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Abstract—Coherent lidar uses a chirped laser pulse for 3D
imaging of distant targets. However, existing coherent lidar image
reconstruction methods do not account for the system’s aperture,
resulting in sub-optimal resolution. Moreover, these methods use
majorization-minimization for computational efficiency, but do
so without a theoretical treatment of convergence.

In this paper, we present Coherent Lidar Aperture Modeled
Plug-and-Play (CLAMP) for multi-look coherent lidar image
reconstruction. CLAMP uses multi-agent consensus equilibrium
(a form of PnP) to combine a neural network denoiser with an
accurate surrogate forward model of coherent lidar. Addition-
ally, CLAMP introduces a computationally efficient FFT-based
method to account for the system’s aperture to improve resolution
of reconstructed images. Furthermore, we formalize the use of
majorization-minimization in consensus optimization problems
and prove convergence to the exact consensus equilibrium so-
lution. Finally, we apply CLAMP to synthetic and measured
data to demonstrate its effectiveness in producing high-resolution,
speckle-free, 3D imagery.

Index  Terms—lidar, coherent
minimization, plug-and-play,
neural networks.

imaging,
consensus equilibrium,

majorization-
deep

I. INTRODUCTION

OHERENT lidar is a method for three-dimensional (3D)

imaging in which a target is flood-illuminated by a
frequency-modulated laser source. In multi-look lidar, multiple
snapshots of the reflected wave are recorded on a 2D detector
array by a spatial-heterodyne interferometric system [[1]. This
process yields a collection of 2D measurements over the dura-
tion of the chirped waveform. A 3D complex-valued volume
can be recovered by a demodulation and filtering process [2]—
[4]]. This volume can be further processed to produce a 3D
image of the surfaces in the scene.

There are several challenges in creating high-quality 3D
images from multi-look lidar data. Recent efforts have fo-
cused primarily on correcting phase aberrations caused by
non-concurrent measurements [5], object motion [6], or at-
mospheric turbulence [7]-[10]. However, beyond addressing
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phase aberrations, reconstruction algorithms also need to re-
duce speckle, noise, and aperture-induced blur.

The most straightforward method to reconstruct multi-
look coherent lidar images, often called speckle averaging,
involves averaging the squared magnitude of back-projected,
demodulated data from multiple looks. Assuming the speckle
decorrelates between looks, this averaging reduces speckle
in the final reconstruction. However, this method does not
incorporate regularization or priors.

In complex-valued image reconstruction problems, re-
searchers generally have used model-based iterative recon-
struction (MBIR) methods that regularize the complex-valued
reflectance of the target, assuming the scene reflectance to have
locally correlated phase and magnitude [11]], [12]. However, in
many scenarios, the phase of the reflectance is well-modeled as
random, without spatial or temporal correlation [[13]—[15].This
observation can help simplify the estimation problem by
reducing its effective dimensionality.

In a related 3D near-field radar imaging problem, the authors
of [[16] leverage this observation to regularize only the mag-
nitude of the reflectance, leaving the phase unregularized. In
contrast, the papers of Pellizzari et al. [[17]-[21] introduce an
approach for 2D coherent lidar that uses a Bayesian framework
to directly estimate the speckle-free, real-valued reflectivity
of the target. The real-valued reflectivity roughly corresponds
to the image seen using broad-spectrum illumination; since
the reflectivity is relatively smooth, it can be more strongly
regularized to further reduce the effective dimensionality of
the problem. While estimating the reflectivity introduces a
seemingly intractable, nonlinear relationship between mea-
sured data and the estimated image, Pellizzari et al. overcomes
this problem by using the Expectation-Maximization (EM)
algorithm [22[]-[24].

A primary benefit of these methods is that they enable
the use of advanced real-valued image priors through Plug-
and-Play (PnP) algorithms [25]-[27]. Despite the success of
advanced priors in 2D image reconstruction [28], relatively
little work has been done using 3D priors in lidar image
reconstruction or related modalities. It is important to use 3D
priors instead, as the images involve complex 3D structures
and spatial dependencies that cannot be adequately captured
by 2D models. Early research made a simplifying assumption
that there is only a single surface depth at each 2D pixel [29],
[30]], while more recent works used Total Variation (TV) [31]]
and mixed-norm ({2 1) regularization [32]], deep point cloud
denoiser [33]], or a 3D U-Net denoiser [16] to jointly exploit
range and cross-range correlations and account for multiple
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Fig. 1: The measurement process and conventional data processing pipeline for a 3D coherent lidar imaging system using image plane
recording geometry. (a) Multiple chirped laser pulses, or looks, illuminate a target. Each look is assumed to generate an independent speckle
pattern, g.. Reflected light propagates to an optical system with aperture, a, where a lens focuses an image onto a focal plane array. The
image is interfered with a delayed local reference beam to form a hologram, which is sampled in time to create N; frames of size 2N, X 2N,
for each look. (b) The 2D DFT of each hologram frame is taken to separate the frequency components of the target and reference beam. The
pupil images are then windowed to size N, X N, X V¢, centered, and zero-padded by a factor, g, to form a 3D stack of complex fields, y,
for the £*" look. (¢) A noisy 3D image of the target can be reconstructed from y, by the inverse 3D DFT and averaging over £ =1,..., L.

surface depths at each cross-range pixel. However, these
methods have not been applied to 3D coherent lidar imaging.

Another challenge in lidar reconstruction is to efficiently
correct the blur caused by the finite extent of the system’s
aperture. The aforementioned MBIR methods [17]]-[21] make
a simplifying assumption that the forward model operator
is an orthogonal matrix. This greatly reduces computational
complexity, but effectively disregards the system aperture. On
a similar problem in polarimetric synthetic-aperture radar, [34]
uses the same EM algorithm approach, but addresses the
aperture problem by using a greedy graph-coloring-based
matrix probing method to do an approximate matrix inversion.

Additionally, from a theoretical point of view, a variety of li-
dar reconstruction algorithms combine the EM algorithm with
PnP or ADMM [35]]; however, convergence results for this type
of combined algorithm are limited. In [36], the authors prove
an ergodic convergence rate when using general majorization-
minimization [37[]—[39]] principles within ADMM, but they do
not prove non-ergodic convergence of the iterates.

In this paper, we present Coherent Lidar Aperture Mod-
eled Plug-and-Play (CLAMP), a majorized PnP algorithm
for multi-look coherent lidar imaging that accounts for the
imaging system’s aperture, which builds on our previous
publication [40]. Using the Multi-Agent Consensus Equilib-
rium (MACE) framework [41]], CLAMP combines multi-look
coherent lidar data with a deep 3D image prior model to
produce a 3D reconstruction with reduced noise, speckle, and
increased resolution relative to traditional reconstruction meth-
ods. Specifically, we make the following novel contributions:

o Accurate lidar aperture modeling using a computationally
efficient FFT-based method;

« Incorporation of a deep neural network prior in 3D multi-
look coherent lidar reconstruction;

o Formulation of a unified framework for majorization-
minimization within MACE with theoretical guarantees
of convergence to an exact MACE solution;

o Results on simulated and measured data that show
CLAMP yields 3D images with reduced speckle and
improved resolution.

A key component of CLAMP is the use of majorization-
minimization, or surrogate function optimization, in the
MACE framework. We use convex surrogate functions in place
of the proximal agents in MACE and show that this method
converges to the exact MACE solution. This surrogate-based
MACE applies to many imaging problems and modalities
and encompasses several common approximation methods and
existing algorithms as special cases.

II. BACKGROUND

In this section, we provide an overview of the multi-look
coherent lidar imaging problem, develop the models used in
our approach, and introduce the MACE framework. We strive
to provide a comprehensive background on the problem and
the methods used in our approach, but for a more detailed
discussion of 3D coherent lidar imaging, we refer the reader
to [2]-[4], [7].

A. Coherent Lidar Imaging Measurement System

Figure [T[a) illustrates a typical coherent lidar imaging system
with an image-plane recording geometry. In this system, a
series of L chirped laser pulses, or looks, illuminates a target
with reflectivity, . Each look generates a speckle pattern, gy,
which is a complex-valued field that represents the target’s
reflectance. Throughout this work, we assume that the target
is stationary and that the speckle realizations and measurement
noise samples are statistically independent from look to look.
For each look, ¢ = 1,...,L, the corresponding complex
reflectance, g, propagates to the aperture, a, where a thin
lens forms an image of the target on a focal plane array.
The resulting image is mixed with a delayed, off-axis, local
reference beam, which results in an interference pattern, or
hologram, on the focal plane array.

