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Projected Multi-Agent Consensus Equilibrium
(PMACE) With Application to Ptychography

Qiuchen Zhai
Brendt Wohlberg

Abstract—Multi-Agent Consensus Equilibrium (MACE) formu-
lates an inverse imaging problem as a balance among multiple
update agents such as data-fitting terms and denoisers. However,
each such agent operates on a separate copy of the full image,
leading to redundant memory use and slow convergence when each
agent affects only a small subset of the full image. In this article,
we extend MACE to Projected Multi-Agent Consensus Equilibrium
(PMACE), in which each agent updates only a projected component
of the full image, thus greatly reducing memory use for some appli-
cations. We describe PMACE in terms of an equilibrium problem
and an equivalent fixed point problem and show that in most cases
the PMACE equilibrium is not the solution of an optimization prob-
lem. To demonstrate the value of PMACE, we apply it to the prob-
lem of ptychography, in which a sample is reconstructed from the
diffraction patterns resulting from coherent X-ray illumination at
multiple overlapping spots. In our PMACE formulation, each spot
corresponds to a separate data-fitting agent, with the final solution
found as an equilibrium among all the agents. Our results demon-
strate that the PMACE reconstruction algorithm generates more
accurate reconstructions at a lower computational cost than exist-
ing ptychography algorithms when the spots are sparsely sampled.

Index Terms—Ptychography, consensus equilibrium, inverse
problem, phase retrieval, iterative reconstruction.

I. INTRODUCTION

ETHODS for inverse imaging typically seek to balance
M a fit to noisy data with some form of regularization or
prior information. While the fit to data is often well-understood
from physical models and can be captured using a log-likelihood
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or other penalty function, the prior information is much more
difficult to capture in such a functional form. On the other
hand, algorithmic denoisers such as BM3D [1] and convolutional
neural network (CNN) denoisers [2] encapsulate a great deal of
prior information about images but only in an algorithmic way
that is not easily amenable to description as a penalty function.

The recently developed Multi-Agent Consensus Equilibrium
(MACE) [3] and Plug-and-Play (PnP) [4], [5], [6] methods
provide a formulation and algorithms for incorporating both
algorithmic prior information and information from penalty
functions into a single reconstruction framework. Because the
algorithmic prior information is encoded in input-output format
as in an image denoiser, there is no cost function associated with
this prior information, hence no cost function and no minimiza-
tion associated with the reconstruction. Instead, MACE formu-
lates the problem as an equilibrium among multiple input-output
maps called agents.

The theory underlying MACE implies that PnP methods are
equivalent to Bayesian methods when the agents are proximal
maps of convex functions (described below), but that PnP meth-
ods are more general in that there is no corresponding natural op-
timization problem when the PnP agents are not proximal maps,
as in the case of neural networks. Moreover, MACE generalizes
PnP to incorporate more than 2 agents, which allows the problem
to be divided into smaller subproblems and solved separately
with distributed implementation. However, the original MACE
framework requires that each agent maintain a separate copy of
the entire reconstruction, which is very inefficient when each
agent operates on only a small portion of the reconstruction.

Ptychography is an important computational imaging tech-
nique [7], [8] that is widely used in applications such as the
imaging of manufactured nanomaterials [9], [10], [11], [12].
The imaging technique works by moving a coherent X-ray probe
across an object plane to scan a sample in overlapping patches. A
detector then measures the magnitude of the far-field diffraction
pattern at each probe location. The magnitude and phase of
the transmittance image of the sample can be recovered by
exploiting the redundancy caused by the overlaps in the intensity
measurements. Notably, the reconstructed phase is significant in
estimating the structure of the sample.

Since ptychography is a phase recovery problem, it can
be solved using conventional phase recovery methods [13].
However, a series of methods have been developed specifically
for reconstruction of ptychographic data. The original method,
known as ptychographic iterative engine (PIE) [14], has been
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generalized to methods such as extended PIE (ePIE) [15],
regularized PIE (rPIE) [16], and momentum-accelerated PIE
(mPIE) [17]. All these methods tend to have rapid convergence
and work by serially enforcing local intensity measurements.
However, since the PIE-type algorithms are based on serial
updates of the image at each probe location, the PIE methods
cannot be easily parallelized, and the methods also tend to
require a large overlap between scan positions to achieve a
high-quality reconstruction [18].

In addition, a variety of gradient-based methods including
Wirtinger Flow (WF) [19], accelerated WF [20], Maximum
Likelihood method [21], as well as other approaches based on
proximal algorithms [22], [23] have also been proposed for
ptychographic reconstruction. While methods based on gradient
calculations can be parallelized across probe locations, these
methods tend to have slower convergence than serial methods
and are limited by the requirement that the problem must be
formulated as an optimization.

More recently, a method known as scalable heterogeneous
adaptive real-time ptychography (SHARP) has been pro-
posed [24] and implemented [25] for ptychographic reconstruc-
tion that is intrinsically parallel in nature. The SHARP method
is based on a general method for phase-retrieval known as
relaxed averaged alternating reflections (RAAR) [26]. However,
SHARP and RAAR are designed specifically for phase retrieval
and not more general inverse problems.

In this article, we introduce Projected Multi-agent Consen-
sus Equilibrium (PMACE) an intrinsically parallel algorithm
for solving distributed inverse problems. PMACE extends the
MACE framework to allow the state of a problem to be updated
in smaller components that can be processed in parallel by
localized agents. For some applications such as ptychography,
PMACE can dramatically reduce memory requirements relative
to MACE because each agent operates in parallel while storing
only a small portion of the entire image. We also show that
PMACE is equivalent to an optimization formulation for some
choices of update agents, but that in most cases there is no
naturally corresponding optimization problem, with the solution
corresponding instead to a weighted equilibrium of the updates
of the individual agents.

