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ABSTRACT Unmanned Aerial Vehicle (UAV) technology is being increasingly used in a wide variety of
applications ranging from remote sensing, to delivery and security. As the number of UAVs increases, there
is a growing need for UAV to UAV detection and tracking systems for both collision avoidance and coordi-
nation. Among possible solutions, autonomous “see-and-avoid” systems based on low-cost high-resolution
video cameras offer important advantages in terms of light weight and low power consumption. However, in
order to be effective, camera based “see-and-avoid” systems require sensitive, robust, and computationally
efficient algorithms for autonomous detection and tracking of UAVs from a moving camera. In this article,
we propose a general architecture for a highly accurate and computationally efficient UAV to UAV detection
and tracking (U2U-D&T) algorithm from a camera mounted on a moving UAV platform. The system is based
on a computationally efficient pipeline consisting of a moving target detector, followed by a target tracker.
The algorithm is validated using video data collected from multiple fixed-wing UAVs that is manually
ground-truthed and is publicly available. Results indicate that the proposed algorithm can be implemented on
commodity hardware and robustly achieves highly accurate detection and tracking of even distant and faint
UAVs. Open source code for the U2U-D&T algorithm is available at: https://github.com/jingliinpurdue/
Fast-and-Robust-UAV-to-UAV-Detection-and-Tracking.git.

INDEX TERMS UAV tracking, sense-and-avoid, temporal detection, collision avoidance

I. INTRODUCTION

Unmanned Aerial Vehicle (UAV) technology is being
increasingly used in a wide variety of applications ranging
from remote sensing, to delivery and security [1]–[3]. As
UAVs have become more popular, there is a growing need
for UAV to UAV detection and tracking systems for both
collision avoidance and coordination of multiple UAVs [4],
[5]. While active sensors such as Lidar or Radar can provide
relatively accurate 3D point clouds, active sensors are typi-
cally not practical for small UAVs due to their heavy weight
and high power requirements [6].
Alternatively, passive optical sensors such as high-defini-

tion digital cameras are light weight and low power sensors
that can be used to implement a more traditional “see-and-
avoid” system [7]–[9]. We will refer to such automated UAV
to UAV see-and-avoid systems as autonomous see and

avoid. However, in order to be effective, autonomous see
and avoid systems will require sensitive, robust, and compu-
tationally efficient algorithms for detection and tracking of
UAVs from a camera mounted on a moving UAV platform.
We will refer to such systems as UAV to UAV detection and
tracking (U2U-D&T).
Real-time moving object detection and tracking has been

widely studied in the computer vision community [10].
While early object detection methods were based on simple
feature extraction [11], more recent algorithms such as deep
convolutional neural networks have been broadly accepted
as having the best accuracy for the problem of detecting gen-
eral objects in cluttered scenes [12]. More recently, there has
been particularly high interest in the detection of pedestrians
and cars for applications ranging from intelligent highways
to the safety of autonomous vehicles. Many pedestrian and
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car detection algorithms have been developed for surveil-
lance monitoring and even used in commercial products, in
which video is captured from a camera on a fixed platform
[13]–[15]. More recently, there has been a variety of research
on object detection algorithms for video taken from cameras
mounted on moving platforms [16].
The design of U2U-D&T systems presents many unique

challenges that necessitate specialized object detection and
tracking solutions [7]–[9]. First, in U2U-D&T detection,
both the camera platform and the object being detected are
rapidly moving and usually with different motion profiles.
This is because both the UAV with the camera and the UAV
to be detected are typically moving independently.1 Conse-
quently, object detection and tracking algorithms must be
robust to background motion that is non-planar and complex
[17], [18]. Second, robust detection and tracking requires
that algorithms work reliably for both near and distant
UAVs. This means that in some cases, distant targets may be
very small and often obscured by the background. For exam-
ple, Figure 1 illustrates how distant UAVs may only occupy
a small number of pixels within the image, and can be
occluded by the clouds or other background clutter. How-
ever, in other cases, nearer targets may occupy a much larger
field of view. Therefore, appearance by itself may not be a
reliable feature for robust detection [19]. Finally, training
data for the problem of U2U-D&T detection is scarce and its
collection is difficult since it requires the simultaneous coor-
dination, flight, and video capture of multiple UAVs [20].
The problem of detecting small ground objects from wide

angle aerial images taken from UAVs has been recently
explored with exciting results [21]. For example, in [7] Meier
et al. used computer vision methods to detect static markers on
the ground to assist in UAV localization. Other research has
focused on the problem of tracking and estimating the geo-
location of ground targets from moving UAVs using computer

vision [22]–[24]. In particular, Khanapuri et al. estimated the
geo-localization of multiple ground targets with multiple
UAVs using neural networks and extended Kalman filters [25].
Ammour et al. proposed an algorithm for detecting and count-
ing cars from UAV imagery [26], and Teutsch et al. detected
moving vehicles in videos taken from a UAV by using frame
differencing together with appearance classification. Finally, in
[26], LaLonda et al. presented a spatio-temporal algorithm to
detect small objects in videos taken from UAVs flying high
above targets. This method can detect both moving and station-
ary objects that are on the ground by using a two-stage neural
network in which the first stage detects a region of interest, and
the second stage detects the specific location. However, detec-
tion of objects flying in the sky is more challenging due to the
larger variation in both the motion and the appearance than typ-
ically occurs for objects on the ground.
There have been a number of works that specifically treat

the problem of detection and tracking of moving objects
using UAV mounted cameras [27], [28]. Rozantsev et al.
proposed an algorithm for detecting other flying UAVs by
first performing motion compensation to center the moving
object, and then using a deep neural network (DNN) to detect
the flying target [27], [28]. While this method was effective,
it assumed that the UAVs were relatively close so that the
target UAV occupied a large number of pixels in the field-of-
view (FOV). This allowed the DNN to accurately detect the
appearance of the target UAV. Moreover, they used a sliding
window to detect the moving target, so that the computation
required was large compared to what would likely be avail-
able on a small UAV for real-time detection and tracking.
Saribas et al. [29] proposed a UAV detection and tracking
algorithm which combines an appearanced based detector,
YOLOv3 [30], and a kernelized correlation filter (KCF) [31]
based tracker. However, this algorithms was primarily
designed for the detection of UAVs that fill a sufficiently
large region of the image so that appearance can be used as a
significant discriminator. In addition, the YOLOv3 algorithm
requires substantial computational resources.
Since many modern detection algorithms depend on train-

ing, high quality video training data is also crucial to success-
ful U2U-D&T design. There are a number of datasets taken
from cameras mounted on UAVs looking down at ground-
based objects. For example, Campus [32] is a dataset taken
from a UAV looking at a campus with objects such as cars,
pedestrains, bicycles and other objects on a university cam-
pus. DOTA [33] is a more general data set containing videos
of public areas in multiple cities. In the videos, there are
objects, such as cars, ships, and helicopters, all of which are
static. UAVDT [34] is a data set primarily consisting of
ground-based moving objects taken from cameras mounted
on flying UAVs. UAV123 [35] and UAVDT [34] include
some videos of other moving UAVs. However, the number
of UAVs in an image is typically small, and the UAV videos
are taken at close distance.
In this paper, we present a low complexity algorithm for

U2U-D&T that is capable of robustly detecting and tracking

FIGURE 1. Challenges in detecting other UAVs: In some cases

distant UAVs may be very small and occluded by similar or clut-

tered backgrounds. In this case, UAVs may not be easily recog-

nizable to human observers.