As illustrated in Figure [T(b), the hologram is sampled in
time to create a series of Ny frames of size 2N, x 2N, for each
look. Intuitively, each of these hologram frames corresponds
to a slightly different laser wavelength due to the chirp slope.
This stack of 2D holograms will can be used to recover 3D
image of the complex reflectance of the target. For information
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on the principles of 3D holographic imaging, we refer the
reader to [2]]—[4]].

Figure [Tb) and (c) illustrate the conventional processing
steps to reconstruct a 3D image of the target from this stack of
Ny holograms. First, the 2D discrete Fourier transform (DFT)
is taken for each frame in a look. Since the frames are real
valued, each DFT results in a complex image that contains two
circular disks corresponding to the complex conjugate circular
apertures in the pupil plane. One of the two circular apertures
is then embedded in a bounding square array (shown with a
red dotted line) and windowed to give the pupil image. This
image is zero-padded to increase the effective sampling rate
in the space and time domains and yields a larger 3D stack
of pupil images, y,. Specifically, we zero-pad the pupil image
by a factor of ¢ in each of the three dimensions; so the final
array, 1y, is ¢° times the size of the un-padded images. The last
step in conventional reconstruction is to take the inverse 3D
DFT of each y, and average over ¢, which yields a candidate
reconstruction in cross-range and depth.

The final step in conventional reconstruction limits recon-
struction quality in two key ways: lost spatial and temporal
resolution due to the missing information in the frequency
domain, and noise due to speckle.

In contrast, our algorithm replaces the conventional final 3D
DFT and averaging step with an iterative model-based strategy
which employs a physics-based forward model in conjunction
with neural network denoisers to ensure the reconstructed
image is high-resolution and free of speckle and noise.

B. Forward Model

Assuming the target’s depth is small compared to the range
of the lidar system and that the fractional bandwidth of the
chirp is small [7], the complex field in the pupil plane,
jo : R® = C, for ¢ = 1,...,L, can be determined by the
Fresnel propagation integral [42] of the complex reflectance,

p2mid/(t )

ge: R? = C as
211 9 9

I { eXp{i”fz(f”f)}}
exp{ (§x+ er)\(lt) )} drdydz,

where (£, v) are the coordinates in the pupil plane, (x,y, z)
are the coordinates of the target, d, is the distance from the
object plane to the pupil plane, a(&,v,t) is the aperture, and
A(t) is the instantaneous wavelength of the chirp at time ¢.
By a small angle approximation, the quadratic phase term
outside the integral can be ignored, and since we only consider
the magnitude of the complex field, the quadratic phase term
inside the integral can be absorbed into g, as in [18]. This
results in a Fourier relationship,

d(f, V>t) y[gé] <>\£d’ ﬁ’ )\(10) )
(1)

(&, vt) =

i 2mid /A1)
ge(§,v,t) = —id

where % is the continuous 3D Fourier transform.

The measured and processed data, y, € C™ where n =
q3NwNyNt, is a normalized, discrete sampling of g, in lex-
icographical order. A discrete version of can be used to
relate y, to the complex reflectance image, g, € C™, by

= Age + 1, 2)

where A is a linear operator that models the imaging system,
and ny ~ CN(0,0‘%I ) is circularly-symmetric complex Gaus-
sian white noise, which is the dominant noise source [43]. The
operator A can be written as

A=D(a)F

where F is the orthonormal 3D DFT, D(-) represents a
diagonal matrix with entries given by its argument, and the
vector a is a binary vector that encodes the aperture of the
imaging system after zero-padding.

Our ultimate goal will be to recover » € R", the real-
valued speckle-free reflectivity at each 3D voxel. While the
data y, directly relates to g, by (2), images reconstructed from
estimates of g, are degraded by speckle. To address this, we
need a forward model that relates r to gy.

We will assume that each look produces a sample of gy
that is conditionally independent given 7. Using a standard
model of fully developed speckle [13], [44]], we can model
the conditional distribution of g, given r as being a circularly-
symmetric complex Gaussian random variable with condi-
tional distribution

g€|r ~ CN(Ov D(T‘)) ’ (3)

where D(r) is a diagonal covariance with entries . We can
then directly model the data y, in terms of r by composing
the forward model (2) with the speckle model of (3) to yield

ye|r ~ CN(0, AD(r)A" + 021) | (4)

where y, for { =1,...,
dent given 7.

L are assumed conditionally indepen-

III. CLAMP

In this section, we present the Coherent Lidar Aperture Mod-
eled Plug-and-Play (CLAMP) algorithm for reconstructing 3D
images from multi-look coherent lidar measurements.

A. MACE Formulation

CLAMP is built on the MACE framework. For a more
detailed discussion on MACE, we refer the reader to [41].

Our goal is to reconstruct r from a collection of L coherent
lidar looks, {y¢}£_ ;. In order to do this, MACE balances
multiple agents, such as data-fitting operators or denoisers, to
form a single reconstruction [41]. In our case, we will use L
data-fitting agents, Fy, and a single denoising agent, H. Each
agent operates on an image, w;, and returns a new image that
is improved according to the directive of the agent.

The first L agents are forward agents, Fy, that enforce
fidelity to the measurements, gy, for = 1,. .., L. Specifically,
F} is a proximal map given by

. 1
Fy(wy) = argmin {fg(r) + 252 |l — wg||2} )
.
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where wy is a candidate reconstruction, and fo(r) =
—log p (ye|r) is the negative log likelihood associated with
the /" look. These operators have an intuitive interpretation
of taking a candidate reconstruction as input and returning an
image that better fits the data from look ¢. The final agent is
a deep neural network image denoiser that enforces a prior on
the 3D image by reducing noise and speckle. The consensus
equilibrium of these L + 1 agents yields an image that is both
consistent with all measurements and regularized in all three
dimensions. The implementation of these agents is described
in Section and

To formulate the MACE solution, we stack the images into a
single state vector, w = [wy, ..., w1, ], and stack the agents
into a single operator, F, given by

F(W) = [Fl(wl), e ,FL(U}L),H(IUL+1)] .

In order to produce a single reconstruction that is a compro-
mise between the agents, we average the components of w to
form a new image, W = L%rl Z;‘;l vjw; where v; sums to
one. In this work, we will use v; =1/2L forall j=1,...,L
and vy +1 = 1/2, which gives equal weight to the data-fitting
agents and the prior agent. Finally, the MACE solution is
determined by the solution to the equilibrium equation

F(w") = G(w"), )

where G(w) = [w,..., W] is a weighted average of the
components of w. Intuitively, w* is the image that is the
consensus solution of the agents in F. The final reconstruction,
r*, can be obtained from any single component of w¥,
however, we typically use r* = W™ for numerical robustness.

The MACE equation of (3) is commonly solved as a fixed

point of the operator T = (2G — I) (2F — I) by the iterations
w < (1= p)w + pTw, (6)

where p € (0,1). This approach (summarized in Algorithm
is guaranteed to converge to a solution of (3)) when T is non-
expansive.

Algorithm 1 MACE

. Input: Initialize w € R*(X+3) p € (0,1)
while not converged do
r + F(w)
X4 2r—w
w<+—w+2p(G(x)—r)
end while
: Output: r* =w

A o e

B. EM Surrogate Forward Agents

Unfortunately, direct application of the MACE iterations
in (6) is computationally infeasible. The proximal map of the
forward model in @) quickly becomes intractable for even
moderately large images due to the non-linear relationship
between r and y, introduced by speckle interference.

In order to overcome this problem, we will take the ap-
proach first proposed by Pellizzari et al. [[17]-[21]] and use

the EM algorithm to compute surrogate functions to the exact
negative log likelihood functions. These surrogate functions
are given by

fe(ryry) = Egjy,,ry [—logp (ye. g[r)] s (N

where the expectation is taken over the conditional distri-
bution of the latent complex reflectance g given y, and 77,
an approximation of r. Assuming (2) and (3), and using
yelg, = we|g, [17] shows that this conditional distribution
of g given y,, 7, is Gaussian with the form

1 5
p(glyesrs) =  exp { (g = n)"C (g — o) }
where Z is a normalizing constant and ji, and Cy are the mean
and covariance given by

. 1 1 1
fe = argmin {QQIIW — Agl* + -¢"D (,> g} , (8)
gecn O'w 2 T(

- 1 1\1"
Co= {QAHA +D (,)} . )
r
w L
Computing the expectation in then gives the surrogate
function as

n 2 ~
frpe, Co) =3 {log (rs) + W} . 30)
j=1 J
where j is the voxel index, pi, ; is the jth element of 1y, and
&r.; is the jth diagonal element of Cy.