To illustrate the utility of the PMACE framework, we apply
it to the problem of ptychographic reconstruction. We use the
data from each scan position to implement a computationally
efficient, non-optimization-based data-fitting agent that updates
a local patch to better fit the measured intensity data for a single
diffraction spot. These local patches are combined into a full
image with a weighted average that uses the probe intensity to
capture the uncertainty in measurement at a given location.

In contrast to ePIE, the inherent parallelism of individual
agents allows the PMACE algorithm for ptychography to make
parallel updates to the image at different probe locations. There-
fore, as with SHARP, the PMACE algorithm is more suitable
than PIE-type algorithms for implementation on parallel or
distributed computers. However, we leave the exploration of
efficient parallel implementation for future work.

Our experimental results demonstrate that PMACE outper-
forms existing state-of-the-art ptychographic reconstruction
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algorithms in both convergence speed and reconstruction quality
as the ptychographic spots are spaced further apart. In practice,
reconstruction from sparse samples is of practical importance
because it can be used to reduce the amount of data required
for accurate ptychographic reconstruction.

II. MACE aNnD PMACE
A. MACE

Multi-Agent Consensus Equilibrium (MACE) [3] is a prob-
lem formulation that reconciles multiple agents, such as data
fitting updates or denoisers, each acting to improve a candidate
reconstruction. In this formulation, each agent, F;, maintains an
individual copy, «;, of the full image (or volume), and F); (x;) is
an improved reconstruction according to the jth agent. These
are either real or complex vectors with a dimension appropriate
to the problem, and F}j(x;) has the same dimension. We leave
the dimensions implicit when they are clear from the context.
These copies are stacked to form a full MACE state, given by

X= [‘TOa"'afol]

and the agents are stacked to form a single operator defined by
F(X) = [Fo(l'o),...,FJ,l(l‘J,l)]. (1)

Note that x denotes the full MACE state, while x; denotes the
jth component image. Since each component is a full copy of the
image to be reconstructed, the MACE state contains multiple,
potentially inconsistent reconstructions. In order to produce a
single MACE reconstruction, we define the operator

G(X) - [i‘(X),...,Q_j(X)], (2)

where z(x) = (1/J) Zj;ol x;j. So G(x) computes the average
of the components in x, and then returns a state vector formed
by replicating this average J times. A key algebraic property of
the averaging operator is that G(G(x)) = G(x).

The MACE equation is then given by

F(x") = G(x"), 3)

where x* solves the equation, and the final reconstruction is then
given by z* = Z(x*). As shown in [3], (3) has the interpretation
of finding a consensus equilibrium among all the agents, in that
the output of each agent is the common image z(x*), while the
updates F;(x}) — « sum to 0.

In the case that each Fj is the proximal map for a convex,
differentiable! function f;, then z* satisfies

J—-1
> Vi) =0, “
j=0

and z* is a minimizer of the function f =) y fi [27].

However, when the MACE agents are not proximal maps,
there may be no cost function that is minimized by solving
the MACE equation. We discuss this in greater generality in
Section II-B.

'We assume differentiability for simplicity. Similar results hold for general
convex functions by using subgradients.
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Fig. 1. Conceptual rendering of the PMACE pipeline. A reconstruction x is
subdivided into possibly overlapping components, v, and distributed to multiple
agents, Fj, each of which acts to improve this local reconstruction. These local
reconstructions are combined using a pixel-weighted averaging operator, G, that
reassembles the local components into a consistent global reconstruction.

We note that F(x) is an intrinsically parallel operation that
can be efficiently distributed across many compute nodes, while
the averaging operator G (x) requires communication across all
nodes in order to first gather the individual components, then
compute their average, and then broadcast the average back to
individual nodes [27].

B. PMACE

In some problems, agents operate naturally on subsets or
projections of a full image rather than on the image itself. Fig. 1
illustrates such a problem in which separate data is collected
from each patch of an image, x. In this case, the agents can
operate separately to make each component more consistent
with its data. However, these individual components must also
be reconciled into a single consistent reconstruction.

Mathematically, we express this extraction of a patch or
component from an image as

Uj = le’

where P; is a matrix with orthonormal rows, so that P; P]" = 1.
We use v; to emphasize that these components lie in a different
space than . Typically, P; simply selects aregion of the image x,
but more general transformations are allowed. To capture spatial
information and relevant features without excessive computa-
tional cost, the selection of P; should be based on the size of
local measurements associated with individual components.

As in MACE, each component, v;, is processed by a corre-
sponding agent, F);, whose role is to improve the component
by better fitting to data, reducing noise, etc. Also as in MACE,
PMACE stacks the component states and the agents to form the
vector and operator given by

. ,’UJ,l] 5 (5)
F(V) = [Fo(Uo),...,FJ_l(UJ_l)]. (6)

Note that PMACE has a potentially huge advantage over
MACE because it does not require J replicates of the entire

v = [vo,. .
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reconstruction. This can dramatically reduce memory and com-
putation resources when implemented on a computer. For exam-
ple, in ptychography as described below, if each reconstruction
is a large image and there are 1000 agents corresponding to 1000
probe locations, then MACE becomes impractical to implement
since it requires that the full image be replicated 1000 times in
the computer’s memory.

