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Abstract—Hyperspectral neutron computed tomography is a
tomographic imaging technique in which thousands of wavelength-
specific neutron radiographs are measured for each tomographic
view. In conventional hyperspectral reconstruction, data from
each neutron wavelength bin are reconstructed separately, which
is extremely time-consuming. These reconstructions often suffer
from poor quality due to low signal-to-noise ratios. Consequently,
material decomposition based on these reconstructions tends to
produce inaccurate estimates of the material spectra and erro-
neous volumetric material separation. In this paper, we present
two novel algorithms for processing hyperspectral neutron data:
fast hyperspectral reconstruction and fast material decomposition.
Both algorithms rely on a subspace decomposition procedure that
transforms hyperspectral views into low-dimensional projection
views within an intermediate subspace, where tomographic re-
construction is performed. The use of subspace decomposition
dramatically reduces reconstruction time while reducing both noise
and reconstruction artifacts. We apply our algorithms to both
simulated and measured neutron data and demonstrate that they
reduce computation and improve the quality of the results relative
to conventional methods.

Index Terms—Clustering, hyperspectral reconstruction, linear
attenuation coefficients, material decomposition, neutron Bragg
edge imaging, neutron computed tomography, non-negative matrix
factorization.

I. INTRODUCTION

N EUTRON computed tomography (nCT) can reveal an ob-
ject’s internal structure from exposures to a neutron source

at multiple orientations. Unlike X-rays, neutrons interact directly
with atomic nuclei rather than electron clouds, making nCT
particularly useful for studying materials that are challenging
to analyze with X-ray methods [1], [2]. nCT is also valuable
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for detecting contaminants in materials, such as nuclear fuel
elements or composite structures [3], and for monitoring aging
in polymers, metals, and other materials, revealing how environ-
mental factors affect material longevity [4]. Additionally, nCT
is used in biological imaging [5], archaeological research [6],
and manufacturing quality control [7].

Hyperspectral neutron computed tomography (HSnCT) is a
more advanced technique [8], [9], [10], in which a pulsed neutron
source illuminates a sample and a time-of-flight detector mea-
sures the projection images across a broad range of wavelengths
- potentially of the order of few thousands. Using HSnCT, it is
possible to analyze material characteristics like crystallographic
phases [11], [12] and isotopic compositions [13], [14], [15]. In
particular, HSnCT enables the investigation of Bragg edges [16],
which result from Bragg scattering in polycrystalline materials.
To determine the critical Bragg edges from the transmission
spectra, HSnCT is often carried out by measuring radiographs
in the cold and thermal neutron [17], [18], [19] energy range.

Spectral and hyperspectral imaging have proven to be in-
valuable in other modalities, and several algorithms have been
developed to address the complexity of processing and an-
alyzing such high-dimensional data. A significant milestone
in hyperspectral data processing has been the integration of
dimensionality reduction techniques like principal component
analysis (PCA), independent component analysis (ICA), and
non-negative matrix factorization (NMF) that enable lower-
dimensional representation of the data for feature extraction,
hyperspectral unmixing, and data compression purposes [20],
[21]. NMF, in particular, excels in phase unmixing tasks, such
as in energy-dispersive X-ray spectroscopy (EDXS), where it
leverages a priori knowledge of the sample to improve material
identification and separation [22].

In the context of CT reconstruction for spectral/hyperspectral
data, several algorithms have been proposed to enhance the
reconstruction quality [23], but the use of dimensionality re-
duction is relatively limited. One notable work is the joint
reconstruction and spectrum refinement (JoSR) algorithm for
photon-counting-detector CT, which uses NMF to reduce the
number of parameters for effective spectra estimation [24].
Additionally, sinogram domain dimensionality reduction us-
ing NMF and other techniques has been shown to be effec-
tive in reducing reconstruction requirements for multispectral
X-ray CT [25]. However, the full potential of dimensionality
reduction in different spectral and hyperspectral CT applica-
tions remains largely unexplored, particularly in the context of
HSnCT.
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The conventional approach to reconstructing HSnCT data
is direct hyperspectral reconstruction (DHR), which involves
reconstructing projection data for each wavelength bin sepa-
rately [26]. The individual reconstructions can be performed
using either a basic algorithm like filtered back projection
(FBP) [27], [28] or an advanced algorithm like model-based
iterative reconstruction (MBIR) [29], [30], [31]. However, even
with a fast algorithm like FBP, this approach is very compu-
tationally expensive since it requires hundreds of tomographic
reconstructions. Additionally, the reconstructions often suffer
from significant noise and artifacts due to the low signal-to-noise
ratio (SNR) of each spectral component.

One commonly used approach to HSnCT material decomposi-
tion is reconstruction domain material decomposition (RDMD).
In RDMD, hyperspectral reconstructions are first computed us-
ing DHR. The set of linear attenuation coefficients for each mate-
rial, referred to as theμ-spectrum, is then obtained by computing
the vector mean of the corresponding material region within
these reconstructions [11]. Finally, these μ-spectra are used to
decompose the materials. However, RDMD is time-consuming
due to its reliance on DHR, and it is challenging to accurately
perform material decomposition using noisy hyperspectral DHR
reconstructions.