1We note that fixed wing UAVs, which will be the primary focus of this
research, must maintain a minimum airspeed above their stall speed. So they
also typically maintain a non-zero ground velocity.
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target UAVs from cameras mounted on a flying UAV plat-
form. This paper builds on our previous publications of [36],
[37]. Key innovations in our approach are that we use a mod-
ular structure formed by a moving target detector, and target
tracker in order to minimize computation while achieving
high accuracy. Moreover, by integrating our motion and
appearance into the classification process, we are able to
increase detection probability while reducing false alarms.
Finally, we utilize tracking to increase accuracy of detecting
faint, distant, and obscured UAVs with intermittent single
frame detection.
We also present a publicly available data set of UAV to

UAV video suitable for training of U2U-D&T algorithms.2

The data is unique in that it was taken with multiple UAVs
flying simultaneously [20] and is available with associated
ground-truth. When tested with this real video data, we find
that our proposed U2U-D&T algorithm has a high probabil-
ity of detection and low false alarm rate even in complex and
clustered environments and can detect distant and faint
UAVs even when they are difficult to be detected by human
viewers.

II. UAV TO UAV DETECTION AND TRACKING

ALGORITHM (U2U-D&T)

The overall architecture of our U2U-D&T algorithm is illus-
trated in Figure 2. The algorithm has two stages: the Target
Detector and the Target Tracker. The Target Detector gener-
ates candidate points that correspond to possible targets by
detecting regions with local motion and appearance that is
consistent with flying UAVs. Next the Target Tracker uses
optical flow together with Kalman tracking to recover

accurate continuous tracks of detected targets even in the
presence of clutter and missed detections. This structure
greatly reduces computation since the computationally inten-
sive classifiers need only be applied to sparse regions of the
image. In the following sections, we describe each stage of
our algorithm in detail.

A. TARGET DETECTOR

The function of the Target Detector stage is to generate can-
didate points corresponding to objects that are moving rela-
tive to the background. To do this, we first estimate the
background motion using a global motion model, and then
we subtract subsequent frames after aligning with the esti-
mated global motion parameters. We then detect salient
points in this background subtracted image, and use a hybrid
detector to classify these points as candidate points or false
alarms. Importantly, generating this background subtracted
image dominates computation because it requires every pixel
to be processed. So to reduce overall computation, the Target
Detector is only applied to every Lth0 frame.
The Target Detector is implemented in the following

five steps detailed below: optical flow estimation on sparsely
distributed points, global motion estimation, background
subtraction, salient point extraction, and UAV Target
classification.

1) OPTICAL FLOW ESTIMATION ON SPARSELY

DISTRIBUTED POINTS

In this step, we estimate the optical flow at a sparse set of fea-
ture points distributed across the image. To do this, we start
by selecting K feature points at uniformly distributed random
points across the previous image frame Xn�1. For each of the
selected points, we compute its saliency using the Shi-Tom-
asi corner detector’s criteria [38] in frame Xn�1. We then

FIGURE 2. An overview of the U2U-D&T algorithm: In the first stage, the Moving Target Detector a) estimates optical flow at sparsely dis-

tributed points, b) estimates global motion by fitting the points into the background motion model using a perspective transform, c)

computes a background subtracted image, d) extracts salient points, and then e) the Hybrid Classifier I uses both appearance and

motion information to select candidate points from the salient points. In the second stage, the Target Tracker f) initiates tracks from

the candidate points, g) propagates flow points using optical flow and prunes inaccurate propagation using the Hybrid Classifier II,

and then h) uses a Kalman Tracking to improve temporal consistency of the detected UAVs (shown with magenta boxes).

2 https://engineering.purdue.edu/�bouman/UAV_Dataset/

VOLUME 10, NO. 3, JULY-SEPT. 2022 1521

Li et al.: Fast and Robust UAV to UAV Detection and Tracking From Video

Authorized licensed use limited to: Purdue University. Downloaded on January 23,2023 at 21:29:45 UTC from IEEE Xplore.  Restrictions apply. 

https://engineering.purdue.edu/~bouman/UAV_Dataset/
https://engineering.purdue.edu/~bouman/UAV_Dataset/


discard points for which there is a more salient point within a
specified distance D0. This results in a set of Kn feature
points from the previous frame Xn�1. These feature points
are denoted by pn;i 2 <2 for i ¼ 1; . . . ;Kn, where each pn;i is
a 2D vector that determines a discrete pixel location in the
frame.
Next, we estimate both the forward and backward optical

flow vectors at each feature point. More specifically, we use
the Lucas-Kanade method [39] to estimate the forward opti-
cal flow vector to subpixel accuracy by solving the least
squares problem

un;i ¼ argmin
u

X
s2Nðpn;iÞ

Xnðsþ uÞ � Xn�1ðsÞk k2; (1)

where Nðpn;iÞ is a neighborhood around the point pn;i. From
this, we can compute the corresponding feature points in the
frame Xn given by

~pn;i ¼ pn;i þ un;i:

Notice, that in this case, ~pn;i is a continuous 2D position spec-
ified to subpixel accuracy. Using this feature point, we can
compute the backward optical flow vector given by

vn;i ¼ argmin
v

X
s2Nð~pn;iÞ

XnðsÞ � Xn�1ðs� vÞk k2: (2)

In principle, the forward and backward optical flow vectors
should be the same as they represent local motion of the rigid
body, so we will discard any point such that jjun;i � vn;ijj2 >
Md for some fixed threshold parameterMd.

2) GLOBAL MOTION ESTIMATION BY PERSPECTIVE

TRANSFORM

Our next step is to fit optical flow vectors into the global
background motion using a 2D perspective transform [40].
We use the perspective transform because it exactly models
the 2D background motion in the special case when the back-
ground results from the relative motion of a 2D plane in the
3D world and the camera image is formed by a perspective
projection (See appendix, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TETC.2021.3104555 for
proof). In practice, this is often a reasonable approximation
since the ground can often be approximated as planar. How-
ever we note that high buildings or towers can significantly
violate this approximation and generate false targets.
The 2D perspective transform y ¼ Tðx;HÞ transforms a

point x 2 <2 to a point y 2 <2 and is parameterized by the
3� 3 matrix H. The transform can be computed as

Tðx;HÞ ¼
h11�x1þh12�x2þh13
h31�x1þh32�x2þh33
h21�x1þh22�x2þh23
h31�x1þh32�x2þh33

" #
; (3)

where hij is the ði; jÞth element of the matrix H, and xk is the
kth component of x. Typically, the matrix H can be

normalized so that h33 ¼ 1; so there are only 8 degrees of
freedom to the parameter space.
We estimate, Hn, the parameters of the perspective trans-

form from frame n� 1 to n by solving the following optimi-
zation problem.