Since the PMACE components are not complete versions
of the reconstruction, the averaging operator G(x) must be
redefined. To do this, we project the components back to
the full image, then use a pixel-wise weighted average to com-
bine them and reproject them back to components. This leads to
the new averaging operator

GP(v) = [RE(V), ..., Pr_13(v)] . %

where
J-1
z(v) =AY PIWu; ®)
i=0

A= Z;-];é PjTWPj, and W is a positive definite and (typically)
diagonal weighting matrix. We assume that A is invertible, so
if P; selects subsets of the original image, then the set of J
components must cover the entire image being reconstructed.
The weight matrix, W, can be used to model the uncertainty in
measurements for each component, with its selection depending
on the nature of imaging modality and the noise characteristics
in the data.

Using these operators, we look for a solution v* to the PMACE
equation, defined as

F(v') = G"(v") )

in which case z* = Z(v"*) is the final reconstruction. In words,
(9) means that each agent generates a patch that is consistent
with the entire reconstruction z*.

C. Solving the PMACE Equations

To solve the PMACE (9), we follow [3] to show that it can be
reformulated as a fixed point problem and apply Mann iterations
to compute a solution.

By definition of z, GP, and A, we have

(G (v)) =AY PIWPz(v)
J
= z(v),
which gives
GP(GF(v)) = GP(v). (10)

Thus G*, like the original averaging operator G, is a linear

projection. With this, a further calculation shows that
(2GF —1)7!' = (2GF —1). an

From this we obtain the equivalent fixed point formulation of
9) as

(2GY —D)(2F —T)(v*) = v* (12)
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or Tv* = v*, where T = (2G? — I)(2F —I).
If T is non-expansive and has a fixed point, then Mann
iterations with p € (0, 1), defined as

v (1—p)v+pTv (13)

are guaranteed to converge to a fixed point of T and hence to a
solution of (9). The parameter p is a kind of step size; its choice
impacts the convergence rate and the stability of the iterations
but not the final solution.

D. PMACE for Optimization and Beyond

A natural question is whether PMACE corresponds to the
solution of an optimization problem. We show in Theorem I1.2
that the answer is affirmative in certain special cases, but not in
general. (Proofs are given in the Appendix.)

To understand the relationship between equilibrium and op-
timization, suppose that each F} is the proximal map for a
real-valued, differentiable, convex function f;(v;):

Fito) =argmin {500+ gz lo - o). a9

In this setting, a PMACE solution is equivalent to a zero of a
naturally associated vector field.

Theorem II.1: Let Iy, j = 0,...,J — 1 denote the proximal
map function of a differentiable convex function f; as specified
in (14). Then v* is a solution to the PMACE equation in (9) if
and only if z* = Z(v*) satisfies

J-1
> PIWVf(Pat) = 0.

j=0

15)

Note that (15) captures the idea of equilibrium in that the
sum of the .J vectors is 0. However, as described in more detail
below, because of the weight matrix W, this vector field may
not be a gradient field, hence may not correspond naturally to a
minimization problem. To explain this more fully, we first recall
some basic results on vector fields.

We say that V(x) is a conservative vector field if it is the
gradient of some potential function f(x) [28, Section 9.2A].
In this case, the condition V' (z*) = 0 is a first-order necessary
condition for the minimization of f. Moreover, a continuously
differentiable vector field, V' (x), is conservative if and only if
its Jacobian is self-adjoint (or symmetric) [28, Section 9.2C].

When each f; is twice continuously differentiable, the Jaco-
bian of the vector field in (15) (as a function of z in place of x*)
is

J—1
> P/ WH(Pz)P;
j=0

(16)

where H, (Pjx) is the symmetric Hessian matrix of 2nd order
partial derivatives of f;, evaluated at P;x. If W is a multiple of
the identity, then the matrix in (16) is symmetric, so the PMACE
solution corresponds naturally to a minimization problem. How-
ever, this symmetry is not robust in that nonzero mixed partial
derivatives in f; together with distinct entries in the diagonal
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matrix W will destroy this symmetry. This leads to the following
theorem.
Theorem I1.2: Let f; and F; be as in Theorem IL.1.
1) If W = rI for scalar r, then PMACE is equivalent to op-
timization in that v* is a solution to the PMACE equation
in (9) if and only if 2* = z(v") satisfies

J-1

@’ = argmin ij(ij)

=0

a7)

2) For generic diagonal W and generic convex f;, the
PMACE formulation does not naturally arise as an op-
timization problem. That is, the vector field in (15) is not
a conservative vector field, and hence is not the gradient
field of a potential function.

In other words, even when the agents F; are proximal maps,
if the weight matrix W is not a multiple of the identity, then
the natural vector field defining the PMACE solution is not a
gradient field, so the PMACE solution is not naturally given by
minimizing a cost function. Of course, it’s possible to set up an
optimization problem with the same solution by minimizing the
norm of the vector field in (19), but this doesn’t correspond to a
consensus minimization problem as in (17).

When the f; are convex but not everywhere differentiable,
then the gradient V f; in (15) is replaced with the possibly set-
valued subdifferential 0f;, and the search for an z* to give a
zero of the left-hand side becomes the search for an z* so that
the left-hand side contains the O vector, which is known as a
monotone inclusion problem. Results analogous to Theorem I1.2
can be obtained in this setting but are not pursued here. For
more about the relationship between convex optimization and
monotone operators, see [29].