Alternatively, sinogram domain material decomposition
(SDMD) directly performs material decomposition in the sino-
gram domain [13], [14]. Then, only a single reconstruction is
performed for each constituent material. If the μ-spectra are
known exactly, then SDMD produces much less noisy recon-
structions compared to RDMD and is much faster. However,
obtaining prior knowledge of the exact μ-spectra is difficult in
practice. On the other hand, if the μ-spectra are unknown, then
accurate separation of the materials in the sinogram domain is
difficult due to both the low SNR and the overlaps of materials
in the projections.

In this paper, we present two algorithms for processing
HSnCT data. These algorithms, which we refer to as fast hy-
perspectral reconstruction (FHR) and fast material decompo-
sition (FMD), are both based on subspace decomposition of
the hyperspectral data. FHR is a method for fast tomographic
reconstruction of hyperspectral data that also visibly and quan-
titatively reduces noise and improves reconstruction quality.
FMD is a related method to perform material decomposition,
producing 3D reconstructions of component materials and the
associated μ-spectra. Note that FMD estimates the μ-spectra di-
rectly from the data rather than relying on theoretically computed
values. This is because the theoretical values do not account
for experiment-dependent physical effects, making them deviate
from the trueμ-spectra for a particular experiment. This research
extends the work first presented in conference proceedings [32],
[33].

Fig. 1 illustrates the core components of the FHR and FMD al-
gorithms. Both algorithms use a subspace decomposition proce-
dure to represent the high-dimensional hyperspectral views in a
low-dimensional intermediate subspace and then perform MBIR
reconstruction of each subspace component. The FHR algorithm
then directly computes the hyperspectral reconstructions. Alter-
natively, the FMD algorithm then volumetrically decomposes

Fig. 1. Overview of fast hyperspectral reconstruction (FHR) and fast material
decomposition (FMD) algorithms. Both algorithms use a subspace decom-
position procedure to represent the high-dimensional hyperspectral views in
a low-dimensional intermediate subspace. The FHR algorithm then directly
performs hyperspectral reconstruction, while the FMD algorithm reconstructs
the individual material components. Both algorithms benefit from increased
speed, reduced noise, and reduced artifacts due to the subspace decomposition.

the object’s materials, i.e., computes the 3D reconstructions of
individual materials and their associated μ-spectra.

The use of subspace decomposition in our algorithms serves
three purposes:
� Eliminates significant spectral noise from the data while

fitting them into the low-dimensional subspace.
� Reduces computation time more than 10x due to the re-

duced number of tomographic reconstructions.
� Allows for the use of MBIR reconstruction that produces

better reconstruction quality from sparse view data.
We apply our algorithms to both simulated and measured

neutron data and demonstrate that they are substantially faster
and yield more accurate results compared to traditional HSnCT
methods.

II. THE HSNCT IMAGING SYSTEM

Fig. 2 illustrates a simple HSnCT imaging system that is used
to collect wavelength-resolved hyperspectral data from multiple
views of the sample. HSnCT has commonly been conducted
using a pulsed neutron source that relies on the spallation of
neutrons [34], [35], [36]. The pulse of neutrons passes through
the sample and is detected by a 2D time-of-flight (TOF) imaging
array [37], [38], [39]. The TOF detector counts the number of
neutrons at each pixel and for each time interval bin. These
time interval bins then correspond to each neutron’s velocity or
wavelength. The specific relationship between the neutron TOF,
Δt, and its wavelength, λ, is given by

λ =
h

mn

Δt

L
(1)

Authorized licensed use limited to: Purdue University. Downloaded on June 11,2025 at 20:01:53 UTC from IEEE Xplore.  Restrictions apply. 



CHOWDHURY et al.: FAST HYPERSPECTRAL NEUTRON TOMOGRAPHY 665

Fig. 2. Illustration of an HSnCT imaging setup at a spallation neutron source. The arrows on the left represent a pulsed neutron source, which generates a beam of
neutrons across a range of wavelengths. The hyperspectral beam travels through the sample to the Nr ×Nc time-of-flight (TOF) imaging detector, which records
the number of neutrons as a function of time. Based on the time of arrival, these detector counts are resolved into Nk = 1200 wavelength-specific radiographs.
The plot on the right shows neutron counts across the wavelength bins for a single detector pixel. For tomographic reconstruction, wavelength-resolved data are
collected for Nv orientations of the sample.

where h is Planck’s constant, mn is the neutron mass, and L is
the distance between the source and the detector.