However, using this surrogate function is also intractable
for large images since computing the covariance, Cy, requires
a large matrix inversion, while computing the mean, 1, of (8)
directly requires the solution of a large quadratic optimization
problem. We address each of these issues separately.

First, to improve the tractability of computing Cy, we make
the approximation that A” A = «l, where o = ||al|;/n has
the interpretation of the fraction of light passing through the
aperture. In this case, Cy is replaced by diagonal matrix C
with diagonal entries ¢y ;, given by

Ctj =

Alternatively, if a more accurate approximation is needed,
one could use the method used in [34]] at the cost of more
computation. Importantly, we only make this orthogonality
assumption in approximating Cy, not throughout the entire
forward model.

Next, to evaluate efficiently, we solve the minimiza-
tion problem iteratively. Rather than fully solving it at each
CLAMP iteration, we compute only a single gradient descent
step. As CLAMP progresses, these incremental steps gradually
minimize (§) over multiple iterations.

To increase stability and avoid division by zero in the
objective in (8), we add the noise floor 02, /« to 7. This yields
the regularized objective

1 1 1
h(gsye,7e) = 57 lye = Ag|l* + 597D (Maz/o) g-
w 14 w
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Fig. 2: The architecture of the 3D UNet used as a prior agent. The
number of output channels for the convolutional layers is shown in
parentheses.

The gradient step is then given by

d < —Vh(pe; ye,my) (1D
e < phe + vad,
where 7, is the optimal step-size and is given by
_ (A" (ye — Ape) — 03 d"D(1 /7)) e
T df (AT Ad + 02, D(1/r})d)
Finally, using these forms for u, ; and ¢y ;, the EM surrogate
of can be calculated [[17] to be

n

: e |* + e
fe(rspe,ee) = {IOgTj + % - (12

j=1 J

From this, the CLAMP forward agent is the proximal map

Fy(v; pg, c¢) = argmin {fg(’l“;,ug, ce) + ﬁ lr — v||2} ,

' (13)
which can be computed in closed form by solving for a root
of a cubic equation for each voxel in the image. However,
in practice, to further simplify computation and speed up
implementation, we employ an additional quadratic surrogate
of fg. The details of which are given in Appendix

C. 3D Deep Prior Agent

In order to regularize the image, we use a 3D U-Net image
denoiser similar to the one used in [[16] for 3D radar imaging.
This model was chosen because it was shown to be effective
in jointly exploiting correlations in cross-range and range
dimensions.

The architecture of the 3D U-Net is shown in Figure [2] It
consists of three encoding blocks, each with two convolutional
layers, followed by three decoding blocks, each with two
convolutional layers. Each convolutional block is followed
by a batch normalization (BN) layer and a ReLU activation
function and a max pooling to reduce the dimensions of feature
tensors by a factor of two, whereas the decoding stages employ
a transposed convolution to upsample the feature tensor by
a factor of two. A final 3D convolutional block is used to
produce the denoised image.

The network was trained to denoise 3D images from
ShapeNet [45] with 10% additive white Gaussian noise. The
training set consisted of 800 models rendered on a 256 X
256 x 256 grid, and an additional 200 models were used for
validation. The images were patched into 32 x 32 x 32 patches
in order to fit into the GPU memory. We used the Adam
optimizer with an exponentially decaying learning rate and the
MSE loss function. The initial learning rate was set to 1072
and decayed by a factor of 0.975 every 300 training batches.
The batch size was set to 24 and the network was trained
for 100 epochs. The network weights were saved when the
validation loss was lowest during training.

Algorithm 2 CLAMP
1: Input: yp € C* for ¢ =1,...,L
2: Initialize: py = Ay, 7o = %25:1 |AHy,|2, we = 74,
for{=1,...,L

3: while not converged do

4 foré:l,...,L(goc

s5: Vi Cog 4 ity > Update C;
6: d < —Vh(ue; ye,e) > Update
7 v « argmin, {h(re — vd; ye, re) }

8 Ly < e + ’Yd

9: ro < Fy (we; pe, co) > Update 7, by (I3)
10: end for

11 rr+1 < H(wp41) > Apply prior agent
12: r< [r1,...,7L43] > Do MACE iteration
13: X4 2r—w

14: w <+ w+2p(G(x)—r)
15: end while
16: Output: r* =w

D. Summary of CLAMP

A summary of CLAMP is given in Algorithm [2} CLAMP
begins with an initialization of the image In steps 4-9, the
each forward agent is approximated by the EM surrogate, and
the image is updated using the proximal map of the surrogate
function to enforce fidelity to the measurements, y,. In step
11, the deep prior agent are applied to the image to regularize
the image in all three dimensions. Finally, in steps 12-14, a
consensus among the agents is enforced, resulting in an image
that is both consistent with the measurements and regularized
in all three dimensions.

A key benefit of CLAMP is its computational efficiency
compared to a direct application of MACE. CLAMP achieves
this efficiency by using EM surrogates, given in (I0), in
replacement of the exact negative log likelihood functions in
the forward agents. However, these surrogate approximations
alone are not enough to make the algorithm computationally
feasible. The computational complexity of MACE with EM
surrogates is dominated by the computation of the diagonal of
the covariance matrix, Cy, in (). Solving for this using direct
methods has a complexity of O(n?) [46], which is generally
infeasible. Similarly, solving the optimization problem in
requires the same O(n?®) operation to compute z, exactly.
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In contrast, CLAMP uses the diagonal approximation of
the covariance matrix, Cy, and an iterative gradient step to
compute the mean, jup. These steps, steps 5-8 in Algorithm [2}
are dominated by the computation of the gradient in (IT) for
each of the L looks. Since this gradient can be computed
efficiently using the FFT, the total complexity of each iteration
of the algorithm is O(nlog(n)) [47]. This makes CLAMP
computationally feasible for large images. To give insight
into the amount of computation required, the experiments in
Section [V| were run on a 3D image of size 128> on a single
NVIDIA Quadro RTX 8000 GPU, and each iteration took less
than 0.5 seconds.

IV. MAJORIZED MACE THEORY

A crucial aspect of CLAMP is the use of a surrogate function
through the EM algorithm. In this section, we present a
generalized theory of majorization-minimization within the
MACE framework with guaranteed convergence to an exact
MACE solution as defined in ().

Although our theory is limited to the case where all agents
are proximal maps, it applies in practice to many widely
used denoisers. Many PnP algorithms (including CLAMP)
use denoising agents that are not necessarily proximal maps.
However, typical neural network denoisers are trained to be
minimum mean squared error (MMSE) denoisers, which were
shown to be proximal maps in [48]. This equivalence was
also demonstrated experimentally in [49], in which the authors
show that the convergence of a PnP algorithm with an exact
MMSE denoiser agrees remarkably well with the convergence
of the same algorithm with a neural network denoiser. This
highlights the practical relevance of our theory.

In our setting, we modify the operator F; by approximating
its objective function, f;, with a surrogate function, fi, whose
proximal map, F}, can be computed more efficiently. We make
a few standard assumptions on the surrogate functions, given in
Deﬁnitionm which are adapted from those made in [38], [S0],
[51]. Commonly used surrogates, such as the Jensen surrogate
used in the EM algorithm or quadratic approximations of twice
differentiable functions meet these requirements.

Definition 1 (Surrogate). Let © C R" be convex, and f :
R™ — R be a convex function. A function f : R" — R is
a surrogate of f near £ € © when the following conditions
hold:

o Majorization: we have f(z) > f(z) for all x e R™

o Smoothness: the approximation error e = f—fis
differentiable, and its gradient is L-Lipschitz continuous.
Moreover, we have that e(§) = 0 and Ve(§) =0,

o Strong convexity: f is p-strongly convex with p > L.

When the point £ is relevant, we write the surrogate as f (x;8),
and we denote the set of such surrogates as Sy, »(f,€).

We do not require the objective function, or its surrogate, to
be differentiable, nor do we require the surrogate function to be
continuous as a function of £. These are common assumptions
in the literature, but are not necessary for our theory.