Hn ¼ argmin
H

X
i2Sn

~pn;i � Tðpn;i;HÞ
�� ��2

2
; (4)

where the optimization is performed using an iterative least
squares method [41], and Sn denotes a subset of original Kn

detected points designed to remove outliers. The subset, Sn,
is constructed by first removing points using the bi-direc-
tional pruning method described above. Then iterative RAN-
SAC [42] processing is then used to remove any additional
outliers from the set.

3) BACKGROUND SUBTRACTION

In this step, we compute the background subtracted image by
subtracting the subsequent frames after global background
motion correction. This highlights objects that are not mov-
ing along with the background clutter. To do this, we first
estimate the previous frame using the current frame along
with the estimated global transformation parameters. This is
given by

X̂n�1ðsÞ ¼ XnðTðs;HnÞÞ; (5)

where X̂n�1 is the estimated previous frame and s 2 <2

denotes a point on the discrete 2D grid. When components of
Tðs;HnÞ are not integer, we use bi-linear interpolation to
compute the estimated pixel value. Then the background sub-
tracted image is then computed as

En�1 ¼ jXn�1 � X̂n�1j: (6)

4) SALIENT POINT EXTRACTION

In this step, we identify a sparse set of salient patches in the
background subtracted image, En�1, that are passed on for
further processing. Salient points are detected using the Shi-
Tomasi corner detector [38] algorithm. The three parameters
that control the corner point detection are 1) quality level, �c,
2) minimum distance between two points, dc, and 3) maxi-
mum number of detected points, mc. We denote the Qn

selected salient points as qn;� ¼ fqn;igQn
i¼1. For each salient

point, we extract a 40� 40 patch in both the background
subtracted image and original image to form a salient patch.

5) UAV TARGETCLASSIFICATION BY THE HYBRID

CLASSIFIER

Hybrid Classifier I is used to classify the salient points as
either “targets” or false alarms based on a combination of
local motion and appearance features. Figure 3 shows the
structure of the Hybrid Classifier which consists of a Appear-
ance Classifier, a Motion Classifier and an AdaBoost algo-
rithm used to fuse the outputs into a single hard decision.
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The Appearance Classifier is a convolutional neural net-
work as shown in Figure 4. The input to the classifier is a 40�
40� 6 tensor corresponding to ðr; g; bÞ color patches
extracted around the salient point from both the image, Xn,
and the background subtracted image, En�1. We use 3� 3
convolution filters with 16-channels for layer 1, 32-channels
for layer 2, and 64-channels for layer 3. Each convolution
layer uses ReLU activation followed by max pooling with 2�
2 receptive fields to reduce the image size. We also use drop-
out and batch normalization to stabilize the training process.
The final layer uses a fully connected network with a softmax
activation into two classes corresponding to target and no-tar-
get. In the end, we compute the probability Pa

n;i that the patch
of each salient point, qn;i, corresponds to a moving target.
The Motion Classifier is a dense neural network that is

trained to detect targets based on their motion features. To do
this, we first compute forward and backward optical flow
vectors for each salient point in a manner similar to what was
done in Section 1. For the salient point, qn;i, we denote the
forward motion estimate as mn;i and the backward motion
estimate as nn;i. Both estimates are computed using equations
and methods as were used for the feature points specified in
Equations (1) and (2). We also define the local background
motion for the salient point to be

hn;i ¼ Tðqn;i;HnÞ � qn;i;

where Hn is the estimated global background motion parame-
ter matrix. Intuitively, hn;i represents the local motion that
would have occurred for any object in the background at that
salient point location. The target motion is then defined by

dn;i ¼ mn;i � hn;i; (7)

is then the velocity of the moving target relative to the back-
ground motion for the ith salient point. Typically, the motion
of a target UAV will not be the same as the background
motion, so then the resulting non-zero value of dn;i can be
used to detect moving targets. Table 1 lists out the 6 motion
features we use to describe each salient point. Since the first
feature, dn;i, is a 2D vector, this leads to a 7D motion feature
vector that we will use as input to the motion classifier.
Figure 5 shows the network architecture for the motion

classifier. It consists of three fully connected layers of size 8,
16, and 32. Like the appearance classifier, we use dropout
and batch normalization in training. The final output is gener-
ated using a softmax activation with two output classes corre-
sponding to target and non-target. The final output is the
probability Pm

n;i that the patch corresponding to a salient point
qn;i is a moving target.
Finally, we classify each salient point as “target” or false

alarm by integrating the outputs of the appearance and
motion classifier. To do this, we used the AdaBoost-
SAMME [43] algorithm with decision tree [44] classifiers
implemented in the sklearn package. The input to the Ada-
Boost classifier is the 2D vector ðPm

n;i;P
a
n;iÞ, and the parame-

ters dm and M0 were used to specify the maximum tree depth
and the maximum number of decision trees, respectively. We
discard any salient points that are classified as false alarms.
The remaining points are passed on as candidate points
denoted by cn;i 2 <2 for i ¼ 1; . . . ;Cn. We also note that
since the Target Detector is only run every L0 frames, candi-
date points can only be generated every L0 frames.

FIGURE 3. The Hybrid Classifier uses AdaBoost to compute a

classification decision based on the combined results of an

appearance and motion classifier.

FIGURE 4. Appearance classifier architecture: The input to the

network is a 40� 40� 6 salient input patch corresponding to a

two color images. The output represents the probability that the

patch is a moving target.

TABLE 1. Table of motion features.

Equation Description

1 dn;i ¼ mn;i � hn;i Target motion
2 ln;i ¼ kdn;ik Magnitude of target motion
3 an;i ¼ arctan dn;i Angle of target motion
4 �n;i ¼ kmn;i � nn;ik Bi-directional verification distance
5 hn;i ¼ arctan hn;i � arctanmn;i Angle difference between global and local motion
6 dn;i ¼ khn;ik � kmn;ik

�� �� Magnitude difference between global and local motion
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B. TARGET TRACKER

The function of the Target Tracker is to take candidate
points, cn;i, that are produced every Lth0 frame and to accu-
rately track the target through the intermediate L0 � 1
frames. The target tracker can also add new tracks starting
with new candidate points, or remove tracks where targets
are no longer detected. We refer to every Lth0 frame in which
the Target Detector generates a candidate point as a “detec-
tion frame”, and we refer to the Lth0 � 1 intermediate frames
as “tracking frames”.
The Target Tracker is implemented in the following three

steps detailed below: track initiation, flow point propagation
& pruning and Kalman tracking.