In order to describe our method, we introduce the following
notation:
� Nr is the number of detector rows
� Nc is the number of detector columns
� Nk is the number of wavelength bins
� Nv is the number of tomographic views
� Nm is the number of materials in the sample
� Np = Nv ×Nr ×Nc is the number of projections
� Nx = Nr ×Nc ×Nc is the number of voxels
The output of the TOF detector is a hyperspectral neutron

radiograph [40] in the form of an Nr ×Nc ×Nk array. For a
typical HSnCT system with Nr = Nc = 512 and Nk = 1200,
a single hyperspectral radiograph will have 3.146× 108 data
points, or equivalently, 300 megapixels of data.

In order to perform a tomographic scan, the object is rotated
to Nv view orientations [41], [42], [43], [44] and at each ori-
entation, a hyperspectral radiograph is measured. This results
in a tomographic sinogram of neutron counts with the form
yv,r,c,k where v, r, c, k are the discrete view, row, column, and
wavelength indices. In addition, a single hyperspectral radio-
graph is measured with the object removed. This is known
as the “open-beam” and is denoted by yor,c,k. From these, we
can compute the hyperspectral projection views, p, using the
relationship [45] given by

pv,r,c,k = − log

(
yv,r,c,k
yor,c,k

)
. (2)

pv,r,c,k corresponds to the line integral of the linear attenuation
coefficient along the projection at detector location (r, c) for
wavelength bin k and orientation v. Note that in practice, various
corrections must be made in the calculation of (2) in order to
account for effects such as scatter, detector bias, and count rate
limitations. Details are given in Appendix A.

In order to formulate a forward model for the HSnCT system,
let xm ∈ RNx×Nm denote the sample where each column of
xm represents the 3D volume fraction for a single material.
Furthermore, let Dm ∈ RNk×Nm be a dictionary of spectral
responses where each column is the vector of linear attenuation
coefficients as a function of wavelength for a single material.

Also, let p ∈ RNp×Nk be the set of hyperspectral projection
views.

Using these definitions, we assume that the forward model
has the form

p = (Axm)(Dm)� + w (3)

where A ∈ RNp×Nx is the linear projection operator, w repre-
sents additive noise, and � denotes transpose.

III. FAST HYPERSPECTRAL RECONSTRUCTION (FHR)

Fig. 3 illustrates the three steps in FHR consisting of subspace
extraction, MBIR reconstruction, and subspace expansion. FHR
reduces the spectral dimension during subspace extraction, then
performs volumetric reconstruction in this lower-dimensional
space, and finally restores the spectral dimension using subspace
expansion. We can think of the algorithm as “dehydrating” the
data in the sinogram domain and then “rehydrating” in the
reconstruction domain.

Fig. 4 illustrates the subspace extraction step of FHR in which
the high-dimensional hyperspectral views p ∈ RNp×Nk are de-
composed into low-dimensional subspace views V s ∈ RNp×Ns

and a corresponding dictionary of subspace basis vectors Ds ∈
RNk×Ns . Here, Ns is the dimension of the intermediate sub-
space, and typically Nm ≤ Ns << Nk. The decomposition can
then be obtained by solving the non-negative matrix factoriza-
tion (NMF) [46], [47], [48] problem given by

(V s, Ds) = arg min
(V ≥0,D≥0)

{‖p− V D�‖2F
}
. (4)

NMF was implemented with non-negative double singular value
decomposition (NNDSVD) initialization and coordinate descent
solver that uses fast hierarchical alternating least squares (Fast
HALS). For the software implementation, we used the scikit-
learn Python package [49].

Since Ns << Nk, operations performed in the subspace do-
main are much faster compared to those in the hyperspectral
domain. Also, the residual difference from the decomposition
ε = p− V s(Ds)� primarily consists of spectral noise, which is
effectively removed from the data.

The choice of Ns generally depends on the number of ma-
terials in the sample. We choose Ns = �βNm�, where β ≥ 1
is a user-selectable parameter. Ideally, one might expect that
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Fig. 3. Illustration of the FHR algorithm with sample inputs (hyperspectral views) and outputs (hyperspectral reconstructions). FHR first transforms the
Nk = 1200 dimensional hyperspectral views into Ns = 9 dimensional subspace views. Then it performs tomographic reconstruction using MBIR to produce 9
subspace reconstructions. Finally, it expands the 9 subspace reconstructions into 1200 hyperspectral reconstructions using the basis vectors of the subspace.

Fig. 4. Subspace extraction: FHR employs NMF to decompose the
Nk = 1200 dimensional hyperspectral views (p) into Ns = 9 dimensional
subspace views (V s) along with the corresponding subspace basis vectors (Ds).
This approach effectively reduces the data dimensions and also significantly
reduces spectral noise.

β = 1 would be the best choice. However, in Section V-D, we
demonstrate that it is better to pick Ns to be larger than the
number of materials. When Ns = Nm, then the intermediate
subspace has exactly the required dimension under ideal con-
ditions. However, in practice, the signal can fall outside the
selected subspace due to noise-induced error in the subspace
estimation or nonlinearities in the system that increase the
dimensionality of the signal. We note that system nonlinearities
can arise from physical effects such as neutron scattering, partial
volume effects, energy resolution effects, and detector physics.
Consequently, in this research, we will use β = 3.