Algorithm 3 Majorized-MACE

. Input: Initialize w(®), r(0) € R*(E+3) 5 € (0,1)
k=0
: while not converged do
fori=1,...,N do
5 (k) (k)

Compute surrogate f; =~ € Sp, p, ( fism; )
end for
r(kt1) = ) (w(k), p(k)
x = or(k+1) _ (k)
wktD) = wk) 4 2) (G(x)
k=k+1
: end while

R A A ol S

— pl)

—_
—_ o

Majorization-minimization schemes work by alternately
minimizing the surrogate function and then updating the
surrogate itself, which gives updates of the form

pEHD argmin {f (r; r(k))} .

The conditions in Deﬁnitionlensure that the original objective
is decreasing, f ( (k+1)) < f (r(®)), and that the iterates r(*)
converge to a minimizer of f.

Algorithm [3] applies these principles within the MACE
framework. Assuming we have N agents, on the k-th iteration,
we compute a surrogate fL of the objective function f; at r( j
for i =1,..., N. We define the concatenated operators

F® (W;f(k)) = {Fl(k>(w1;7“§k)) F(k)(wm?“g\]rc))}

and

T® = (2G - I) (2F(’“) ( ;r(k)) . I) :
where F i(k) is the proximal map of fi(k). Akin to the fixed point
iterations in (), we analyze the fixed point of the system

(14)

WD = p TR W k) (1~ p)w®),
p(+1) — ) (w8, p(8)).

15)

Our main result is Theorem[I] which shows that Algorithm 3]
converges to an exact MACE solution. Part [(0)} states that any
fixed point (w*,r*) of is an exact MACE solution as
in (3). Part [(iD)] states that convergence to a fixed point is
guaranteed if the surrogate is strongly convex. Note that if

r( D = p(®) then FR+D = Fk) gpnd TR = T*) 5o
the functions are also fixed at such a fixed point.

Theorem 1 (Majorized-MACE Solution). Let f; : —
~ (k
R,i=1,...,N, be convex, and fi( ) S SL“% ( 05T l(k)) Let

F; and F, ) be the proximal maps of fZ and fl

and T(k) be the operator defined in (14). Then:
(i) Any fixed point of the augmented system (13)) is a solution
to the original MACE equation given in ().
(ii) The iterates defined by converge to a fixed point,
and hence a MACE solution, if one exists.

Proof. Proof is in Appendix O

, respectively,
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V. RESULTS

We now demonstrate the effectiveness of CLAMP at re-
constructing high-resolution images from multi-look coherent
lidar data. We perform a series of experiments on both
synthetic and experimental data to compare the performance
of CLAMP with the standard speckle average method, as
well as using sparsity-based regularization in the form of
{5 1-regularization ({-regularization in cross-range and /-
regularization in range), and isotropic total variation. These
methods are implemented as described in Algorithm [2] with
their corresponding regularizing agents in place of the pro-
posed deep prior agent.

Further, we perform multiple experiments with different
zero-padding factors, g, to investigate the effectiveness of
CLAMP at different sampling rates. Specifically, we use
g = 1,1.5, and 2. This results in images of various sizes,
with the number of voxels in the image being ¢ times the
number of measurements.

We also perform an ablation study of the aperture model
in CLAMP to demonstrate its importance in achieving high-
resolution reconstructions. In this case, we use the algorithm
as described in Algorithm 2] but with a = 1, effectively
removing the aperture model from the reconstruction process.
The resulting algorithm differs only in the p-update (steps 6-8
of Algorithm [2), which can be simplified to be a closed-form
solution of (B).

A. Methods

For each reconstruction presented in this section, we ran
the corresponding algorithm for 250 iterations with p = 0.5.
Each algorithm was initialized with r = + SO |AH g2 and
setting w, r, to be stacked copies of r. Each u, was initialized

S %AH ;. The forward model proximal parameter, o2, was
empirically chosen in a range of [0.001, 1.0] to produce the
best image quality.

To measure convergence of CLAMP, we define the conver-
gence error based on the MACE equation (5) as

Hﬁ(w) _ G(W)H
G (W)l

Additionally, to show convergence of the i, updates, we define
the relative residual averaged across looks as

1;25: ch pe =

1
=1 Ay, H

Convergence Error = (16)

AH?J@ H
p-Residual =

)]

where the numerator comes from the exact solution of (g).
Plots of CLAMP’s convergence behavior are shown in Sec-
tion [V-El

In the synthetic data experiments, we compare the recon-
structed images to a ground truth image. We use peak-signal-
to-noise ratio (PSNR), computed as

. n
PSNR(ﬁ T, T) = 101Oglo (”B* 71||2>

to compare the reconstructions, ¥, at ¢ = 2 to the ground
truth image, r. This was only computed for the ¢ = 2

reconstructions, for that is when r and 7 are the same size
(128 x 128 x 128). The factor 5* is a multiplicative factor that
accounts for any scaling differences between the reconstructed
images and the ground truth image, and is computed as
B* = argmaxgz {PSNR(S7,7)} = #7r/||#||%. This will allow
for a fair comparison of the reconstructions — any differences
in PSNR will be due to the reconstruction method and not to
a scaling factor.

In sparse 3D imaging, metrics on full 3D images can
be misleading if they are dominated by small volumetric
differences that otherwise have little impact on the image
quality. To address this, we employ two point-cloud metrics
to quantify the accuracy of the reconstruction of the surface
reflectivity. We convert a 3D image, r, to a point cloud,
P C R*, such that each point p = (s,,7,) € P corresponds
to a voxel in r with a value greater than a given threshold. In
this work, we use the natural threshold, the noise floor, U?U /.
The first component, s, € R3, of p represents the spatial
coordinates of the point, and r, represents the reflectivity of
that point.

We quantify the spatial accuracy of the reconstructions
by computing the Euclidean distance between points in the
reconstruction and points in the ground truth point cloud. For
each reconstruction, 7, we transform the image into a point
cloud P = {(sp,#,)}. For each point in P, we compute the
Euclidean distance to its closest point in the ground truth point
cloud, @ = {(t;,7¢)}. Let 2(p) = argmin ¢ |[s, — ty|| be
the point in () nearest to p, which, in practice, we determine
by a k-d tree search [52]. The average Euclidean distance is
then given by

Euclidean Distance =

1
W Z |Isp — tacp)

peP

To avoid corrupting this metric with outliers (points in the
reconstruction with no nearby neighbor in the ground truth),
we remove any point with a distance to the ground truth more
then 3 times the Rayleigh criterion for resolution (approxi-
mately 1.5cm). Additionally, we report the false positive rate
as the proportion of removed points relative to the total number
of reconstructed points.

Using this method, we can also compute the normalized
root mean squared error (NRMSE) of a reconstruction as

P
NRMSE(3*# \/Z”EP ]

pEP ‘T

~Ta(p))?
IS
where 3* is computed as §* = argming {NRMSE(S7,7)} .

B. Synthetic Data Generation

In the synthetic data experiment, we generated data by simu-
lating the multi-look coherent lidar imaging process described
in Section

Each data simulation included nine looks at a 3D model of
a train, shown in Figure [3_?1} Since 3D volumes can be difficult
to visualize, we also show a pair of 2D depth and reflectivity
images. The color bars shown in this figure are representative
and can be applied to all images in this paper. The reflectivity
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Cross Range

(b) Speckle Average

(c) £2,1-regularization

Reflectivity
1

Reflectivity

(d) TV-regularization (e) CLAMP

Fig. 3: Sample reconstructions obtained from synthetic data using different zero-padding factors, ¢ = 1, 1.5 and 2; (a) the ground truth image
of the train, (b)-(e) the reconstructions using the Speckle Average, ¢ 1-regularization, TV-regularization, and CLAMP, respectively. Each 3D
image is shown with its 2D depth and reflectivity image. The CLAMP reconstructions show the highest resolution and best agreement with

the ground truth.

image (shown in the bottom-right half) represents the maxi-
mum value along the depth dimension, while the depth (shown
in the top-left half) is given by the location of the maximum.
These images often reveal more detail than the 3D volume
image, which can be useful for visualizing the reconstruction
quality. However, due to the nature using the maximum value,
undue noise can be introduced into the 2D images, particularly
in the depth image.