1) TRACK INITIATION

This operation of track initiation is only performed on the
detection frames that occur every Lth0 frames. In this opera-
tion, candidate points are used to initiate new tracks when-
ever they are determined to be distinct from established
tracks.
The set of established tracks are denoted by tn;j 2 <2,

where tn;j denotes the 2D position of the jth track in the nth
frame. The relative motion estimated by the Kalman tracker
for the jth target in the nth frame is denoted by kn;j. The
details of how kn;j is estimated are given below.
A candidate point, cn;i is only used to start a new track if it

represents a new target (i.e. there is no existing track) or it
does not match with any existing track. To determine this,
we first check if the following conditions hold for all tracks j,

New Track if
kcn;i � tn;jk > Td

or
kdn;i � kn;jk > Tv

8<
: ;

where Td and Tv are position and velocity thresholds, and dn;i is
the relative velocity of the candidate point computed in Equa-
tion (7). These conditions ensure that the new candidate point
has a position or velocity that is distinct from existing tracks.

Once the decision is made to start a new track, then a set of
points are extracted about the target that we call flow points.
Intuitively, the flow points identify distinct features of the
object that can be tracked individually.
We denote the flow points for the jth target in the nth

frame by rn;j;l where l indexes the particular flow point. The
goal of using flow points is to improve robustness by track-
ing a set of feature points in the target, rather than tracking a
single centroid point [45].
To do this, we first extract an Nc � Nc patch about the can-

didate point, and from this patch a set of flow points are
extracted using the Shi-Tomashi algorithm as was done in
Section 4. However, since we require multiple flow points
for each candidate point, we use different values of the 3 tun-
able parameters of the Shi-Tomasi algorithm to get more
points as shown in Table 2. The three parameters are, quality
level �t, minimum distance between two points dt and maxi-
mum number of detected points mt.

2) FLOW POINT PROPAGATION AND PRUNING

Flow point propagation and Pruning is run for every frame.
Its function is to propagate the set of all flow points at time n
to the next frame at time nþ 1 and to remove any flow points
that do not correspond to true target features. Notice, that the
set of flow points includes any points generated in track initi-
ation as well as flow points that have been propagated from
previous frames.
For each flow point, rn;j;l, we compute a corresponding

local motion vector, un;j;l, using the Lucas-Kanade method
(Section 1). Then we propagate rn;j;l to the next frame using,

rnþ1;j;l ¼ rn;j;l þ un;j;l: (8)

Next, we use a second hybrid classifier to prune the flow
points based on appearance and motion information with the

FIGURE 5. Motion classifier architecture: The network takes a 7D

motion feature vector as input. Given the input feature, a 3-layer

neural network followed by fully connected layer are trained to

identify moving objects. A softmax layer is utilized at the output

to compute Pm
n;i.

TABLE 2. Table of parameters.

Notaion Description Value

K Number of selected feature points 600
D0 Minimum distance between feature point 25
Md Bidirectional check threshold for local motion 1
�c Quality level of salient patch 0.01
dc Minimum distance between salient patches 50
mc Maximum number of salient patches 600
L0 Detection interval 6
dm Maximum depth of decision tree 2
Nc Size of candidate patch 40
M0 Number of estimator in AdaBoost 20
�t Quality level of flow points 0.001
dt Minimum distance between flow points 1
mt Maximum number of flow points 50
sv Transition modelling error level 0.1
s� Measure error level 1.0
Td Minimum distance to initiate new track 20
Tv Minimum motion difference to initiate new track 0.5
L Maximum unseen frames for Kalman tracking 6
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goal of removing inaccurately propagated flow points. We
refer to this second hybrid classifier as the Hybrid Classifier II.
For each flow point, rn;j;l, we extract a Nc � Nc patch cen-

tered at rn;j;l from Xn. Then, for each flow point we compute
a motion feature vector fn;j;l 2 <7 listed in Table 1 using the
same method we used to extract motion feature vectors for
salient points in Section 5.
Next, we use the Hybrid classifier II to classify the flow

points as either “target” (class = 1) or “no target” (class = 0).
The inputs to the classifier are the motion feature vector, fn;j;l,
and an Nc � Nc � 3 sized patch centered on the flow point
that is extracted from the ðr; g; bÞ color image Xn. It is impor-
tant to note that, in this case we do not have access to the
background subtracted image as we did in the Hybrid classi-
fier I, and therefore, cannot use it as an input to the classifier.
Any flow point that is classified as “no target” is pruned

from the set of available flow points and is no longer propa-
gated forward or used for tracking. If all flow points are
deleted from a track, then the track is designated as “empty”.
If a track remains empty for L frames, then the track is
removed and is no longer tracked by the Kalman filter.

3) KALMAN TRACKING

The function of the Kalman tracker is to better estimate the
position of the target, tn;i, and to track the target through the
tracking frames. Importantly, we use a Kalman Filter to track
the relative velocity of the target denoted rather than tracking
the relative position of the target. We do this because in
experiments we found it to be both simpler and more robust
to target motion.
To do this we start by computing a preliminary track loca-

tion, ~tnþ1;j, for the jth track using the previously selected
valid flow points,

~tnþ1;j ¼
1

jT n;jj
X
l2T n;j

rnþ1;j;l; (9)

where T n;j is the set of current flow points for jth track in
frame n.
Next, we compute the global motion at the track location

as

vgn;j ¼ Tðtn;j;HnÞ � tn;j; (10)

and local motion of the candidate point as

vln;j ¼ ~tnþ1;j � tn;j: (11)

Then, we compute the measured velocity for tn;i relative to
the background motion is given by,

kn;j ¼ vln;j � vgn;j: (12)

We use the Kalman filter to track the kn;j and _kn;j the deriv-
ative of kn;j with respect to time, using the following model.
We use the simple constant velocity model to obtain the

estimated motion of the target to have smooth motion and to
try to recover from any intermittent missed detections.

bn;j ¼ Abn�1;j þ vn;j;
kn;j ¼ Mbn;j þ �n;j;

(13)

where A is state transition matrix, M is the observation
matrix, bn ¼ kn;j _kn;j

� �T
is the state variable, vn;j �

Nð0; s2
vIÞ is the transition modeling error, and �n;j �

Nð0; s2
� IÞ represents the measurement error. Here I is the

identity matrix.
For the choice of A and M, we use the “constant velocity

model”, where

A ¼

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

2
664

3
775; (14)

M ¼ 1 0 0 0
0 1 0 0

� �
: (15)

It is important to note that, we are in fact tracking a velocity,
kn;i, and therefore the ”constant velocity” refers to the veloc-
ity of kn;i and corresponds to constant relative acceleration of
the target.
Finally, we estimate the location of candidate point at time

nþ 1 as,

tnþ1;j ¼ tn;j þ vgn;j þ kn;j: (16)

We fix the size of detection as Nc.