Fig. 5 illustrates the tomographic reconstruction step of
FHR that computes Ns reconstructions within the subspace
xs ∈ RNx×Ns using the MBIR algorithm [29], [30], [31].
For each subspace index j = 1, 2, . . . , Ns, MBIR solves the

Fig. 5. Tomographic reconstruction: FHR computes Ns = 9 reconstructions
(xs) from the extracted 9 sets of subspace views (V s) using MBIR. This allows
the algorithm to transition from the sinogram domain to the spatial domain.

Fig. 6. Subspace expansion: FHR expands the Ns = 9 subspace reconstruc-
tions (xs) into Nk = 1200 hyperspectral reconstructions (xh) using the sub-
space basis vectors (Ds).

optimization problem given by

xs
j = arg min

xj

{
1

2σ2
v

‖V s
j −Axj‖2 + h (xj)

}
(5)

where A is the linear projection operator from a rasterized
volume to a rasterized sinogram, V s

j is the jth column of V s,
and h(xj) is the Q-Generalized Gaussian Markov random field
(qGGMRF) prior model [50], [51], [52]. σv is the assumed
noise standard deviation. Since we perform reconstruction in
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Fig. 7. Illustration of the FMD algorithm with sample inputs (hyperspectral views) and outputs (reconstructed materials, µ-spectra). Similar to FHR, FMD first
performs the subspace decomposition procedure. Then, a transformation matrix is calculated from the Ns = 9 subspace reconstructions. The algorithm uses this
transformation matrix to transform the 9 subspace reconstructions into Nm = 3 material reconstructions and the 9 subspace basis vectors into 3 material µ-spectra.

Algorithm 1: Fast Hyperspectral Reconstruction.

the subspace domain, the traditional noise model does not apply
directly; therefore, we use a simple model that uses a constant
σv across pixels. For the software implementation, we used the
SVMBIR Python package [53], [54].

MBIR is capable of producing high-quality reconstructions
from sparse-view and low-SNR measurements. As a result, it
can effectively reduce the data acquisition time for HSnCT. On
the downside, MBIR reconstruction tends to be much slower
than FBP reconstruction. However, the increased reconstruction
time for MBIR is of much less concern since FHR only requires
the reconstruction of Ns 3D volumes rather than the Nk 3D
volumes required for DHR.

Fig. 6 illustrates the subspace expansion step of FHR in
which the algorithm expands the subspace reconstructions
into hyperspectral reconstructions using Ds. Since Ds maps
each voxel from subspace to hyperspectral coordinates, the

hyperspectral reconstructions xh ∈ RNx×Nk can be calculated
using the relationship given by

xh = xs(Ds)�. (6)

The entire procedure for FHR is summarized in Algorithm 1.

IV. FAST MATERIAL DECOMPOSITION (FMD)

Next, we illustrate how our approach can be used to re-
construct individual materials/crystallographic phases and their
associated attenuation spectra. Fig. 7 illustrates how the FMD
algorithm first performs subspace extraction and reconstruction
and then calculates the material transformation matrix that con-
verts the subspace reconstructions and basis vectors into recon-
structions of the individual materials along with the associated
μ-spectra for each material. We note that the first two steps -
subspace extraction and reconstruction are identical to the steps
used in FHR. We will describe the remaining steps required to
perform FMD.

Fig. 8 illustrates the material transformation matrix compu-
tation step of FMD in which an Nm ×Ns matrix T is com-
puted to transition from the intermediate subspace to physically
meaningful material space. This matrix is computed either by
using the homogeneous material regions provided by the users
(semi-supervised mode) or by estimating these homogeneous
regions using a clustering procedure (unsupervised mode).

For the unsupervised mode, FMD implements a Gaussian
mixture model-based clustering procedure [29], [55], [56] on
xs and segments the material regions based on the estimated
model parameters. GMCluster [57] Python package is used for
the implementation of this clustering. To refine the segmentation,
a morphological closing operation is performed, which fills any
small holes within the regions. This is followed by a morpho-
logical erosion operation that removes the region borders, as
the bordering voxels may contain overlapping materials. This
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Fig. 8. Transformation matrix computation: To go from Ns = 9 dimensional
subspace to Nm = 3 materials, FMD computes a 3× 9 transformation matrix
T from the subspace reconstructions (xs). This transformation matrix serves as
a bridge between the subspace domain and the material domain.

Algorithm 2: Fast Material Decomposition.

ensures that the final homogeneous material regions are well-
separated. Both morphological closing and erosion are applied
using an Nq ×Nq neighborhood.

Once the homogeneous material regions are identified, the
vector mean for each region in xs is computed to populate each
row ofT . The computation of each elementTi,j can be expressed

Fig. 9. 3D material estimation: FMD transforms the Ns = 9 subspace recon-
structions (xs) into Nm = 3 material reconstructions (xm) using the transfor-
mation matrix (T ). These spatially separated material volumes are the intended
outputs of the FMD algorithm.

as

Ti,j =
1

|Mi|
∑
n∈Mi

xs
n,j (7)

where Mi is the set of voxel indices from ith material region and
|Mi| is the number of voxels in that region.