Non-proximal equilibrium: To extend to the case in which
the agents F); are not proximal maps, we note that the proxi-
mal map in (14) can be rewritten [30, Cor. 17.6] as F}j(v;) =
vj — 02V f;(Fj(vj)). That is, a proximal map for a convex,
differentiable function is an implicit gradient descent step in the
sense that the gradient is evaluated at the endpoint rather than
the starting point. With this and the fact that F;(v;) = P;z”,
(15) can be rewritten as

(18)

The vector field in this case is defined not on an image x but
on a stack of patches as in (5). In order to use this formulation
to give a single reconstruction, z*, we note that each v;f must
satisfy the constraint F;(vj) = P;z*. We use this relationship
to implicitly define a set-valued inverse Fj’1 (Pjz)) that maps x
to all patches v; consistent with .

With this, we reformulate (18) and hence the PMACE equa-
tion in (9) as an inclusion problem.

Theorem I1.3: Define the set-valued vector field

J—-1
V(z)=>Y P/'W (P —F ' (Pux)). (19)
j=0
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Fig. 2. In ptychographic imaging, a coherent probe is used to illuminate a
sample at multiple, partially overlapping regions. The intensities of the resulting
diffraction patterns are recorded by the detector.

Then the solution 2* = Z(v*) of the PMACE equation in (9) is
the solution of the inclusion problem

0eV(zh). (20

We call this a consensus equilibrium problem because the
common point " yields a set of vectors v} with F;(v}) = P;x”*
(consensus) such that the weighted average updates give the zero
vector as in (18).

The verification that a given operator is monotone is often
technically involved, so we do not address that here. Likewise,
further conditions under which (19) corresponds to an optimiza-
tion problem are beyond the scope of this article.

Finally, we note that, as with MACE or PnP [31], PMACE
can incorporate regularization by either using a denoiser as
one of the agents, or using a denoiser as part of the averaging
operator, G(x). While this could potentially improve results for
ptychography reconstruction, we leave this topic as an area for
future research.

III. PMACE FOR PTYCHOGRAPHY

Asnoted in the introduction and illustrated in Fig. 2, a ptycho-
graphic reconstruction relies on far-field intensity measurements
(also known as diffraction patterns) obtained by illuminating a
sample with a coherent X-ray source at multiple locations, with
significant overlap between adjacent illuminated regions. The
goal of these measurements is to reconstruct the full complex
transmittance image of the scanned sample. The phase of this
complex transmittance image is particularly important since it
gives precise information about the thickness of the sample at
each location.

A potential point of confusion in this problem is that there are
two sets of phases that must be estimated for this reconstruc-
tion. One set is the phase of the complex transmittance image,
which is the primary quantity of interest because it gives very
precise, quantitative information about the material properties
of the sample. The other set contains the phases associated with
the far-field intensity data. These far-field phases are essentially

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 9, 2023

the phases of the Fourier transform of the illuminated sam-
ple. Since the detector measures intensities only, the far-field
phases must be estimated using the redundancies associated
with overlapping intensity measurements — this is known as the
phase-retrieval problem. However, for our purposes, the far-field
phases are really just nuisance parameters that must be estimated
in order to estimate the phase and magnitude of the complex
transmittance.

To apply PMACE to the ptychography problem, we define
each data-fitting agent to be a local update to better match
the measurements of the far-field Fraunhofer diffraction pat-
tern in a single patch. Our approach does not use a penalty
function/proximal map formulation but rather defines an update
agent for each patch update directly from data using a weighted
average between a previous estimate and new estimate that fits
the available data. This approach has the advantages of being
computationally efficient and easily adjusted to account for the
signal-to-noise ratio of the data.

While probe estimation is an important component of pty-
chography, we assume for clarity in this article that an accurate
estimate of the probe function is known and consistent at all
scanning positions. In a future paper we will apply PMACE to
estimate both the probe and complex image simultaneously.

A. Forward Model

We let z € CV1*N2 denote the complex material transmit-
tance of the target object and seek to recover x from real-valued
measurements y; € RN>*No of the form

Yy; = 1/POIS(‘]:DPJ1“2)

Here F denotes the 2D orthonormal discrete Fourier transform,
D = Diag(d) is a diagonal matrix representing the probe’s com-
plex illumination function d, and P; : CN1*N2 — CNo*No js the
linear operator representing the extraction of an N, x IN,, patch
corresponding to the j*" scan position, j = 0,...,J — 1. Thus
FDPjx is the mean complex far-field diffraction pattern asso-
ciated with the j*" scan position. We assume that the physical
sensor measurements can be modeled by a vector of independent
Poisson distributed random variables denoted by Pois(1) with
mean A given by the pixel-wise intensity of this diffraction
pattern, and that these measurements are pre-processed by taking
a square-root, which serves as a variance-stabilizing transform
for the Poisson distribution [32].

2

B. PMACE Formulation

In order to use the PMACE algorithm, we will need to select a
data-fitting agent, F; (v;). The proximal map is not a good choice
because its evaluation requires the solution of a non-convex
optimization problem, which is computationally expensive and
not guaranteed to achieve a global minimum. Fortunately, the
PMACE method is not restricted to the use of proximal maps.
So instead, our strategy will be to design a data-fitting agent that
moves the solution in a direction that better fits the data.

Using this approach, we define the data-fitting agents F;(v;)
by taking a weighted average between a nonlinear projection
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onto measured data and an input point. The nonlinear projec-
tion begins with a complex-valued image patch, v; = P;x, and
isolates the phase in diffraction space by FDv;/|FDvj| (the
phase can be set arbitrarily if the magnitude is 0). This phase is
multiplied point-wise by the amplitudes y;, and then the result
is inverted to return to image space.