The train was assumed to be 1 meter in size in each
dimension. Assuming the train to be a Lambertian surface,
the reflectivity of each point on the target was computed as
proportional to the cosine of the angle between the surface
normal and the viewing direction. The reflectivity was then
normalized so that the brightest point in the image had unit
reflectivity. A speckle realization was generated by multiplying
the reflectivity of each voxel in the image by a complex
Gaussian random variable with unit variance. The speckle
realization was then propagated to the hologram plane by
applying the forward model with parameters listed in the
‘Simulation’ column of Table[l} The aperture was modeled as a
centered, circular aperture with a diameter equal to 50% of the
hologram grid length. Finally, the data is corrupted by adding

complex white Gaussian noise with variance 0,2] =103

C. Experimental Data Measurement

In addition to synthetic data, we evaluate CLAMP on data
collected at the Air Force Research Laboratory. The experi-
ment consisted of two targets, a toy car and a hexagonal nut,
which were painted with matte white paint so that the surfaces
had a uniform Lambertian reflectance. In order to measure
multiple, statistically independent speckle realizations, the
targets were placed on a high-precision rotation stage and
rotated slightly after each measurement.

The targets were illuminated by a linear-frequency mod-
ulated waveform with central wavelength of 1550nm
(193.4 THz) and chirp rate of 117.9 THz/s. The laser was split
so that 95% of the power was transmitted to the target and the
remaining 5% was used as a reference beam for holographic
imaging. The reference beam was placed off-axis in the plane
of the exit pupil and pointed at the center of a focal plane array,
where it interfered with a focused image of the target. The
interference pattern was recorded on a 640 x 512 pixel InGaAs
photodetector with 20 pm pixel pitch at 8-bit resolution. The
camera’s region of interest was narrowed to fit the image of
the target, thereby allowing faster frame rates. The toy car
was measured by a 128 x 128 array of pixels at a frame
rate of 17.60kHz, and the hexagonal nut was measured by
an 80 x 80 array at a frame rate of 28.92kHz. The noise
variance was estimated to be af] = 0.0012 for the toy car
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TABLE I: Parameters used in our multi-look coherent lidar simulation
and experimental measurements of a hexagonal nut and toy car.

Item Simulation ~ Hex. nut Toy car Units
Distance 52.9 2.64 2.64 m
Central wavelength 1550 1550 1550 nm
Chirp rate — 117.9 117.9 THz/s
Chirp duration — 2.0 2.0 ms
Frame rate — 28.9 17.6 kHz
Frames, N; 64 46 28 samples
Frequency step size 0.15 6.7 4.2 GHz
Aperture diameter 6.4 6.4 6.4 mm
Focal length — 18.2 18.2 cm
Pixel pitch — 20.0 20.0 pm
Hologram grid size ~ (128,128)  (80,80) (128,128) pixels
Noise variance, 02 0.001 0.0025 0.0012 —
SNR 28.9 249 28.1 dB
and 0727 = 0.0025 for the hexagonal nut. This estimation was

done by computing the mean power within the pupil region
of the hologram and dividing by the mean power outside of
the pupil region. This is similar to the noise variance used in
the synthetic data experiment, which allows for a comparison
of the reconstruction quality between the two experiments.
Further details of the experimental setup, system hardware,
and calibration methods can be found in [7, Chapter 4]. We
summarize important experimental parameters in Table

D. Synthetic Data Results

In Figure 3] we compare the reconstructions obtained
from the synthetic data using the speckle average method,
{3 1-regularization, TV-regularization, and CLAMP using ¢ =
1,1.5, and 2. As shown in the figure, incorporation of sparsity-
based regularization, such as ¢ ; and TV, can reduce speckle
noise and improve the resolution of the reconstruction. How-
ever, in some cases, sparsity priors can also exacerbate speckle
noise, as seen in the /¢y ;-regularization reconstructions. In
contrast, CLAMP, with the use of a deep prior, is able to
reconstruct a sharper and more detailed surface than the other
methods. This is most evident in the undercarriage of the train,
where the wheels and the tracks are more clearly defined in
the CLAMP reconstruction with ¢ = 2.

In Figure @] we show the results of an ablation study of
the aperture model in CLAMP. We show reconstructions of
the synthetic train data from two nearly identical CLAMP
algorithms with ¢ = 1,1.5, and 2. The first column of
reconstructions, labeled “No aperture model,” is the result of
running CLAMP using a = 1, effectively ignoring the aperture
model. The second column, labeled “With aperture model,”
is the result of running the CLAMP algorithm as described
in Algorithm [2] When ¢ = 1, the reconstructions are nearly
identical, as one should expect. However, at ¢ = 2, the aperture
model in CLAMP results in a sharper image and improves the
ability to resolve high frequency components of the image.

In Table[[} we show the PSNR, surface reflectivity NRMSE,
Euclidean distance error and false positive rate for each recon-
struction. As seen from the table, the CLAMP reconstruction
is more similar to the ground truth than the Speckle Average,
{3 1-regularization, and TV-regularization reconstructions, and
with PSNR exceeding 30dB. The full CLAMP reconstruction

(a) No aperture model

Fig. 4: Ablation study of the aperture model in CLAMP. Each 3D
image is shown with its 2D depth and reflectivity image. When the
zero-padding factor ¢ = 1, the reconstructions are nearly identical.
However, when ¢ = 1.5 or ¢ = 2, the aperture model in CLAMP
improves the resolution of the reconstruction.

(b) With aperture model

also tend to have the lowest surface reflectivity NRMSE
and Euclidean distance error. This is likely since the other
reconstructions are blurred and exhibit points further from
the ground truth with lower reflectivity. While the sparsity-
based regularization methods also improve this metric, not to
the extent of the proposed method. The full CLAMP recon-
struction shows improvement over the CLAMP reconstruction
without the aperture model, particularly at higher zero-padding
factors, further suggesting that the aperture model is crucial for
quality, high-resolution reconstructions. Finally, the advantage
of regularization is further supported by the false positive
rate, as Speckle Average reconstruction exhibits a significantly
higher rate compared to the regularized methods.

E. Experimental Data Results

Figure [5] shows reconstructions from nine looks at a toy car
at zero-padding factors, ¢ = 1, 1.5 and 2. Due to the advanced
image prior, the CLAMP reconstructions shows improved
speckle reduction and sharpness over the Speckle Average,
?3.1-, and TV-regularized reconstructions. The /3 ;-regularized
and TV-regularized reconstructions show some improvement
over the Speckle Average, but the {5 ;-regularized suffers from
speckle noise, and the TV-regularized reconstruction is overly
smoothed, with some of the high reflectivity surfaces spreading
across the surface. The full CLAMP reconstruction again
shows sharper and more detailed features over the CLAMP
reconstructions without the aperture model.

In Figure [f] we show reconstructions of a hexagonal nut
from nine looks for ¢ = 1,1.5, and 2. In each case, the
CLAMP reconstructions show large improvements in reduc-
ing speckle noise. Particularly at ¢ = 2, the full CLAMP
method produces sharp image in which the threads of the
nut are clearly visible. This is further illustrated in Figure [7]
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TABLE II: PSNRs, surface reflecitiy NRMSEs, and Euclidean distances (meters) between reconstructions and ground truth in our synthetic

data experiment.

. CLAMP CLAMP
Ze;o-paddmg ipeckle R 152 1 R IT\./ . (no aperture  (with aperture

actor, q verage egularization egularization model) model)
PSNR (dB) 2 26.97 27.29 28.40 28.85 30.65
Surface 1 0.867 0.752 0.733 0.699 0.701
Reflectivity 1.5 0.847 0.805 0.770 0.621 0.427
NRMSE 2 0.796 0.742 0.699 0.662 0.410
Euclidean 1 0.017 0.011 0.012 0.011 0.011
Distance (m) 1.5 0.018 0.031 0.010 0.031 0.008
2 0.018 0.010 0.013 0.013 0.009
False 1 0.33 0.054 0.039 0.029 0.036
Positive 1.5 0.48 0.031 0.006 0.021 0.008
Rate 2 0.56 0.018 0.004 0.016 0.004

(a) Speckle Average

(b) ¢2,1-regularization

(c) TV-regularization

(d) CLAMP (No Aperture) (e) CLAMP

Fig. 5: Reconstructions of the toy car from experimental data with zero-padding factors ¢ = 1,1.5 and 2. Each 3D image is shown with
its 2D depth and reflectivity image. The CLAMP reconstructions show improved speckle-reduction over the Speckle Average, ¢ -, and

TV-regularized reconstructions.

which shows the reflectivity values along the line segments
shown in Figure [6] The full CLAMP reconstruction shows the
consistently sharp and narrow peaks that are expected from a
machine-threaded nut, while the other methods show broader
and less consistent, well-defined peaks.