III. DATASET FOR UAV TO UAV DETECTION AND

TRACKING

We created a dataset referred as U2U-D&TD which contains
50 video sequences with up to 8 UAVs in one frame, chosen
from approximately 100 hours of videos. All the videos was
taken from a camera a GoPro camera mounted on a single
UAV flying with a larger group of multiple UAVs flying
simultaneously. The videos were taken outdoor with real-
world challenges such as illumination variation, background
clutter, and small target objects. The data set comprises 50
video sequences with 30 fps frame rate. Each video is
approximately one minute in duration. They are recorded by
a GoPro 3 camera (HD resolution: 1920� 1080 or
1280� 960) mounted on a custom delta-wing airframe. As a
preprocessing step, we masked out the pitot tube which is
mounted on the aircraft and in the cameras field of view. For
each video, there are multiple target UAVs (up to 8) which
have various appearances and shapes. We manually anno-
tated the targets in the videos by using VATIC software [46]
(see Figure 6) to generate a ground-truth dataset for training
and performance evaluation.
The data set contained some challenging detection cases

that are very hard to detect visually (see Figure 7). In some
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cases, our algorithm detected UAV’s that were not detected
as ground truth, but could be visually detected after they
were identified. In these cases, we refined the ground truth
annotation by adding these additional tracks once identified
(see Figure 7).

IV. EXPERIMENTAL RESULTS

In this section, we investigate the accuracy and robustness
of our algorithm and compare results to existing state-of-
the-art methods. The accuracy comparisons are based pri-
marily on Recall, Precision and F-scores, and computation
times are measured on two platforms: a GPU platform and
and Odroid board based on an Arm processor. The GPU
platform consists of two Sky Lake CPUs (2.60GHz) with
one Tesla P100 GPU and 96 GB of RAM; while the
Odroid board consists of a Samsung Exynos5 Octa ARM
CortexTM-A15 Quad 2GHz, along with a CortexTM-A7
Quad 1.3 GHz CPU and 2 GB of LPDDR3 RAM clocked
at 933MHz. We implemented our algorithm in Python
without custom low-level optimization using a combina-
tion of OpenCV libraries for general purpose computer
vision operations and Keras/TensorFlow libraries for neu-
ral networks.
In our experiments, we report the recall, precision and

F-score as defined below

Recall ¼ Number of Detected Targets in all Frames
Number of Ground-Truth Targets in all Frames

:

Precision ¼ Number of Detected Targets in all Frames
Number of Detected Objects in all Frames

:

F ¼ 2 � Recall � Precision
Recall + Precision

:

We define a “detected target” as one for which IoU � 0:5
where the Intersection over Union (IoU) is defined by

IoU ¼ Ao

Au
; (17)

Ao is the area of intersection of detected bounding box and
ground-truth, and Au is the area of union of detected bound-
ing box and ground-truth. All parameters for our U2U-D&T
algorithm are listed in Table 2.
We bench-marked our results against a state-of-the-art

method which we denote as “EPFL” [28] using the the opti-
mized parameter setting provided in [28]. We note that the
EPFL algorithm was implemented with Matlab and used
Caffe for the deep learning portion.
In all our experiments, we used the U2U-D&TD dataset

described in Section III. All experiments used 5-fold cross-
validation where we randomly divided the 50 videos into 5
subsets. For each fold, we trained on 4 subsets and tested on
the remaining subset.
The training patches in Hybrid Classifier I are the Nc � Nc

patch centered at the salient points in both background sub-
tracted image and the original image. The training patches in
Hybrid Classifier II are the Nc � Nc patch centered at the
flow points in the original image. The labels of the training
patch are obtained by using the same criteria as computing
detection by computing the IoU with ground-truth using
Equation (17).
Figure 8 shows an example of training patches on the

background subtracted image. It is worth noting that patches
of true moving objects look very different from those of false
alarms. True moving objects tend to have the shape of a high
contrast doublet V-shape, while false alarms have an indis-
tinct form. The V-shape is likely due to the delta wing shape
of the UAVs, and the doublet form is caused by the motion
of the UAVs between frames. Therefore, appearance infor-
mation is a powerful feature for the differentiation of moving
UAVs from false alarms.
For both neural networks used in the appearance and

motion classifiers, we followed the following procedure. We

FIGURE 6. Vatic Annotation interface: first let annotator

initiate object to be annotated and give label and index to the

object. Then the software will provide detected object in con-

sequential frames. The Annotator need manually correct the

detection.

FIGURE 7. Missed annotation in the first round of annotations.

Left is original ground truth, Right is U2U-D&T’s detection

results (Green box is detection). U2U-D&T detects UAVs missed

by human eye.
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used categorical cross-entropy as the loss function, and we
divided the training data into a training set (9/10) and valida-
tion set (1/10). During training we minimize the validation
loss, used the Adam optimizer, and perform the optimization
on the Tesla P100 GPU. For the appearance classifier, the
learning rate was set to 0.001 for 150 epochs with a batch
size of 256; and for the motion classifier, the learning rate
was set to 0.001 for 1500 epochs with a batch size of 256.
The training took approximately 5 hours for 40 videos for
the appearance classifier; and it took approximately 2 hours
for 40 videos for the motion classifier.

A. COMPARISONWITH EXISTING METHODS

For comparison, we bench-marked our method, U2U-D&T,
against the EPFL algorithm as described above [28] tested
on 5 videos randomly selected from our data set. Both algo-
rithms were run on the GPU platform.
Figure 9 shows the detection results for some typical

frames. Notice that our algorithm has many fewer false

alarms but detects all the ground-truthed targets compared
with EPFL. This observation is consistent with the classifica-
tion accuracy results of Table 3 which show that the U2U-
D&T algorithm has much higher precision and recall. Table 4
shows that the computation time for the U2U-D&T algorithm
is much lower than the EPFL algorithm and is also consistent
with real-time operation at 30 fps.
The U2U-D&T algorithm has two major advantages over

the EPFL algorithm in this application. First, the EPFL algo-
rithm is designed to both detect targets and their motion
based on appearance. However, distant UAV may be very
small, in this case, appearance-based processing may be
unreliable. Second, the EPFL algorithm detects targets using
a sliding window. This requires that the appearance classifier
to be run at every location, which is much more computation-
ally intensive than sparse application of the classifiers used in
the U2U-D&T algorithm.

B. CLASSIFICATION & TRACKING ROBUSTNESS

In this section, we analyze the importance of motion classifi-
cation, appearance classification, Kalman Tracking, and
tracked-point pruning to the accuracy and robustness of our
U2U-D&T algorithm.
To do this, we compare our based line method with the fol-

lowing modified algorithms:

FIGURE 8. Example of training patches (Background subtracted image): [Left] True Moving Targets, [Right] False Alarms: We note that

true moving targets have different appearance in the background subtracted images compared with false alarms. True moving objects

tend to be distinctly highlighted while false alarms contain blurred edges.

FIGURE 9. UAV detection results of U2U-D&T and “EPFL”: [Top-

Row] Ground-truth annotation (Green), [Mid-Row] “EPFL” (Red),

[Bottom-Row] Our proposed U2U-D&T (Red). Green boxes repre-

sent the groundtruth annotations, red boxes denote the detec-

tion results. ”EPFL” turns to detect a lot false alarms and misses

the true moving targets.