Mathematically, we represent the full nonlinear projection
from an input image patch to one that matches the given ampli-
tudes in diffraction space is given by D1 F*(y; %) where
D-! = Diag(d_!) is a numerically stable inverse of D.?

For the full data-fitting agent, we average this projection with
the input point to obtain

Fy(0)) = (1 - a)u, + D, 'F" (ny) @)

J |Jr D’Uj|
where « controls the strength of fit to data. In contrast with p
in (13), where p is employed to optimize convergence speed,
« regulates regularization, with the ratio /(1 — «) provides a
rough interpretation of the signal-to-noise ratio of the data.
This interpolation between input and a data-fitting point is
similar in spirit to a data-fitting proximal map. However, the
Jacobian of (22) is not symmetric, so I} is not a proximal map
(where we convert complex images to real-valued vectors by
stacking real and imaginary parts in order to take real deriva-
tives). In fact, Theorem II.3 implies that the PMACE formulation
using these [I; does not naturally correspond to a minimization
problem. In the appendix, we show that F} is invertible, which
implies that V() in (19) is a single-valued vector field, which
is nonconservative since the Jacobian of (22) is not symmetric.
Hence, as in Theorem II.2, this formulation is not naturally a
minimization problem.
We use these F; to define the vectorized operator F as in (6).
For G in (7), we model the uncertainty arising from the point-to-
point variation of probe illumination by using the weight matrix

W = |D|" 23)

to define A and Z. Here x € [1,2] can be used to control
the emphasis between brightly lit points near the center of
the probe (large x) versus dimly lit points near the edges of
the probe (small ). In our experiments, x € [1.25, 1.5] gives the
fastest convergence and best reconstruction quality; we display
all results using k = 1.5.

The PMACE solution is then determined by solving F(x) =
G(x) or by iterating (13) to obtain a fixed point of T. This has
the effect of balancing the updates of the data fitting agents for
each patch, subject to constructing an image that agrees with
each individual patch.

Proper initialization of the PMACE algorithm is important
for fast convergence to a good solution. This is particularly true
since phase retrieval corresponds to a non-convex optimization
problem, so that solutions can in general depend on the initial
condition. We have found the following initialization to work

2We compute the numerically stable inverse of the diagonal entries as d_ 1 =

d*/(|d|? + €) where e = 10764 /||d||2 /dim(d).
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Algorithm 1: Mann Iteration for Computing PMACE Solu-
tion.
Input: Initialization: z(9) € CN1*N2; i € [1.25,1.5]
Output: Final Reconstruction: & € CN1*N2
w=v=[,.. . 0] where v](-o) = Pz
while not converged do
w <« F(v)
z +— G(2w — V)
V< Vv+2p(z —w)
end while
return & = A~ Y770 PT|D|"v;

well in practice,
m—
W'D B ( Il 1)
j=0

where Ay = Z‘j]:_é PjTPj and 1 is a column vector of 1 s. While
simple, this creates an initial image with the correct scale at each
probe location based on the relative magnitude of the probe and
measured signal.

The resulting algorithm has similarities to SHARP [25] but
also significant differences. First, (22) incorporates the data
projector of [25], but (22) is in the image domain and averaged
with the identity, as opposed to the SHARP data projector, which
is in the so-called frame domain (probe times image) and which
is not averaged. The averaging factor o replaces the stabilization
factor § in the data projector of SHARP. More significantly,
the averaging operator Pg of SHARP uses a fixed weighting
that is essentially equivalent to taking x = 2 in (23), which
tends to underweight the contributions of locations with small
to moderate probe intensities.

The pseudo-code for computing the PMACE solution is
shown in Algorithm 1. The algorithm starts with an initial
guess of the complex transmittance of the unknown object
20 € CN*N2 | and then constructs the stacked projections.
Mann iterations are then used to revise the estimates of in-
dividual projections. The final reconstruction of the complex
object is given by taking the weighted average of the estimates
of individual projections.

(24)

IV. EXPERIMENTAL RESULTS

In this section, we present the results of our approach on both
synthetic and measured data and compare with reconstruction
results using state-of-the-art algorithms. Our results indicate that
PMACE matches the best-competing algorithms in convergence
speed and image quality for small probe spacing, and outper-
forms the competitors as the probe spacing between neighboring
scan points increases.’

A. Synthetic Data Generation

Fig. 3 shows the complex-valued ground truth object image
and probe used for our simulation experiments. A synthetic

3The code for PMACE is available at https://github.com/cabouman/ptycho_
pmace.
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Fig. 3. Ground truth images used in simulation experiments. The complex
ground-truth object’s (a) magnitude and (b) phase in radians. The complex
probe’s (c¢) magnitude and (d) phase in radians.

complex transmittance image of size 800 x 800 pixels was
generated by modeling a 5-layer composite material.

The complex probe of size 256 x 256 pixels was simulated
with a photon energy of 8.8 keV.

To simulate measurements for a single probe location, we
multiply the projection of the complex transmittance image by
the complex probe, then take the squared modulus of the Fourier
transform to simulate forward propagation. We scale to simulate
a peak photon rate, add a factor for dark current, then use this
as a mean for a sample from a Poisson distribution. With 7, as
the peak photon detection rate and X as the mean dark current,
we then have that

X , | F Dz |?
1; <— 4/ Pois (r + A (25)
! \/ "' maxy, (|| F Dzl|3,)

where || - |« is the maximum magnitude of its argument,

maxy(-) denotes the maximum value over all k, and the op-
erations are performed pointwise. Assuming a photon detector
with 14-bit dynamic range and the presence of a half-bit of dark
current, , = 10* and A = 0.5 were used to simulate noisy data.