In Figure [8] we show the the convergence error of CLAMP,
defined in (T6), and a normalized p-residual averaged across
looks, defined in , at each iteration of CLAMP for each
dataset with ¢ = 2. All instances of CLAMP converge to an
error of less than 1072, Similarly, the p-residual converges,
indicating our iterative approach to solving (8) is converging
to the exact solution.

VI. CONCLUSION

In this paper, we introduced CLAMP, a majorized PnP
algorithm for multi-look coherent lidar image reconstruction.
CLAMP is built on the MACE framework and consists of
three main components: (1) an accurate surrogate physics-
based model of coherent lidar, (2) an efficient method to invert
the blurring effects of the aperture and (3) a deep 3D image
prior model. Together, these components enable CLAMP to
produce high-resolution images with reduced speckle.

To demonstrate its effectiveness, we applied CLAMP to
synthetic and measured coherent lidar data. Our results show
that CLAMP produces high-quality 3D images with reduced
speckle and noise compared to speckle-averaging, while main-
taining fidelity to multi-look data. Furthermore, ablating the

aperture model in CLAMP highlights the importance of our
method in improving resolution.

Finally, we formalized the use of surrogate optimization in
the MACE framework and proved convergence to the exact
consensus equilibrium solution for a general class of surrogate
functions. Our formalization provides a theoretical founda-
tion for the use of majorization-minimization in consensus
optimization problems, is general and applicable to many
other imaging problems, and includes many existing image
reconstruction algorithms as special cases.

APPENDIX A
QUADRATIC SURROGATE

To further reduce the computational cost of the proximal
operator in (I3), we follow and construct a quadratic
first-order surrogate, )y, of f,, which is then a first-order
surrogate of the original function f,. For the remainder of this
section, we drop the ¢ subscript for simplicity, but note that
the following surrogate is formed for each look ¢ =1,..., L.

To construct the surrogate, we use the approach in
Section IV], which has two primary components: determining
the interval of validity for the surrogate, which depends on 7’
and v, and determining the surrogate itself. We first obtain a
convex surrogate, (), of f by a first-order approximation at r’
of the logarithm in (12):

Q(r;r’) :ZQ+%(Cj+‘ﬂj|2)'

/.
j=1"J J
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)

D2

) obued

q=2

(a) Speckle Average (b) £2,1-regularization

(¢) TV-regularization

(d) CLAMP (No Aperture) (e) CLAMP

Fig. 6: Reconstructions of the hexagonal nut from experimental data with zero-padding factors, ¢ = 1,1.5 and 2. Several reconstructions
show a line segment through the threads of the nut which are plotted in Figure []] The CLAMP reconstructions show the best speckle

reduction, resolution, and sharpest edges.

Reflectivity Along Line Segment Through Nut Threads
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Fig. 7: A line segment from the hexagonal nut reconstructions shown

in Figure [/| The CLAMP reconstruction (black) shows the sharpest
and most well-defined peaks.
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Fig. 8: Convergence error and p-residual of CLAMP with aperture

modeling for synthetic and experimental data. CLAMP converged to
an error of less than 102 in all cases.

Treating each j separately, it suffices to form a surrogate the
function

pi(r;) =" JrMJri(r.fvy
I Tl T 20247

We use (11) and (12) of to fit a quadratic surrogate of p;
by a linear interpolation of its derivatives given by

~

w
pj(ry) = 5”";2 + b;r;-

Summing over j yields the surrogate @ for Q.

The surrogate p; is constructed by a linear interpolation of
the derivative p} at two points: 77 and {;. The point &; is
chosen so that it is in the direction of the minimum of p;
from 7. When p/;(r};) > 0, we will need r; < r’; to minimize
p, while if p(r’;) < 0 we will need r; > r’;. Hence we select
a scaling factor 8 > 1 and choose &; = r; /B in the first case
and §; = Br; in the second. This defines an interval of validity
of the surrogate between 7 and &;, which we denote Z;.

The reflectivity update in (T3) is then replaced by the
proximal map of @) at v, which is

ri€L;,Vj

~ 1
/ . o 2
r' < argmin {Q(r,r )+ 292 lr — v]| } .

Since the objective is separable, this simplifies to

”Uj*O'zbj
J% 2
1+ o0%a;

but clipped to lie in the interval Z;. Finally, we empirically

choose 5 = 1+ ﬁ where k is the CLAMP iteration
number, which ensures that 8 decays to 1 more slowly than

the convergence of r'.
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APPENDIX B
PROOF OF THEOREMI]

In this section, we prove the convergence of majorized
MACE to a fixed point of the original MACE equation when
the surrogate functions meet the conditions of Definition [I}

We begin by stating a few lemmas before proving the
main results. First, a crucial, perhaps intuitive, fact is that the
objective function and its surrogate have the same subgradients
at the point of approximation. This is stated in Lemma |1| and
is a result of the smoothness assumption in Definition [I}

Lemma 1. Let f € Sip (f, &) (see Definition I) Then

0f(€) = 0f(&).
Proof. Proof is given in the supplemental material. We note
that this result holds even if f is not strongly convex. O

Another critical fact is given in Lemma [2} which is adapted
from [36, Lemma 2].

Lemma 2. Let fe Stp (f,€) (see Definition , and let
u € f(x) be any subgradient of [ at x. Then for any y,

f@) = fy)—(uw,z —y)
1 2 2
<5 (Llly—€lF —plla—yI?).
Proof. Proof is given in the supplemental material. O

We are now ready to prove part [(1)| of Theorem

Proof of Theorem [I| part (i}, Let (w*,r*) be a fixed point
of (I5). Since r* = F*w*, where F* is the stacked proximal
operator of surrogates f;(x;r}), we have

1 * * Pk ok
2 (ri —wy) € 0fi(r*;r®),

and by Lemma [T}

1 * * *
2 (ri —w;) € 0fi(r"),
fori=1,...,N.

Thus, r* = Fw*. Since w* = (2G —I) (Qf‘* -
we get w* = (2G — I) (2F — I) w*, proving w* is a MACE
solution. O

I) w*,

In order to prove Theorem ] part (i)} we prove convergence
of an algorithm that is equivalent to Algorithm [3] First, it is
noted in [41]] and elsewhere that using Mann iterations to solve
the MACE equations, as written in (6)), is equivalent up to a
change of variables to a form of ADMM [35].

We present the equivalency and prove convergence for p =
1/2, though with extra bookkeeping, and using the appropriate
variant of ADMM, one can generalize this result for p € (0, 1).

To begin, consider one iteration of Algorithm [3] written as

in (13), using p = 1/2,
w1 — %(2@ ~DEF® — w4 %w(k),
P01 flR) ()

where we recall that F*)w(®) = F®) (w®); £(*)) Since G is
linear and GG = G, some algebra shows that applying G to

both sides of the first equation yields Gw(*+1) = GrF+1),
and hence Gw* ) = GF®w(*) from the second equation.
Using this to re-express the first equation, recalling that T is
one averaged image in Gr, and noting that w and r may be
updated in either order, the i-th component (r;,w;) satisfies

rF ) = f Ry (M) (18)
w§k+1) _ wl(k) + (F(;g+1) . n(k-s—l))
+ (Fk+1) _§R)), (19)
Now, we introduce the variables u(k =71k _ (k) and

2kt = gkt L 5 Since w(kH) = r(k'H) VJG have
a**tY = 0 for k > 1, and so for k > 3, the updates (I8)-
(19) can be written equivalently as

,rl(k‘H) — Fz(k) (Z(k) _ ugk)) , (20)
1 o (k+1) | (k)
(k+1) _ = k+1
p v ; ( + ) : @1
ugk+1) _ (k) +( (k+1) _ (/f-&-l))7 (22)

where follows from using wl(k) =7 — ugk) and
simplifying. The updates (20)—(22) are a form of consensus
ADMM |35 Chapter 7] to solve the problem,

N
=" filrs)
=1

subject to  7; = 2,

minimize
(23)

except the updates of r; in (20) are given by proximal maps
of surrogate functions instead of proximal maps of f;.

In Theorem [2] we prove that despite this difference, the
iterations (20)-(22)), converge to a Karush-Kuhn-Tucker (KKT)
point of (23)), which is sufficient for optimality. A KKT point
can be found from the Lagrangian of 23,

N
1
72 § Uiy Ty — 2 a

(24) where u is the dual variable, and (-, -) is the inner-product.
Specifically, the point (r*, z*,u*) is a KKT point if and only
if

L(r,z,u) = (24)

1
——u; €9fi(r7),
g

fore=1,...,N.