Fig. 9 illustrates the 3D material estimation step of FMD,
which transforms the subspace reconstructions into material
reconstructions using the transformation matrix T . As each
subspace reconstruction can be represented as a weighted sum
of all the material reconstructions, and T contains these weights,
we can compute the material reconstructions xm ∈ RNx×Nm by
solving the optimization problem given by

xm = arg min
x≥0

{‖xs − xT‖2F
}
. (8)

Fig. 10 illustrates the μ-spectra estimation step of FMD
in which the μ-spectra dictionary Dm is computed from the
subspace basis matrix Ds using the relationship (Appendix B)
given by

Dm = DsT�. (9)

The entire procedure for FMD is summarized in Algorithm 2.

V. RESULTS

In order to demonstrate the value of the FHR and FMD algo-
rithms, we applied them to both simulated and measured HSnCT
data, and we compared our results to those of the conventional
approaches.

A. Data and Methods

The simulated HSnCT data was generated using the forward
model described in Section II. First, we designed a synthetic
phantom xm that contains 3 distinct, non-overlapping materials:
nickel (Ni), copper (Cu), and aluminum (Al). The synthetic
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Fig. 10. µ-spectra estimation: FMD uses the transformation matrix (T ) again
to transform the Ns = 9 subspace basis vectors (Ds) into Nm = 3 material
µ-spectra (Dm). Each spectrum retains Bragg edges that are unique to the
associated material.

Fig. 11. Images of (a) simulated phantom and (b) scanned physical phan-
tom. The simulated phantom provides a rough approximation of the physical
phantom, with both phantoms containing powdered Ni and powdered Cu in Al
structures.

phantom loosely approximates the physical phantom, as seen
from Fig. 11. Next, we generated a dictionary of realistic μ-
spectra Dm using the Bragg-edge modeling (BEM) library [58],
which covers a wavelength range of 1.5 to 4.5 Å. The material
densities for μ-spectra generation were chosen assuming Ni and
Cu in powdered form and Al in solid form. This was done to
be consistent with the measured data described below. Using
the simulated xm and Dm, we computed the hyperspectral
projection views p from (3). We also simulated hyperspectral
blank scans yo with realistic neutron dosage rates (peak dosage
rate: 500). Then we computed the hyperspectral neutron counts
y from the relationship given by:

yv,r,c,k = yor,c,ke
−pv,r,c,k . (10)

Finally, we introduced realistic noise characteristics by sampling
both y and yo from the Poisson distribution.

The measured dataset was acquired using the Spallation
Neutrons and Pressure (SNAP) diffractometer beamline at Oak
Ridge National Laboratory (ORNL) [59], [60], which has a
wavelength resolution of Δλ

λ
= 0.002. Similar to the simulation,

the dataset covered a wavelength range of 1.5 to 4.5 Å. The

TABLE I
PARAMETERS FOR SIMULATED & MEASURED DATA

physical sample was formed from powdered Ni and powdered
Cu in an Al structure. Ni and Cu were in powdered form to
avoid internal texture and potential residual strain, ensuring a
more controlled experimental setup. The external dimensions of
the physical phantom were 20× 5× 5 mm, and the data were
collected using a 28× 28 mm TOF microchannel plate Timepix
detector [38]. However, as the sample was glued to the holder at
the top and bottom, we excluded data from the top and bottom
50 rows of the detector.

The associated parameters for both datasets are specified in
Table I. It is important to note that Nm must be known for
FMD implementation. However, FHR does not require Nm, but
a rough idea of Nm can help to select a suitable Ns.

Along with our own algorithms, we applied the following
baseline methods to the datasets for comparison:
� DHR: DHR performs Nk individual 3D reconstructions,

one for each wavelength bin in p. We implemented DHR
using FBP, as it is a more practical choice when dealing
with a large number of reconstructions and represents the
common practice in this field.

� RDMD: RDMD first performs Nk FBP reconstructions,
similar to DHR. From these reconstructions, it then cal-
culates an Nk dimensional vector mean for each material
region, representing the material’s μ-spectrum. Once the
entire set of μ-spectra Dm is computed, RDMD uses it to
estimate the set of material projection views V m from p.
Finally, it performs FBP reconstruction onV m to obtain the
reconstructed materials xm. Notice that, instead of directly
estimating xm from xh, we return to the sinogram domain
to compute V m and then reconstruct xm. This approach is
more efficient because xh is much larger than p, making
space-domain processing significantly slower and more
memory-intensive.