To simulate data from a full experiment, we first select a nom-
inal distance (in the range of 20 to 76 pixels) between nearest-
neighbor probe locations. We then use a randomly perturbed
rectangular grid for the probe sampling pattern with random
offsets selected uniformly in [—5, 5] (in units of pixels). This
has the effect of more realistically simulating actual ptychog-
raphy experiments while also avoiding periodic reconstruction
artifacts [15].

B. Experimental Methods for Synthetic Data Case

The key to estimating phase information from intensity mea-
surements is the redundancy inherent in using multiple overlap-
ping illuminations. An increase in probe spacing with a fixed
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probe size will reduce image reconstruction quality [33], while
using a larger probe will compensate for larger probe spac-
ing [34]. Therefore, a measure of illumination overlap is more
relevant for reconstruction quality than simple probe spacing.

To quantify this overlap, we define the overlap ratio between
adjacent probes indexed by j and k as

N EACEY 32T
" Pl [D]l,

(26)

where © denotes point-wise multiplication and || - ||; denotes
the /;-norm. We then define the overlap ratio 7o, of the full
grid scan pattern as the average of the overlap ratios between
paired adjacent probes

27)

Tovlp = Tjk

1
¥ 2

{(G.k), j#k}
where N denotes the number of pairs of adjacent scan positions.
The overlap ratio is near 1 when adjacent probes almost fully
overlap and near O when they are almost disjoint.

To evaluate image reconstruction quality for the synthetic data
case, we assume a known complex probe (we will consider joint
image-probe estimation in a future paper). Given the complex
probe profile in Fig. 3, we generated synthetic data using fixed
(simulated) probe spacing of 68 pixels with a corresponding
overlap ratio of oy, ~ 14.5%.

All reconstructions are performed using the ePIE [15],
AWF [20], SHARP [25], and PMACE algorithms. To provide
a fair comparison, we optimized one algorithmic parameter
using grid-search for each method: the step size of ePIE, the
relaxation parameter of SHARP, and the data-fitting parameter
a for PMACE. We ran each method for 100 iterations. Each
iteration for each method involves 2 FFTs per probe location,
and these FFTs are the dominant computational cost for each
method, so 100 iterations represent essentially the same amount
of computation for each method.

In order to evaluate reconstruction quality, we used the
Normalized Root-Mean-Square Error (NRMSE) between each
reconstructed image # and the ground truth image x. Since
ptychography data is invariant to a constant phase shift in the
image domain, we computed the NRMSE as

ez — 2|
]

where ¢ accounts for an unknown phase shift and possible gain.

NRMSE = min (28)

C. Reconstruction Results on Synthetic Data

Figs. 4 and 5 show the results of the ePIE, AWF, SHARP,
and PMACE algorithms. Fig. 4 shows both the phase of the
reconstruction in radians and the error in the phase as compared
to the ground truth, and it also lists the final NRMSE of the
reconstruction. Fig. 5 shows the corresponding images for the
magnitude of the reconstruction.

Since the probe spacing is relatively large and the probe
overlap is small (7, ~ 14.5%), ePIE cannot reconstruct the
complex transmittance image accurately. AWF and SHARP do
significantly better, but the difference images indicate that both
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Top: Phase (in radians) of the reconstructed complex transmittance images in Fig. 3 from synthetic data with a small overlap: 7oyip ~ 14.5%. Bottom:

Difference between the reconstructed and ground truth phase, with associated NRMSEs in the subcaptions. Note that transmittance phase is typically more important

than magnitude in applications.

(a) NRMSE = 0.175

Fig.5.
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Top: Magnitude of the reconstructed complex transmittance images in Fig. 3 from synthetic data with a small overlap: 7oy1p ~ 14.5%. Bottom: Amplitudes

of error between the complex reconstructions and ground truth, with NRMSEs in the subcaptions. Note that transmittance phases (Fig. 4) are typically more important

in application than magnitudes.

of these methods introduce artifacts not found in the ground
truth. Overall, PMACE reduces these artifacts and produces the
best result both visually and based on the NRMSE. This is partic-
ularly relevant for the phase images, since transmittance phase
is typically more important in applications than magnitude.
Fig. 6 shows the convergence of the NRMSE as a function
of the number of iterations. Consistent with Figs. 4 and 5, the

NRMSE associated with ePIE actually increases from the initial
condition and does not converge to a reasonable solution. We
believe this is due to the fact that the problem is very ill-posed
due to the small probe overlap. This is also consistent with other
observations on the behavior of ePIE [14]. Similarly, AWF also
performs poorly with a large initial error, but then converges
slowly to a more reasonable but large final NRMSE. SHARP
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Fig. 6. NRMSE between reconstruction and ground truth as a function of

number of iterations for reconstructions on synthetic noisy data with a small
overlap: rovip ~ 14.5%.
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Fig. 7. NRMSE between reconstruction and ground truth for image of Fig. 3

as a function of the overlap ratio for each approach.

and PMACE have a large initial decrease in error followed by
a slower decay, with SHARP leveling off fairly quickly and
PMACE continuing to decrease to a good solution. Ultimately,
PMACE achieves the lowest final error.

D. Reconstruction Quality Versus Probe Overlap

To determine the effect of probe overlap on reconstruction
quality, we repeated the experiment above using multiple probe
spacing values between 20 and 76 pixels, corresponding to
overlap ratios from 73% to 12%. For each spacing value and
each method, we optimized a single algorithmic parameter as
described above, and we ran the corresponding method for 100
iterations.