Theorem 2. Assume the hypotheses of Theorem
and that @23) has a KKT point. Then the sequence
{(x®, 28 M)} generated by the iterations @0)-(22) con-
verges to a KKT point of Q23).

To prove Theorem [2] we first use Proposition [I] to char-
acterize the subgradients of the surrogate functions. Then in
Lemma 3] we state the vital property that the distance between
the iterates and a KKT point decreases at each iteration.
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Proposition 1. Assume the hypotheses of Theorem [I| and let
{(x®™, 28 u®))} be generated by @0)-(22). Then

1 .
L (0 a0 1) € 0f O, 2s)

o?
fori=1,... N.

Proof. This follows from the definition of the proximal map
in (20). O

To simplify notation, we define

1 .,
W) 2 ) (riEFD — 509) (26)

3

which can be thought of as an intermediate update of the dual
variable after the update of r in (Z0) but before the update of
z in ZI). We can then rewrite the subgradients in (23)) as

1 (k+3)

L) ¢ oo pien),

Lemma 3. Assume the hypotheses of Theorem [I} and
that 23) has a KKT point, (r*,z*,u*). Then the sequence
{(x®, 20 u®)) ) generated by the iterations 20)-@22) sat-
isfies

E(kJrl) (I'*7 Z*, 11*) < E(k) (I'*, 2*7 u*) ’

where
2
E® (r* 2" u*) = Z (Li rgk) -y
i=1
1 % 2 1 k * 2
+§ PAL Jr?’ug)fui )
Proof. Proof is given in the supplemental material. O

We are now ready to state and prove convergence of the
iterations (20)-(22).
Proof of Theorem [2] Let (r*, z*,u*) be a KKT point of (23).
By Lemma [3| we have that {(r®), 2(®) u®)} is bounded.
Let {(r(ki), 23, u(ki))} be a convergent subsequence with
limit point (rf, 2", u’). We will show that this limit point is
also a KKT point of (23).

From (43)-(44) in the proof of LemmaEI, the iterates satisfy

RN s (k+1) . (k)]
Dl R I (Tl ICD
=1

1
<3 (E(k) (r*, 2%, u*) — E¢+D (r*,z*,u*)) .(29)

Using Lemma [3] summing both sides of (28)-(29) over
all %k, and discarding the telescopinT terms, we get

|26+D — 2®)| 0 and HN“) —u® ‘ S 0ask — oo

i
Since 2(Fi) — 2T as j — oo, we can set k = k; and take
(k) _, u;r

%

j — oo to get 2kt — 2T Likewise, u
Rearranging (22)), we have

Tgkrj-i-l) _ UEijrl) _ ugkij) + Z(kj+1)7

s0 rgkﬁl)

converges to 2T, which we denote also as rj . Lastly,
(kj+3)
U;

— ul can be seen by taking the limit of (26) along

the subsequence k = k;.

13

41 Ak .
Since —#ugkﬁ 2 ¢ 9f %) (51 we have by Lemma
that for all r,

N
1 41 )
) )+ 3 (D <o
i=1

. . . kj+1
Since f is convex and finite on R™ and rz( it r;r, we have

that f(r(*5+1) — f(r"), and so taking the limit of the above
inequality along the subsequence gives

N
£t = £+ 25 S (ulorf =) <0,

i=1

which implies tha —%uj € 6fi(rj) for i = 1,...,N. This
completes the proof that (rT7 2t uT) is a KKT point.

Finally, we show that (rT, 2t uT) is the only limit
point of the sequence {(r®),z(*) u(®))}. First, we replace
(r*,z*,u*) with (rT,zT,uT) in Lemma Then for any
k > k;, we have

E® (rf 2t ut) < BED (of F uf).

Since the right hand side converges to 0 as ;7 — oo, the
definition of E(*) implies that (r(k), 2k, u(k)) — (rT, 2t uT)
as k — oo. O

To end, we prove Theorem [] part

Proof of Theorem [I| part As noted after equation (T9), by
introducing the variables u, ) = k) wz(k), and z(k+1) —
pl+D ﬁ(k), the iterates of (@) are equivalent to the
iterates (20)-(22). By Theorem [2| (r(®), 2(¥) u(®)) converges
to a KKT point, (r*, z*,u*), of (23). Resubsituting the change
of variables, we get (w*,r*) is a fixed point of the system (13)),
which by Theorem [I] part [(D)] is a solution to the exact MACE
formulation. O

REFERENCES

[1] M. E. Spencer, “Spatial Heterodyne,” in Encyclopedia of Modern Optics,
vol. 4, Elsevier, 2018.

[2] N. H. Farhat, “Holography, wave-length diversity and inverse scattering,”
AIP Conference Proceedings, vol. 65, no. 1, p. 627-642, 1980.

[3] J. C. Marron and T. J. Schulz, “Three-dimensional, fine-resolution imag-
ing using laser frequency diversity,” Optics Letters, vol. 17, no. 4, p. 285,
1992.

[4] J. C. Marron and K. S. Schroeder, “Three-dimensional lensless imaging

using laser frequency diversity,” Applied Optics, vol. 31, no. 2, p. 255,

1992.

J. W. Stafford, B. D. Duncan, and D. J. Rabb, “Phase gradient algorithm

method for three-dimensional holographic ladar imaging,” Applied Optics,

vol. 55, no. 17, p. 4611, 2016.

[6] M. T. Banet and J. R. Fienup, “Effects of speckle decorrelation on
motion-compensated, multi-wavelength, 3D digital holography,” in Un-
conventional Imaging and Adaptive Optics 2022 (J. J. Dolne and M. F.
Spencer, eds.), vol. 12239, p. 122390C, International Society for Optics
and Photonics, SPIE, 2022.

[71 W. Farriss, Iterative Phase Estimation Algorithms in Interferometric
Systems. PhD thesis, University of Rochester, 2021.

[8] W. E. Farriss, J. R. Fienup, J. W. Stafford, and N. J. Miller, “Sharpness-
based correction methods in holographic aperture ladar (HAL),” in Un-
conventional and Indirect Imaging, Image Reconstruction, and Wavefront
Sensing 2018, vol. 10772, pp. 178-185, SPIE, 2018.

[9] M. T. Banet and J. R. Fienup, “Image sharpening on 3D intensity data
in deep turbulence with scintillated illumination,” in Unconventional
Imaging and Adaptive Optics 2021, vol. 11836, pp. 116—124, SPIE, 2021.

[5

—_



IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 11, 2025

[10] M. T. Banet, J. R. Fienup, J. D. Schmidt, and M. F. Spencer, “3D
multi-plane sharpness metric maximization with variable corrective phase
screens,” Applied Optics, vol. 60, no. 25, p. G243, 2021.

[11] g.-i. family=OKTEM, given=FIGEN, “Sparsity-based three-dimensional
image reconstruction for near-field MIMO radar imaging,” vol. 27, no. 5,
pp. 3282-3295.

[12] Y. Wang, Z. He, X. Zhan, Q. Zeng, and Y. Hu, “A 3-d sparse sar imaging
method based on plug-and-play,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 60, pp. 1-14, 2022.

[13] J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications,
Second Edition. SPIE, 2020.

[14] L. C. Potter, E. Ertin, J. T. Parker, and M. Cetin, “Sparsity and
compressed sensing in radar imaging,” Proceedings of the IEEE, vol. 98,
no. 6, pp. 1006-1020, 2010.

[15] D. Munson and J. Sanz, “Image reconstruction from frequency-offset
Fourier data,” Proceedings of the IEEE, vol. 72, pp. 661-669, June 1984.

[16] O. Oral and F. S. Oktem, “Plug-and-play regularization on magnitude
with deep priors for 3d near-field mimo imaging,” IEEE Transactions on
Computational Imaging, vol. 10, pp. 762-773, 2024.

[17] C. J. Pellizzari, M. F. Spencer, and C. A. Bouman, “Phase-error
estimation and image reconstruction from digital-holography data using
a Bayesian framework,” Journal of the Optical Society of America A,
vol. 34, no. 9, p. 1659, 2017.

[18] C. J. Pellizzari, R. Trahan, H. Zhou, S. Williams, S. E. Williams,
B. Nemati, M. Shao, and C. A. Bouman, “Synthetic Aperature LADAR: A
Model-Based Approach,” IEEE Transactions on Computational Imaging,
vol. 3, no. 4, pp. 901-916, 2017.