TABLE 3. Comparison of precision, recall and F-score on GPU.

EPFL U2U-D&T

Precision 0.648�0.16 0.887�0.10

Recall 0.427�0.15 0.892�0.06

F-Score 0.515�0.14 0.890�0.07

TABLE 4. Comparison of computation time (ms) on GPU.

EPFL U2U-D&T

Time per Frame 167580.93 29.09
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w/o Motion: U2U-D&T without motion classifier
w/o Appearance: U2U-D&T without appearance classifier
w/o Kalman: U2U-D&T without Kalman tracking
w/o Hybrid classifier II: U2U-D&T without Hybrid classi-

fier II
Figure 10 compares the results of the baseline U2U-D&T

algorithm to the modified algorithms without motion classifi-
cation and without appearance classifier for three representa-
tive example frames in the video. Table 5 lists the
performance increases compared to motion based classifier.
w/o Motion: The third row of Figure 10 compares the

results of the baseline U2U-D&T algorithm to the modified
algorithm without motion classification for three representa-
tive example frames in the video. Notice that this algorithm
fails when the moving target is far away and only occupies a
few pixels. Table 5 supports this conclusion by showing a
significant reduction in recall when the motion classifier is
removed. This is important since detecting distant targets can
be critical in collision avoidance applications.

w/o Appearance: The fourth row of Figure 10 compares
the results of the baseline U2U-D&T algorithm to the modi-
fied algorithm without appearance classification for the same
examples. Notice that the number of false alarms increases
dramatically in this case perhaps due to the inaccuracy of
Lucas-Kanade optical flow matching. Again, Table 5 sup-
ports this conclusion with a corresponding dramatic reduc-
tion in precision for the “w/o Appearance” algorithm. This
demonstrates that purely motion-based classification is not
sufficient to robustly detect moving targets while rejecting
spurious noise.
w/o Kalman: Figure 11 illustrates the effect of remov-

ing Kalman filtering on a representative sequence of
frames, and Table 5 shows the corresponding effect on
the accuracy for the full set of test videos. The reduction
in accuracy “w/o Kalman” is not as dramatic as resulted

FIGURE 10. Ground-Truth and detection results from U2U-D&T,

w/o Motion, w/o Appearance. [Top-Row] Ground-truth annota-

tions in Green boxes, [Second-Row] U2U-D&T detection results,

[Third-Row] w/o Motion and [Bottom-Row] w/o Appearance.

Three examples of detection results: when use appearance to

classification, moving target with few pixels is challenging. For

motion based method, too many false alarms due to motion’s

lack of robustness. By combining motion and appearance, U2U-

D&T successfully picked up most of the moving targets. (Note:

we cropped the image in order to show moving targets which

are too small if we use original frame.)

TABLE 5. Precision, recall and F-score for robustness

investigation.

U2U- w/o w/o w/o

D&T Motion Appearance Kalman

Precision 0.888 0.829 0.263 0.871

Recall 0.890 0.723 0.674 0.830

F-Score 0.889 0.774 0.379 0.850

FIGURE 11. Results of moving object detection and tracking algo-

rithms sequential frames in a testing video: [Top-Row] Ground-

truth annotation (Green), [Second-Row] U2U-D&T detection,

[Third-Row] U2U-D&KCF detection, [Bottom-Row] w/o Kalman

results. Horizontal line denotes time. Without Kalman tracking,

there is intermitent missed detections while U2U-D&T recovers

the missed detections. Kalman Tracking helps recover intermit-

tent missed detection. Kalman Tracking performs very close to

KCF Tracking [31].

FIGURE 12. Results of using Hybrid classifier II during flow point

propagation. Blue boxes are the ground truth annotation, green

dots are the tracked flow point. First row is the results having

Hybrid classifier II to prune flow points and second is the result

using optical flow matching directly to propagate the flow

points.
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from the removal of the appearance or motion classifiers,
but it still is significant and primarily effects the recall.
Typically, the errors occur in sequences of missed detec-
tions when the target is obscured by clutter and the track
is lost. Here we also compare against a more recent track-
ing algorithm, kernelized correlation filter (KCF) [31], but
the results indicate that the simpler Kalman filtering based
method can achieve the goal of recovering intermediate
missed detections.
w/o Hybrid classifier II: Figure 12 illustrates that if we

propagate the flow points using optical flow matching only,
then there are an excessive number of residual points in the
background. This is caused by the inaccuracy of optical flow
matching. To solve this, we add the Hybrid classifier II to
prune the flow points, then the propagation is improved by
deleting spurious noise from the background clutter.

C. COMPUTATION TIME

Table 6 breaks out the measured computation time for each
component of the U2U-D&T algorithm on the GPU plat-
form. Notice that the moving target proposer is the most time
consuming component. In order to achieve real-time perfor-
mance at 30 fps, we run this component every 6 frames, so
that the time per frame is less than the required 30 ms.
We then analyze computation time for each component

which boosts accuracy in our algorithm. Notice that the
Hybrid Classifier takes about 12 percent of the total computa-
tion time. So the additional computation for both appearance
and motion classifiers is not large. The Target Tracker
requires less than 2ms per frame, which is also very time effi-
cient given the increased accuracy it provides.
Table 7 breaks out the computation time required to run on

the Odroid board using the ARM processors. The Odroid board
has very limited computational power and memory compared

to the GPU and implementing the deep neural network is diffi-
cult since the associated software packages are not available for
the ARM architecture on our OdroidXU4 board. Therefore, we
implemented the algorithm without the neural network classi-
fiers and listed the computation time for the remaining opera-
tions. The results show that, even without the neural network
classifiers, the algorithm cannot run at real-time rates with the
full resolution images using the Odroid board. However,
Figure 13 shows that near real-time processing can be achieved
by reducing the spatial resolution of the video; however, this is
at the price of a decreased F-Score. It is worth mentioning that
the computational complexity of the EPFL algorithm is much
higher compared to our algorithm. So EPFL algorihtm is not
feasible to be run on Odroid board.

TABLE 6. GPU computation time.

TABLE 7. Odroid computation time.

FIGURE 13. Trade off between accuracy and computation time by

downsampling the video.

VOLUME 10, NO. 3, JULY-SEPT. 2022 1529

Li et al.: Fast and Robust UAV to UAV Detection and Tracking From Video

Authorized licensed use limited to: Purdue University. Downloaded on January 23,2023 at 21:29:45 UTC from IEEE Xplore.  Restrictions apply. 