Fig. 7 shows a plot of the final NRMSE of each method versus
the overlap ratio. For large overlap ratios, all methods yield good
image quality, with NRMSE values from about 2.5% to 4.5%.
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Fig. 10.  The (a) magnitude and (b) phase of the probe used in all experiments
on the measured data. The probe was estimated from the data using a variation
of the ePIE algorithm.

Authorized licensed use limited to: Purdue University. Downloaded on May 23,2024 at 15:34:36 UTC from IEEE Xplore. Restrictions apply.



ZHAI et al.: PROJECTED MULTI-AGENT CONSENSUS EQUILIBRIUM (PMACE) WITH APPLICATION TO PTYCHOGRAPHY

(b) AWF

(a) ePIE

(b) AWF

Fig. 11.

1067

0.6

0.4

0.2

0.0

-0.2

(c) SHARP (d) PMACE

(c) SHARP (d) PMACE

Phases (in radians) of complex reconstructions from measured data. The top row shows the full field of view along with outlines of insets displayed

in rows 2—4. All methods reconstruct fine detail in the central region (row 3, outlined in yellow). ePIE and AWF yield artifacts near the edge of the field of view,
while SHARP and PMACE produce more uniform results throughout the field of view.

However, ePIE and AWF underperform relative to SHARP and
PMACE. As the overlap ratio decreases, NRMSE increases, with
SHARP and PMACE maintaining good reconstruction quality
of about 5% or less as the overlap ratio decreases to about 15%.
PMACE achieves an NRMSE below 7% even with an overlap
ratio 7oy, below 12%, while the SHARP reconstruction has an
NRMSE above 10% at this overlap ratio. ePIE and AWF are not
competitive at small overlap ratios.

Fig. 9 shows a comparison of the algorithms for a set of
9 distinct 800 x 800 ground truth images shown in Fig. 8.
Again, this result demonstrates that PMACE maintains the best
reconstruction quality when the overlap percentage is low, and
that SHARP and PMACE are significantly better than ePIE and
AWFE.

E. Reconstruction Results on Measured Data

In this subsection, we evaluate PMACE on measured data
and report reconstruction results. We used the gold balls data
set [35] consisting of 800 ptychographic measurements, which
was generated using X-rays with a photon energy of 1 keV at
beamline 5.3.2 of the Advanced Light Source. The scans were
performed in a 20 x 40 grid with scan spacing of 30 nm and
recorded by a detector placed 0.112 m downstream from the test
sample of gold balls. This data set also includes 20 separately
acquired dark images in addition to measured data.

For this experiment, the overlap ratio is approximately 84%,
which is higher than any value used in our simulated data. This
large overlap ratio and the results of Fig. 7 indicate that any of
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(a) ePIE (b) AWF

Fig. 12.

the methods should be able to produce a reasonably accurate
reconstruction.

We preprocessed the raw data by subtracting from each mea-
surement the average of 20 dark scans. We also removed 6
abnormal measurements with high deviations in the data. Then
we centered and cropped each measurement from 621 x 621
pixels to 512 x 512 pixels. To suppress noise, each of these
diffraction measurements was multiplied by a 2D Tukey window
that was generated by rotating a 1D Tukey window with shape
parameter of 0.5. The resulting data set contains preprocessed
794 diffraction measurements.

Since the goal of this research is to compare the quality and
speed of different ptychographic reconstruction algorithms, we
used a fixed probe function for all algorithms in our compar-
isons. This fixed probe, shown in Fig. 10, was estimated from
experimental data using a variation of the ePIE algorithm. We
note that probe estimation is important in practice and has been
incorporated into other algorithms, but we leave the problem of
PMACE probe estimation as a topic for future research.

As in the case of simulated data, we varied one algorithmic
parameter for each method and selected the parameter that
produced the highest image contrast and fewest image artifacts.
We ran each method for 100 iterations. As noted above, the fit to
datais unchanged by a constant phase shift in the reconstruction.
To provide a uniform visual comparison, we shift the phase of
each reconstruction to achieve zero-mean phase in the central
rectangle of 105 x 65 pixels, which was chosen since the centers
of the probe illuminations are located in this region.

The reconstructed phase and magnitude images are shown in
Figs. 11 and 12. We cropped the reconstructions to show the
center 400 x 400 region of the image that was fully measured
by the probes, and we used color outlines to highlight zoomed-in
regions of the phase images. As can be observed, ePIE and AWF
produce good image quality in the central region (yellow), but
their image quality degrades in the red and blue regions. SHARP
and PMACE produce good results in all three regions, with
PMACE reconstructing the gold balls in the largest field of view.
PMACE also appears to have slightly higher sharpness/contrast
than SHARP, but since we do not have ground truth, it is difficult
to know if the detail in the background is noise or valid detail.

Table I tabulates a measure of reconstruction quality for
the ePIE, AWF, SHARP and PMACE reconstructions on the
gold balls data set. Since there is no ground truth, we forward
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(c) SHARP

(d) PMACE

Magnitudes of complex reconstructions from measured data. PMACE captures fine detail in the largest field of view relative to the other methods.