[19] C. J. Pellizzari, M. F. Spencer, and C. A. Bouman, “Coherent Plug-
and-Play: Digital Holographic Imaging Through Atmospheric Turbulence
Using Model-Based Iterative Reconstruction and Convolutional Neu-
ral Networks,” IEEE Transactions on Computational Imaging, vol. 6,
pp. 1607-1621, 2020.

[20] C. J. Pellizzari, M. F. Spencer, and C. A. Bouman, “Imaging through
distributed-volume aberrations using single-shot digital holography,”
Journal of the Optical Society of America A, vol. 36, no. 2, p. A20,
2019.

[21] C. J. Pellizzari, R. Trahan, H. Zhou, S. Williams, S. E. Williams,
B. Nemati, M. Shao, and C. A. Bouman, “Optically coherent image
formation and denoising using a plug and play inversion framework,”
Applied Optics, vol. 56, no. 16, p. 4735, 2017.

[22] L. E. Baum and T. Petrie, “Statistical Inference for Probabilistic
Functions of Finite State Markov Chains,” The Annals of Mathematical
Statistics, vol. 37, no. 6, pp. 1554 — 1563, 1966.

[23] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A Maximization
Technique Occurring in the Statistical Analysis of Probabilistic Functions
of Markov Chains,” The Annals of Mathematical Statistics, vol. 41, no. 3,
pp. 698 — 704, 1970.

[24] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood
from Incomplete Data Via the EM Algorithm,” Journal of the Royal
Statistical Society: Series B (Methodological), vol. 39, no. 1, pp. 1-22,
19717.

[25] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-Play
priors for model based reconstruction,” in 2013 IEEE Global Conference
on Signal and Information Processing, pp. 945-948, IEEE, 2013.

[26] S. Sreehari, S. V. Venkatakrishnan, B. Wohlberg, L. F. Drummy, J. P.
Simmons, and C. A. Bouman, “Plug-and-Play Priors for Bright Field
Electron Tomography and Sparse Interpolation,” IEEE Transactions on
Computational Imaging, pp. 1-1, 2016.

[27] C. A. Bouman, Foundations of Computational Imaging: A Model-Based
Approach. Other Titles in Applied Mathematics, Society for Industrial
and Applied Mathematics, 2022.

[28] U. S. Kamilov, C. A. Bouman, G. T. Buzzard, and B. Wohlberg,
“Plug-and-play methods for integrating physical and learned models
in computational imaging: Theory, algorithms, and applications,” I[EEE
Signal Processing Magazine, vol. 40, no. 1, pp. 85-97, 2023.

[29] Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin,
“Robust bayesian target detection algorithm for depth imaging from
sparse single-photon data,” IEEE Transactions on Computational Imag-
ing, vol. 2, no. 4, pp. 456467, 2016.

[30] J. Rapp and V. K. Goyal, “A few photons among many: Unmixing
signal and noise for photon-efficient active imaging,” IEEE Transactions
on Computational Imaging, vol. 3, no. 3, pp. 445459, 2017.

[31] L. L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60,
no. 1, pp. 259-268, 1992.

[32] A. Halimi, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller,
“Restoration of multilayered single-photon 3d lidar images,” in 2017 25th
European Signal Processing Conference (EUSIPCO), pp. 708-712, 2017.

[33] J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S.
Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3d reconstruction
from single-photon lidar data using plug-and-play point cloud denoisers,”
Nature Communications, vol. 10, p. 4984, Nov. 2019.

[34] D. Tucker and L. C. Potter, “Speckle Suppression in Multi-Channel
Coherent Imaging: A Tractable Bayesian Approach,” IEEE Transactions
on Computational Imaging, vol. 6, pp. 1429-1439, 2020.

[35] S. Boyd, “Distributed Optimization and Statistical Learning via the
Alternating Direction Method of Multipliers,” Foundations and Trends®
in Machine Learning, vol. 3, no. 1, pp. 1-122, 2010.

[36] C. Lu, J. Feng, S. Yan, and Z. Lin, “A unified alternating direction
method of multipliers by majorization minimization,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 40, no. 3, pp. 527-541,
2018.

[37] J. Mairal, “Incremental majorization-minimization optimization with ap-
plication to large-scale machine learning,” SIAM Journal on Optimization,
vol. 25, no. 2, pp. 829-855, 2015.

[38] J. Mairal, “Optimization with first-order surrogate functions,” in Pro-
ceedings of the 30th International Conference on Machine Learning
(S. Dasgupta and D. McAllester, eds.), vol. 28 of Proceedings of Machine
Learning Research, (Atlanta, Georgia, USA), pp. 783-791, PMLR, 17-19
Jun 2013.

[39] D. R. H. Kenneth Lange and I. Yang, “Optimization transfer using
surrogate objective functions,” Journal of Computational and Graphical
Statistics, vol. 9, no. 1, pp. 1-20, 2000.

[40] T. Allen, D. Rabb, G. T. Buzzard, and C. A. Bouman, “Multi-Agent
Consensus Equilibrium for Range Compressed Holographic Surface Re-
construction,” in 21st Coherent Laser Radar Conference, 2022.

[41] G. T. Buzzard, S. H. Chan, S. Sreehari, and C. A. Bouman, “Plug-
and-Play Unplugged: Optimization-Free Reconstruction Using Consen-
sus Equilibrium,” SIAM Journal on Imaging Sciences, vol. 11, no. 3,
pp. 2001-2020, 2018.

[42] J. Goodman, Introduction to Fourier Optics.
1996.

[43] D. E. Thornton, C. J. Radosevich, S. Horst, and M. F. Spencer,
“Achieving the shot-noise limit using experimental multi-shot digital
holography data,” Opt. Express, vol. 29, pp. 9599-9617, Mar 2021.

[44] J. W. Goodman, “Some fundamental properties of speckle*,” Journal of
the Optical Society of America, vol. 66, no. 11, p. 1145, 1976.

[45] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu,
“ShapeNet: An Information-Rich 3D Model Repository,” Tech. Rep.
arXiv:1512.03012 [cs.GR], Stanford University — Princeton University
— Toyota Technological Institute at Chicago, 2015.

[46] G. H. Golub and C. F. Van Loan, Matrix Computations.
Hopkins University Press, third ed., 1996.

[47] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Mathematics of computation, vol. 19, no. 90,
pp. 297-301, 1965.

[48] R. Gribonval, “Should Penalized Least Squares Regression be Inter-
preted as Maximum A Posteriori Estimation?,” vol. 59, no. 5, pp. 2405—
2410, 2011.

[49] X. Xu, Y. Sun, J. Liu, B. Wohlberg, and U. S. Kamilov, “Provable
Convergence of Plug-and-Play Priors With MMSE Denoisers,” vol. 27,
pp. 1280-1284, 2020.

[50] M. W. Jacobson and J. A. Fessler, “An expanded theoretical treatment
of iteration-dependent majorize-minimize algorithms,” IEEE Transactions
on Image Processing, vol. 16, no. 10, pp. 2411-2422, 2007.

[51] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization al-
gorithms in signal processing, communications, and machine learning,”
IEEE Transactions on Signal Processing, vol. 65, no. 3, pp. 794-816,
2017.

[52] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for
finding best matches in logarithmic expected time,” ACM Transactions
on Mathematical Software, vol. 3, p. 209-226, Sept. 1977.

[53] V. Sridhar, S. J. Kisner, S. P. Midkiff, and C. A. Bouman, “Fast
algorithms for model-based imaging through turbulence,” in Artificial In-
telligence and Machine Learning in Defense Applications II (J. Dijk, ed.),
vol. 11543, p. 1154304, International Society for Optics and Photonics,
SPIE, 2020.

[54] Z. Yu, J.-B. Thibault, K. Sauer, C. Bouman, and J. Hsieh, “Accelerated
Line Search for Coordinate Descent Optimization,” in 2006 IEEE Nuclear
Science Symposium Conference Record, vol. 5, pp. 2841-2844, 2006.

MaGraw-Hill, 2nd ed.,

The Johns



	Introduction
	Background
	Coherent Lidar Imaging Measurement System
	Forward Model

	CLAMP
	MACE Formulation
	EM Surrogate Forward Agents
	3D Deep Prior Agent
	Summary of CLAMP

	Majorized MACE Theory
	Results
	Methods
	Synthetic Data Generation
	Experimental Data Measurement
	Synthetic Data Results
	Experimental Data Results

	Conclusion
	Appendix A: Quadratic Surrogate
	Appendix B: Proof of Theorem 1
	References