V. CONCLUSION

In this paper, we present a framework for a low complexity
U2U-D&T algorithm for autonomous see-and-avoid sys-
tems. The U2U-D&T algorithm is designed for robustly
detecting and tracking target UAVs from cameras mounted
on a flying UAV platform. Our U2U-D&T algorithm is based
on two phases: A Target Detector and a Target Tracker. The
moving target detector accurately subtracts the background
from subsequent frames by using a sparsely estimated global
perspective transform. We find that the recall and precision
can be greatly improved with approximately a 10 percent
increase in computation through the inclusion of a Hybrid
Classifier which uses Adaboost to combine both appearance
and motion classifiers. Kalman tracking is shown to further
improve accuracy with little increase in computation.
Experimental results using a publicly available ground-

truthed video data set with multiple fixed wing UAVs shows
that the U2U-D&T algorithm is both robust and effective.
Importantly, the algorithm is efficient enough to be run in near
real time on a low power arm board, albeit with reduced resolu-
tion video. In future work, the algorithm can be extended for effi-
cient unmanned ground vehicles (UGA) detection and tracking.

ACKNOWLEDGMENTS

The authors acknowledge support from the Naval Post
Graduate School (NPS) and Showalter Foundation. Thanks to
Dr. Mathias Kolsch, Dr. Timothy Chung and Dr. Oleg
Yakimenko for their assistance collecting the video data.
Especially thanks Dr. Timothy Chung for all his suggestions
and input to this research during his work at the NPS.

REFERENCES

[1] C. Kanellakis and G. Nikolakopoulos, “Survey on computer vision for
UAVs: Current developments and trends,” J. Intell. Robot. Syst., vol. 87,
no. 1, pp. 141–168, 2017.

[2] G. Loianno et al., “Localization, grasping, and transportation of magnetic
objects by a team of MAVs in challenging desert like environments,”
IEEE Robot. Automat. Lett., vol. 3, no. 3, pp. 1576–1583, Jul. 2018.

[3] H. Sedjelmaci, S. M. Senouci, and N. Ansari, “A hierarchical detection and
response system to enhance security against lethal cyber-attacks in UAV
networks,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 48, no. 9,
pp. 1594–1606, Sep. 2018.

[4] Y. Lin and S. Saripalli, “Sampling-based path planning for UAV collision
avoidance,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 11, pp. 3179–
3192, Nov. 2017.

[5] S. Rabinovich, “Multi-UAV coordination for uncertainty suppression of
natural disasters,” Ph.D. dissertation, Dept. Comput. Eng., Univ. Califor-
nia, Santa Cruz, CA, USA, 2018.

[6] K. May and N. Krouglicof, “Moving target detection for sense and avoid
using regional phase correlation,” in Proc. Int. Conf. Robot. Automat.,
2013, pp. 4767–4772.

[7] L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys, “PIXHAWK: A
system for autonomous flight using onboard computer vision,” in Proc.
Int. Conf. Robot. Automat., 2011, pp. 2992–2997.

[8] S. Roelofsen, D. Gillet, and A. Martinoli, “Reciprocal collision avoidance
for quadrotors using on-board visual detection,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2015, pp. 4810–4817.

[9] D. Bratanov, L. Mejias, and J. J. Ford, “A vision-based sense-and-avoid
system tested on a ScanEagle UAV,” in Proc. Int. Conf. Unmanned Aircr.
Syst., 2017, pp. 1134–1142.

[10] G. Yuan, P. Sun, J. Zhao, D. Li, and C. Wang, “A review of moving object
trajectory clustering algorithms,” Artif. Intell. Rev., vol. 47, no. 1, pp. 123–
144, 2017.

[11] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A sur-
vey,” 2019, arXiv:1905.05055.

[12] L. Liu et al., “Deep learning for generic object detection: A survey,” Int. J.
Comput. Vis., vol. 128, no. 2, pp. 261–318, 2020.

[13] Z. Zivkovic and F. der Heijden, “Efficient adaptive density estimation per
image pixel for the task of background subtraction,” Pattern Recognit.
Lett., vol. 27, no. 7, pp. 773–780, 2006.

[14] S. Walk, N. Majer, K. Schindler, and B. Schiele, “New features and
insights for pedestrian detection,” in Proc. Conf. Comput. Vis. Pattern
Recognit., 2010, pp. 1030–1037.

[15] N. Seungjong and J. Moongu, “A new framework for background subtrac-
tion using multiple cues,” in Proc. Asian Conf. Comput. Vis., 2013,
pp. 493–506.

[16] M. Yazdi and T. Bouwmans, “New trends on moving object detection in
video images captured by a moving camera: A survey,” Comput. Sci. Rev.,
vol. 28, pp. 157–177, 2018.

[17] A. Elqursh and A. Elgammal, “Online moving camera background sub-
traction,” in Proc. Eur. Conf. Comput. Vis., 2012, pp. 228–241.

[18] D. Zamalieva and A. Yilmaz, “Background subtraction for the moving
camera: A geometric approach,” Comput. Vis. Image Understanding,
vol. 127, pp. 73–85, 2014.

[19] R. LaLonde, D. Zhang, and M. Shah, “Clusternet: Detecting small objects
in large scenes by exploiting spatio-temporal information,” in Proc. Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 4003–4012.

[20] T. H. Chung,M. R. Clement, M.A. Day, K. D. Jones, D. Davis, andM. Jones,
“Live-fly, large-scale field experimentation for large numbers of fixed-wing
UAVs,” inProc. Int. Conf. Robot. Automat., 2016, pp. 1255–1262.

[21] L. W. Sommer, M. Teutsch, T. Schuchert, and J. Beyerer, “A survey on
moving object detection for wide area motion imagery,” in Proc. Winter
Conf. Appl. Comput. Vis., 2016, pp. 1–9.

[22] D. B. Barber, J. D. Redding, T. W. McLain, R. W. Beard, and C. N. Tay-
lor, “Vision-based target geo-location using a fixed-wing miniature air
vehicle,” J. Intell. Robot. Syst., vol. 47, no. 4, pp. 361–382, 2006.

[23] N. Farmani, L. Sun, and D. Pack, “Tracking multiple mobile targets using
cooperative unmanned aerial vehicles,” in Proc. Int. Conf. Unmanned
Aircraft Syst., 2015, pp. 395–400.

[24] L. Zhang et al., “Vision-based target three-dimensional geolocation using
unmanned aerial vehicles,” IEEE Trans. Ind. Electron., vol. 65, no. 10,
pp. 8052–8061, Oct. 2018.

[25] E. M. Khanapuri and R. Sharma, “Uncertainty aware geo-localization of
multi-targets with multi-UAV using neural network and extended kalman
filter,” in Proc. AIAA Scitech Forum, 2019, p. 1690.

[26] N. Ammour, H. Alhichri, Y. Bazi, B. Benjdira, N. Alajlan, and M. Zuair,
“Deep learning approach for car detection in UAV imagery,” Remote
Sens., vol. 9, no. 4, 2017, Art. no. 312.

[27] A. Rozantsev, V. Lepetit, and P. Fua, “Flying objects detection from a sin-
gle moving camera,” in Proc. Conf. Comput. Vis. Pattern Recognit., 2015,
pp. 4128–4136.

[28] A. Rozantsev, V. Lepetit, and P. Fua, “Detecting flying objects using a sin-
gle moving camera,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no.
5, pp. 879–892, May. 2017.