B. Simulated Data Results

Fig. 12 presents hyperspectral reconstructions for the simu-
lated data. Fig. 12(a) shows selected ground truth (GT) slices at
different wavelength bins, while Fig. 12(b) presents correspond-
ing reconstructions using the baseline method (DHR). Fig. 12(c)
and (d) display reconstructions for the same slices & wavelength
bins using FHR with FBP and MBIR, respectively. Notably, FHR
with FBP produced reconstructions with significantly less noise
compared to DHR, despite not using MBIR. This highlights the
independent contribution of the subspace extraction procedure
in performing effective noise reduction. FHR with MBIR further
enhanced the reconstructions by achieving additional noise and
artifact suppression.

Table II shows a quantitative performance comparison be-
tween DHR and FHR for the simulated data. We see that FHR
methods were dramatically faster than DHR. The table also
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Fig. 12. Hyperspectral reconstruction for simulated data: (a) ground truth, (b) baseline method (DHR), (c) FHR with FBP, and (d) FHR with MBIR. Even with
FBP, FHR reconstructions are significantly less noisy compared to DHR, which highlights the effectiveness of subspace extraction in noise reduction. The use of
MBIR further improved FHR reconstructions.

TABLE II
HYPERSPECTRAL RECONSTRUCTION FOR SIMULATED DATA

presents average SNR values for the reconstructions computed
by:

SNRFHR = 10 log

⎛
⎝ 1

NkNm

Nk∑
k=1

Nm∑
m=1

(
μsignal
m,k

σnoise
k

)2
⎞
⎠ (11)

where μsignal
m,k is the signal mean computed from a 20× 20

region inside the mth material at kth wavelength bin. σnoise
k

Fig. 13. Segmented homogeneous material regions used in unsupervised FMD
for simulated data. While the segmentation of Ni and Cu is mostly accurate, Al
segmentation shows some mislabeled pixels.

is the noise standard deviation computed from a 20× 20 back-
ground region (outside the sample) at kth wavelength bin. We
can observe substantial improvements in SNR values with both
FHR methods.

Fig. 13 illustrates the homogeneous material regions in the
simulated data segmented by FMD for the unsupervised mode.

Authorized licensed use limited to: Purdue University. Downloaded on June 11,2025 at 20:01:53 UTC from IEEE Xplore.  Restrictions apply. 



CHOWDHURY et al.: FAST HYPERSPECTRAL NEUTRON TOMOGRAPHY 671

Fig. 14. Material reconstruction for simulated data: Selected slices from
reconstructed Ni, Cu, and Al: (a) ground truth, (b) estimated by the baseline
method (RDMD), (c) estimated by semi-supervised FMD, and (d) estimated
by unsupervised FMD. The reconstructions represent volume fractions, with
values ranging from 0 to 1. Both semi-supervised and unsupervised FMD
reconstructions exhibit significantly lower noise levels than RDMD.

Notice that the segmentation of Ni and Cu is mostly accurate,
while Al segmentation shows some mislabeled pixels in the
background. This phenomenon can be attributed to the weak
presence of Al in neutron radiographs, making it difficult to
differentiate Al from the background.

Fig. 14 illustrates material reconstructions for the simulated
data. Fig. 14(a) shows several ground truth slices for the mate-
rial simulation. Fig. 14(b) shows the baseline RDMD material
reconstructions for the same slices. Fig. 14(c) and (d) show
the associated FMD material reconstructions for the semi-
supervised and unsupervised modes, respectively. Fig. 15 shows
3D renderings of the reconstructions for unsupervised FMD.
Comparing FMD reconstructions to the ground truth, we see that
the Ni and Cu estimates are accurate for both modes, while Al’s
estimates show some noise and artifacts. The circular artifacts in
the Al reconstructions arise from the accumulation of residual
errors near the boundaries. While such artifacts are common in
CT reconstructions, they are particularly more visible in this case
due to the weak presence of Al in neutron radiographs. However,
the RDMD results are much noisier and deviate considerably
from the ground truths.

Fig. 16(a) shows the theoretical μ-spectra for Ni, Cu, and
Al used in the simulation. Fig. 16(b) shows the spectra
estimated using baseline RDMD for the simulated data.

Fig. 15. Material reconstruction for simulated data: 3D visualization of the
reconstructed Ni, Cu, and Al estimated by unsupervised FMD.

TABLE III
MATERIAL DECOMPOSITION FOR SIMULATED DATA

Fig. 16(c) and (d) show the spectra estimated for the simu-
lated data using semi-supervised and unsupervised FMD, re-
spectively. The FMD estimates of μ-spectra closely match the
theoretical ground truths, while RDMD estimates are slightly
noisy.

Table III provides a quantitative performance comparison
between RDMD and FMD for the simulated data. We see that
both semi-supervised and unsupervised FMD were faster than
RDMD by a significant margin. Additionally, the table presents
average SNR values for the material reconstructions. The SNR
values were computed using the following:

SNRFMD = 10 log

(
1

Nm

Nm∑
m=1

(
μsignal
m

σnoise
m

)2
)

(12)

where μsignal
m is the signal mean computed from a 20× 20 ma-

terial region inside themth material reconstruction. σnoise
m is the

noise standard deviation computed from a 20× 20 background
region (outside the sample) in the mth material reconstruction.
Using a similar approach, we computed the SNR values for
the μ-spectra. Both semi-supervised and unsupervised FMD
achieved significantly higher SNR values compared to RDMD.

