing an SDoE operator are as
little as half of that of a DoE operator when the same size
training image is used to design both operators.

Finally, a TBF operator with a 4 4 square window was
designed with the same symmetric training data used to train
the SDoE operator. The operator which was produced is called

.

B. Performance Comparison

Table I shows the minimum average absolute error per pixel
in the estimates of the maximum of the gradient produced by
the edge operators designed in the previous subsection when
these operators are applied to thetraining image .

As shown in Table I, TBF operators yielded less error than
those of the DoE and SDoE operators for this specific set
of training images. This is not always the case. As shown in
Table II, the DoE operator outperforms the TBF operator when
a different training image is used. The reason for this behavior
is that both operators only minimize an upper bound on the
error for estimating the maximum gradient in the window. In
the case of the TBF, the upper bound is that given in (7);
in the case of the DoE, the upper bound is that given in (5).
The speed with which the TBF filter can be designed, though,
would seem to outweigh this consideration.

It is important to note that the edge operators were compared
against each other by applying them to the images used to train
them. This gives some idea of the relative performance of the
operators when the type of image and noise encountered are
the same as those used in the design process. It does not,
however, test these operators for robustness. Such tests are
critical since the target image and the noise corrupting it may,
for a variety reasons, differ significantly from those used in
training. In this section, such tests are also carried out.

Two natural images, the aerial image and the Lenna pho-
tographs shown in Fig. 7(a) and (b), were used to test the
DoE, SDoE, and TBF operators. As a benchmark, the Canny
operator [9] was also tested—elaborate comparisons between
the DoE and other edge operators can be found in [1].

The noisy images in Fig. 7(c) and (d) were formed by
adding both impulsive noise with an occurrence probability
of 0.05 and absolute magnitude of 200, and Gaussian noise
with standard deviation of 7.9 to the noiseless original images
in Fig. 7(a) and (b). These two noisy images are called

and , respectively.

TABLE II
COMPARISON OF ERRORS INCURRED BY THE DOE AND

TBF SCHEMES FORVARIOUS TRAINING AND TEST IMAGES

The reference edge maps (from the noise-free images) for
the aerial photograph and Lenna are shown in Fig. 7(e) and
(f). They were produced by setting threshold values so that the
largest 12% and 8% gray-value pixels were selected for the
aerial photograph and Lenna, respectively.

Fig. 8(a)–(f) are the results of the DoE, , SDoE,
, Canny, and prefiltered Canny approaches with the

test image . The threshold for edge detection
was set at a level which selected the largest 12% of gray-value
pixels for each operator. A 3 3 median filter was used as
a prefilter with the Canny operator. Fig. 9(a)–(f) shows the
results when the same operators are applied to the test image

with an 8% threshold.
The difference in the noise sensitivity of the DoE and SDoE

operators is difficult to detect in the test images. Both operators
exhibit a significant degree of robustness; they perform about
as well on the test images as on the training image. The TBF
operator, on the other hand, shows a lack of robustness. The
edge maps it produces when the target image is different from
the training image are noisier than those obtained from either
the DoE or SDoE operators. Note, though, that despite its
lack of robustness when compared with the DoE operator,
the TBF operator produces much better edge maps than the
Canny operator when impulsive noise is present. Even though
the prefiltered Canny operator with 3 3 median filter has
less noise sensitivity, it loses the most detail in the reference
edge maps of the test images shown in Fig. 7(e) and (f). In
particular, notice that the engines and the shadows of the
wings in Fig. 7(e) have been more clearly detected by the
DoE and TBF operators than by the Canny and prefiltered
Canny operators.

As a final result, Table II shows the error incurred by the
DoE and modified DoE operators for the different images
shown above, and for the case in which the filters were trained
on these images instead of on the couple image. The last two
entries in the bottom row show that the TBF operator is not
always better than the DoE operator when they are applied
to the image used to train them. The robustness of the DoE
operator is shown in the errors given in the first two rows,
which correspond to operators trained on the image couple.
The error for the DoE and SDoE operators is significantly less
than that of the TBF operator.

The results of these experiments indicate that if sufficient
time is available to train a DoE or SDoE operator, then they
should be used instead of the TBF operator. Recent work on
the stack filter training algorithm has resulted in significant
speedups, particularly if a parallel machine such as a MASPAR
MP-1 is available. In fact, DoE operators with 44 windows
can now be trained in less than a minute. If sufficient time for
training the SDoE operator is still not available, then the TBF
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operator could be used. One would then have to hope that the
target image and noise are not much different than those used
in the training stage.

There is thus a trade-off to be faced when choosing between
the TBF approach and the DoE approaches. If it is known that
the training image is very similar to the target image, and that
the noise used in training is similar to that expected in the tar-
get image, then the TBF approach could be used since it offers
reduced training time. If the target image may differ signifi-
cantly from the training image, or if some mismatch in noise
is possible between the training noise and the noise that might
be encountered, one of the DoE approaches should be used.

V. CONCLUSION

Perhaps the most important result in this paper is the demon-
stration—on real images—that the DoE and SDoE operators
exhibit robustness. This implies that the stacking property
ensures robustness. This is satisfying from a theoretical point
of view since it confirms that combinations and cascades of
rank order operators exhibit the same robustness as single rank
operators.
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