[29] H. Saribas, B. Uzun, B. Benligiray, O. Eker, and H. Cevikalp, “A hybrid
method for tracking of objects by UAVs,” in Proc. Conf. Comput. Vis.
Pattern Recognit. Workshops., 2019, pp. 563–572.

[30] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” 2018,
arXiv:1804.02767.

[31] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed track-
ing with kernelized correlation filters,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 37, no. 3, pp. 583–596, Mar. 2015.

[32] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese, “Learning social
etiquette: Human trajectory understanding in crowded scenes,” in Proc.
Eur. Conf. Comput. Vis., 2016, pp. 549–565.

[33] G.-S. Xia et al., “Dota: A large-scale dataset for object detection in aerial
images,” inProc. Conf. Comput. Vis. Pattern Recognit., 2018, pp. 3974–3983.

[34] D. Du et al., “The unmanned aerial vehicle benchmark: Object detection
and tracking,” 2018, arXiv:1804.00518.

[35] M. Mueller, N. Smith, and B. Ghanem, “A benchmark and simulator for
UAV tracking,” in Proc. Eur. Conf. Comput. Vis., 2016, pp. 445–461.

[36] J. Li, D. Ye, T. Chung, M. Kolsch, J. Wachs, and C. Bouman, “Multi-target
detection and tracking from a single camera in Unmanned Aerial Vehicles
(UAVs),” in Proc. Int. Conf. Intell. Robots Syst., 2016, pp. 4992–4997.

[37] D. H. Ye, J. Li, Q. Chen, J. Wachs, and C. Bouman, “Deep learning for mov-
ing object detection and tracking from a single camera in unmanned aerial
vehicles (UAVs),” Electron. Imag., vol. 2018, no. 10, pp. 4661–4666, 2018.

1530 VOLUME 10, NO. 3, JULY-SEPT. 2022

Li et al.: Fast and Robust UAV to UAV Detection and Tracking From Video

Authorized licensed use limited to: Purdue University. Downloaded on January 23,2023 at 21:29:45 UTC from IEEE Xplore.  Restrictions apply. 



[38] J. Shi and C. Tomasi, “Good features to track,” in Proc. Conf. Comput.
Vis. Pattern Recognit., 1994, pp. 593–600.

[39] B. Lucas and T. Kanade, “An iterative image registration technique with an
application to stereo vision,” in Proc. Int. Joint Conf. Artif. Intell., 1981,
pp. 674–679.

[40] L. G. Brown, “A survey of image registration techniques,” ACM Comput.
Surv., vol. 24, no. 4, pp. 325–376, 1992.

[41] H. Goldstein, “Multilevel mixed linear model analysis using iterative gen-
eralized least squares,” Biometrika, vol. 73, no. 1, pp. 43–56, 1986.

[42] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated cartog-
raphy,” Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[43] T. Hastie, S. Rosset, J. Zhu, and H. Zou, “Multi-class adaboost,” Statist.
Interface, vol. 2, no. 3, pp. 349–360, 2009.

[44] D. M. Magerman, “Statistical decision-tree models for parsing,” in Proc.
Annu. Meeting Assoc. Comput. Linguistics., 1995, pp. 276–283.

[45] P. Tissainayagam and D. Suter, “Object tracking in image sequences using
point features,” Pattern Recognit., vol. 38, no. 1, pp. 105–113, 2005.

[46] C. Vondrick, D. Patterson, and D. Ramanan, “Efficiently scaling up
crowdsourced video annotation,” Int. J. Comput. Vis., vol. 101, no. 1,
pp. 184–204, 2013.

[47] P. Dollar, Z. Tu, P. Perona, and S. Belongie, “Integral channel features,” in
Proc. Brit. Mach. Vis. Conf., 2009, pp. 1–11.

[48] M. Teutsch and M. Grinberg, “Robust detection of moving vehicles in
wide area motion imagery,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. Workshops, 2016, pp. 27–35.

JING LI (Member, IEEE) received the BA and MS
degrees from Xi’an Jiaotong University, in 2010
and 2013, respectively, and the PhD degree in elec-
trical and computer engineering from Purdue Uni-
versity, West Lafayette, IN, USA, in 2019. She is
currently a researcher with Perception and Analytic
Lab, Texas Instruments, TX, USA. Her research
interests include computer vision, deep learning,
and image processing.

DONG HYE YE (Member, IEEE) received the
bachelor’s degree from Seoul National University
in 2007, the master’s degree from the Georgia Insti-
tute of Technology in 2008, and the PhD degree in
bioengineering from the University of Pennsylva-
nia in 2013. His graduate research focused on med-
ical image analysis such as image registration,
segmentation, and classification using machine
learning. He is currently a research assistant profes-
sor of electrical and computer engineering with
Purdue University. His research interests include

sparse sampling for microscopic imaging, model based iterative tomographic
reconstruction, and UAV sensing via machine learning.

MATHIAS KOLSCH (Member, IEEE) received the
PhD degree in computer science from the University
of California, Santa Barbara. He is currently an assis-
tant professor of computer science with Naval Post-
graduate School in Monterey, California. His research
interests include computer vision, human-computer
interaction, computer graphics, andAR.

JUAN P. WACHS (Senior Member, IEEE)
received the BEd Tech degree in electrical educa-
tion from ORT Academic College, Hebrew Univer-
sity, Jerusalem, and the MSc and PhD degrees in
industrial engineering and management from the
Ben-Gurion University of the Negev, Israel. He is
currently a scholar and a full professor with Indus-
trial Engineering School, Purdue University, a pro-
fessor of biomedical engineering (by courtesy) and
an adjunct associate professor of surgery with the
IU School of Medicine. He is also the director of

the Intelligent Systems and Assistive Technologies Lab, Purdue, and is affili-
ated with the Regenstrief Center for healthcare engineering.

CHARLES A. BOUMAN (Fellow, IEEE)
received the BSEE degree from the University of
Pennsylvania in 1981, the MS degree from the Uni-
versity of California at Berkeley in 1982, and the
PhD degree in electrical engineering from Prince-
ton University in 1989. From 1982 to 1985, he was
a full staff member with MIT Lincoln Laboratory.
In 1989, he was with the faculty of Purdue Univer-
sity, where he is currently the Showalter professor
of electrical and computer engineering and biomed-
ical engineering. His research interests include sta-

tistical signal and image processing in applications ranging from medical to
scientific and consumer imaging. He is a member of the National Academy
of Inventors, a fellow of the IEEE, a fellow of the American Institute for
Medical and Biological Engineering (AIMBE), a fellow of the society for
Imaging Science and Technology (IS&T), and a fellow of the SPIE Profes-
sional Society.

VOLUME 10, NO. 3, JULY-SEPT. 2022 1531

Li et al.: Fast and Robust UAV to UAV Detection and Tracking From Video

Authorized licensed use limited to: Purdue University. Downloaded on January 23,2023 at 21:29:45 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