C. Measured Data Results

Fig. 17 presents hyperspectral reconstructions for the mea-
sured data. Fig. 17(a) shows a selection of reconstructed slices
at different wavelength bins using DHR. Fig. 17(b) and (c)
display similar reconstructions using FHR with FBP and MBIR,
respectively. As observed previously, the FHR reconstructions
have substantially reduced noise and artifacts relative to DHR.
However, cupping artifacts are present in reconstructions from
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Fig. 16. µ-spectra for simulated data: (a) ground truth, (b) using baseline
method (RDMD), (c) using semi-supervised FMD, and (d) using unsupervised
FMD. µ-spectra for measured data: (e) using baseline RDMD, (f) using semi-
supervised FMD, and (g) using unsupervised FMD. For both simulated and
measured data, FMD methods have estimated µ-spectra with higher SNR than
those produced by RDMD.

TABLE IV
HYPERSPECTRAL RECONSTRUCTION FOR MEASURED DATA

all methods, particularly visible at higher wavelengths. Although
the exact reason for cupping is unclear, scattering effects could
be a possible cause.

Table IV provides a quantitative performance comparison
between DHR and FHR for the measured data. Similar to the

Fig. 17. Hyperspectral reconstruction for measured data: (a) baseline method
(DHR), (b) FHR with FBP, and (c) FHR with MBIR. Both FHR-FBP and FHR-
MBIR have produced reconstructions with significantly less noise compared
to DHR. However, FHR-MBIR reconstructions are better than FHR-FBP as
expected.
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Fig. 18. Segmented homogeneous material regions used in unsupervised FMD
for measured data.

Fig. 19. Material reconstruction for measured data: Selected slices from
reconstructed Ni, Cu, and Al: (a) using the baseline method (RDMD), (b) using
semi-supervised FMD, and (c) using unsupervised FMD. Both semi-supervised
and unsupervised FMD produced better reconstructions with significantly less
noise compared to RDMD.

Fig. 20. Material reconstruction for measured data: 3D visualization of the
reconstructed Ni, Cu, and Al estimated by unsupervised FMD.

simulated case, FHR methods remarkably outperformed DHR
in both speed and noise suppression.

Fig. 18 illustrates the homogeneous material regions in the
measured data segmented by FMD for the unsupervised mode.

Fig. 19 illustrates material reconstructions for the measured
data. Fig. 19(a) shows several slices of material reconstructions

Fig. 21. Simulated data: estimated µ-spectra as a function of the dimension
of the intermediate subspace Ns. Each row shows estimated µ-spectra using
semi-supervised FMD with the indicated Ns between 1 and 15. (a) shows the
full spectra; (b) and (c) zoom in on the boxed region in (a) for Ni and Cu,
respectively. The spectra are accurate and nearly identical for Ns ≥ 3 but show
non-physical artifacts for Ns = 1, 2.

from the baseline RDMD method, Fig. 19(b) and (c) show the
FMD material reconstructions for the same slices using the
semi-supervised and unsupervised modes, and Fig. 20 shows
the corresponding 3D renderings of the reconstructions for the
unsupervised FMD. Notice that both FMD reconstructions have
fewer artifacts with less noise than the RDMD reconstruction.
Also, notice that the unsupervised FMD is somewhat better
than the semi-supervised for the Ni and Cu reconstructions, and
somewhat worse for the Al.

Fig. 16(e) shows theμ-spectra estimated for the measured data
using baseline RDMD. Fig. 16(f) and (g) show the spectra es-
timated using semi-supervised and unsupervised FMD, respec-
tively. Both semi-supervised and unsupervised FMD estimates
of μ-spectra have low noise levels. Additionally, the estimates
have Bragg edges that closely match the theoretical calculations
from the simulation. The RDMD estimates of μ-spectra are
much noisier compared to FMD.

Table V provides a quantitative performance comparison be-
tween RDMD and FMD for the measured data. Similar to the
simulated case, FMD algorithms were significantly faster than
RDMD. Also, FMD material reconstructions have much higher
SNR.
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Fig. 22. Measured data: estimated µ-spectra as a function of the dimension
of the intermediate subspace Ns. Values of Ns ≤ 3 show non-physical artifacts
similar to those for Ns = 1, 2 in Fig. 21, with smaller artifacts seen for Ns =
4, 5. Values ofNs in the range 6 to 15 give reasonably accurate estimated spectra,
with increasingly noisy estimates as Ns increases.

TABLE V
MATERIAL DECOMPOSITION FOR MEASURED DATA

D. The Dimension of the Intermediate Subspace

In this section, we investigate the best choice for Ns, the
dimension of the intermediate subspace. To better understand
the effect of Ns on algorithm performance, we conducted an
experiment on both datasets using semi-supervised FMD, where
we varied the value of Ns from 1 to 15 and observed the
estimated μ-spectra.