TABLE I
FORWARD PROPAGATED NRMSE FOR EACH OF THE RECONSTRUCTION
ALGORITHMS
Algorithm | ePIE AWF | SHARP | PMACE
NRMSE | 0.1102 | 0.1041 | 0.0914 0.0912

Notice that PMACE results in the lowest forward propagated error.

propagated the reconstructed complex images to the detector
plane following (21) and calculate the NRMSE in the magnitude
relative to the square-rooted data. In principle, a lower NRMSE
at the detector plane implies a better fit to measurements; how-
ever, one must be careful since this metric does not account
for overfitting of data. Notice that the PMACE reconstruction
provides the best fit to the measured data. Hence these results
support the claim that PMACE provides state-of-the-art quality
under high-overlap conditions for measured data.

V. CONCLUSION

In this article, we introduce a theoretical foundation for the
PMACE algorithm and show how it can be applied to the
specific problem of ptychographic reconstruction. The PMACE
algorithm is based on a set of agents each of which only acts on
a small portion of the full reconstruction. This makes PMACE
more suitable for large distributed inverse problems in which
measured data only acts on a portion of the total image. As with
MACE, the PMACE algorithm solves an equilibrium problem,
which does not always correspond to an optimization problem.
This makes PMACE more flexible for use in applications than
traditional regularized inversion.

We applied PMACE to ptychography on both synthetic and
measured data and found that it had improved image quality rel-
ative to competing algorithms, particularly for the case of large
spacing between probe positions. This last point implies that our
method requires less data for accurate reconstruction and can
thus reduce acquisition time for a given level of reconstruction
quality.

Finally, we note that the PMACE algorithm can be applied to
other inverse problems in which each measurement only depends
on a portion of the reconstruction. For example, this may be
appropriate in tomography applications, such as laminography,
in which each view corresponds to a portion of a larger planner
object.
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APPENDIX
PROOFS

A. Proof of Theorem II.1

Proof: The assumptions on f; and Fj; imply [36, Sec-
tion 6.1] that F;(v;) = (I + 02V f;)"!(v;) and hence v; =
(I 4 02V f;)(F;(v;)). With this in mind, suppose v* satisfies
(9). By definition of F, GP, and z*, this means

F(v}) = Pjz(v*) = Pz’ (29)

for all j. Using Fj = (I + 02V f;)~! and then applying (I +
02V f;) to both sides gives

v = Pjx* + o°V f;(Pja"). (30)

Using this with the definition of z* gives

rr=z(v)=A" Z PjTW(ij* + 0V fj(Pjx*)), (31)
J

SO

Ax* =Y PIWPa"+0>) PIWVfj(Pa*). (32
J J

Since the first term on the right hand side is Az*, this simplifies
to

o? Y PIWVf;(Pa*) =0, (33)

J
which gives (15).
For the converse, if z* satisfies (15), then by taking (30) as

the definition of v}, each step above is reversible to give (29)
and hence (9). O

B. Proof of Theorem I1.2

Proof: 1. Note that G is independent of > 0 when W =
rl, so we may assume W = I. A straightforward modification
to the proof of [3, Theorem 2], shows that if F' is defined using
the I, then a PMACE solution v* of (9) is equivalent using
r* = Z(v*),A; = vj — P;jz* to solutions (z*, A7) that solve the
following equations

> Pl =o.

J

(35)

These conditions are equivalent to the first-order optimality
conditions for the constrained optimization problem

J-1
" = arg min ij (uj) p st.u; = Pjrforall j, (36)
sUg j:O

which is equivalent to (17).

2. As noted above, the conservative property is equivalent to
the symmetry of the Hessian matrix in (16), which is equivalent
to

Zﬁ?mﬁwm—Hmmm%=Q

(37)
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for all z, where H;(z) is Hf; evaluated at P;x. After an
arbitrarily small perturbation of the diagonal elements of W,
we may assume that these diagonal entries are all distinct and
positive. Then, if the left hand side of (37) is not identically
0, we are done. Otherwise, by an e-small perturbation of f
(in the sup-norm on a ball large enough to include all images
of interest), we can replace Hy in (37) by Hy + eH, with at
least two off-diagonal entries of H nonzero. The assumption
that P; P]" = I implies that P is injective, so with Ho + e H
in place of Hy, it is sufficient to show that W H # HW. Since
W is diagonal with distinct, positive diagonal entries and H
is symmetric, they commute if and only if H is also diagonal,
which contradicts the choice of H. Hence after an arbitrarily
small perturbation of W and/or fj, there is no potential function
associated with the vector field (15). O

C. Proof of Theorem II.3

Proof: Let v* denote the solution of (9) and z* = Z(v*).
Since GP(x*) = GF(GF (x*)), v* satisfies (9) if and only if
Fj(v;) = Pjz* for all j and

GP(v*) = GP(F(v")). (38)
This is equivalent to v; € Ffl(ij*) for all j and
J-1 J-1
PATY PIWos = BATYY O PIWE(v;),  (39)
7=0 J=0

for all <. Since the matrix obtained by stacking the P; is injective,
this is equivalent to v; € F j’l (Pja*) for all j and

J-1
> PIW (v; = F;(v})) = 0. (40)
j=0

Replacing both v} with F, j_l (Pjz*) gives the theorem. O

D. Proof That the PMACE Forward Operator is Invertible
Proof: Recall that the PMACE forward operator from (22) is

Fi(0;) = (1 - a)o; + aD ' F* (y FDv, ) S

J |]:D’Uj|
We first multiply both sides of (22) by F D to get
FDuv,
FDFj(vj) = ((1 — a) |FDvj;| + ay;) ‘]__qu. (42)
J

Taking absolute value of both sides and using y; > 0 allows us
to solve for |FDvj| in terms of F}(v;), y;, and . This leaves
F Duj as the only unknown in (42), so we solve for that and then
multiply by D1 F* to get v;. O
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