Fig. 21 shows the estimated μ-spectra for simulated data
using different values of Ns. Each row here represents μ-spectra
estimations for a single Ns. (a) shows the full μ-spectra, while
(b) and (c) provide a closer look at the spectra inside the
boxed region in (a) for Ni and Cu, respectively. Notice that for
Ns ≥ 3 the μ-spectra are accurately reconstructed; whereas for

Fig. 23. Spectral NRMSE values as a function of Ns. Using the spectral
estimates from Figs. 21 and 22, we select the region between the two largest
consecutive Bragg edges and find the NRMSE between the estimatedµ-spectrum
and the corresponding straight-line fit. The NRMSE values for Ni and Cu are
averaged and plotted versus Ns. The orange line represents simulated data; the
purple line represents measured data. The dots on each curve denote the Ns

values corresponding to the minimum NRMSE. The vertical dashed line shows
the number of materials Nm for both datasets. Consistent with Figs. 21 and 22,
we see that the fit for simulated data is essentially insensitive to Ns for Ns ≥ 3,
while the fit for measured data is best at Ns = 6 but nearly flat over the range
6 to 10.

Ns < 3 the reconstructed μ-spectra have defects. So, for the
simulated dataset, Ns = Nm = 3 (i.e., β = 1) appears to be the
best choice.

Fig. 22 shows the estimatedμ-spectra for measured data using
different values of Ns. Notice that for Ns ≥ 6 the μ-spectra are
accurately reconstructed; whereas for Ns < 6 the reconstructed
μ-spectra have defects. However, if Ns is too large, then the
SNR of the estimated μ-spectra slightly decreases. So for the
measured dataset, Ns = 6 (i.e., β = 2) appears to be the best
choice.

Ideally, the region between any two consecutive Bragg edges
in aμ-spectrum is linear. Thus, an accurately estimated spectrum
should have data points between two Bragg edges that closely
fit a straight line. So, for a quantitative evaluation, we computed
the “spectral NRMSE” metric as the normalized root mean
square error (NRMSE) between the estimatedμ-spectrum points
and a corresponding straight-line fit between the two largest
consecutive Bragg edges. This was done separately for Ni and
Cu, and the values were then averaged.

Fig. 23 shows the spectral NRMSE values as a function of the
dimension of the intermediate subspace Ns for both simulated
and measured data. In both cases, the minimum NRMSE was
achieved for Ns > Nm, and the NRMSE remained relatively
stable for larger values of Ns. So, these results indicate that it is
better to choose Ns > Nm (i.e., β > 1) when the best choice is
unknown.

VI. CONCLUSION

We present fast hyperspectral reconstruction (FHR) and fast
material decomposition (FMD) algorithms for fast and accurate
analysis of polycrystalline material using HSnCT. The subspace
decomposition procedure in both algorithms dramatically re-
duces data dimensionality and spectral noise, allowing them to
operate up to ten times faster and produce more accurate results
compared to traditional approaches. The dramatic reduction in
dimensionality also allows for the use of more computationally
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expensive MBIR reconstruction methods, which further reduce
artifacts and improve SNR, particularly in the sparse view case.
While our algorithms have been designed for hyperspectral
neutron tomography, similar methods may be useful for other
hyperspectral tomography applications.

APPENDIX

A. Offset Correction

During an experiment, a mismatch in neutron dosage rates can
happen between the object scan and the blank scan (open-beam),
affecting the data normalization process. In an ideal situation,
yo would have the same neutron dosage rates as y. So, ideally,
p can be expressed as

pv,r,c,k = − log

(
yv,r,c,k
yor,c,k

)
.

However, due to experimental inaccuracies and instrumental
defects, the dosage rates may vary for each view and wavelength
bin. So, we can compensate for the mismatch using a view
and wavelength-dependent factor α ∈ RNv×Nk . Then, p can be
expressed as

pv,r,c,k = − log

(
αv,kyv,r,c,k

yor,c,k

)
(13)

= − log

(
yv,r,c,k
yor,c,k

)
− log(αv,k) (14)

= − log

(
yv,r,c,k
yor,c,k

)
− bv,k (15)

where b = log(α). The computation of each bv,k is given by

bv,k =
1

|B|
∑

(r,c)∈B
− log

(
yv,r,c,k
yor,c,k

)
. (16)

B is a set of detector pixel coordinates (r, c) in the background
region, where pv,r,c,k is expected to be 0. |B| is the number of
(r, c) pairs in B.

B. μ-Spectra & Subspace Basis Relationship

From (8), the relationship between the material and subspace
reconstructions can be defined as:

xs = xmT. (17)

Taking a linear projection operator A on both sides of the (17),
we have

Axs = A (xmT ) (18)

V s = (Axm)T. (19)

Now, from (3) and (4), we have

(Axm)(Dm)� = V s(Ds)� (20)

(Axm)(Dm)� = (Axm)T (Ds)� (21)

(Dm)� = T (Ds)�

Dm = DsT�. (22)
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