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Coherent Plug-and-Play: Digital Holographic
Imaging Through Atmospheric Turbulence Using
Model-Based Iterative Reconstruction
and Convolutional Neural Networks

Casey J. Pellizzari

Abstract—In order to image a distant object through atmo-
spheric turbulence, it is necessary to correct for the phase errors
that would otherwise cause rapidly varying spatial blur in a con-
ventionally focused image. One approach to solving this problem
is to illuminate an object with coherent light and to use a digital
holography (DH) receiver to form a coherent measurement. The
associated amplitude and phase can then be used with model-based
iterative reconstruction (MBIR) frameworks to estimate and cor-
rect for atmospheric phase errors from single-shot DH data (i.e.,
one sensor measurement). In this work, we present a new approach
for the reconstruction of optically-coherent images from single-shot
DH data in the presence of atmospheric turbulence, referred to
as Coherent Plug-and-Play (C-PnP). Our algorithm integrates a
convolutional neural network (CNN) image model with physics-
based models for image reconstruction from DH data corrupted by
atmospheric phase errors. C-PnP combines the modeling power of
deep neural networks with the accuracy of existing physics models.
Based on an extension of the plug-and-play framework, C-PnP uses
multi-agent consensus equilibrium to balance the influence of these
models. When compared with an existing approach using a simple
image model, C-PnP improves image quality by a factor of 2.2 X
and phase-error correction by a factor of 2.9 X, on average. We
obtain these results by considering a wide range of images, signal
levels, and phase-error strengths.

Index Terms—Atmospheric turbulence, coherent
reconstruction, digital holography, neural networks.
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1. INTRODUCTION

IGITAL holography (DH) uses coherent illumination and
D spatial-heterodyne interferometry to detect a real-valued
interference pattern, known as a hologram [1]. Encoded in the
real-valued hologram is information about the amplitude and
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phase of the illuminated object. We obtain this information by
applying a demodulation and filtering process. In practice, DH
data is corrupted by shot noise from the measurement process
and from high-spatial-frequency variations, known as speckle.
Speckle occurs when we coherently illuminate an object with a
surface that is statistically rough relative to the laser wavelength.
In many cases, aberrations within the optical path also corrupt the
phase of the received light. Such is the case when imaging objects
over long distances, since the atmosphere introduces aberrations
that distort the resulting image. Thus, to form useful images from
a DH sensor, we must overcome the limitations of measurement
noise and speckle, and we must estimate and remove the phase
errors caused by aberrations within the optical path.

A popular class of algorithms for estimating and digitally
correcting phase errors from DH data involve maximizing an im-
age sharpness metric [2]-[5]. These image-sharpening (IS) tech-
niques reconstruct images from the magnitude of the complex-
valued object reflectivity, which leads to images containing
speckle. IS algorithms are sensitive to speckle variations and
require incoherent averaging of multiple data realizations from
multiple sensor measurements, known as multi-shot DH data, to
produce accurate estimates of both the image and phase errors.
In [6], a new IS technique was developed that uses improved
parameterization of the phase-error function along with spatial
binning for speckle-contrast reduction. This new IS algorithm
works well for single-shot DH data; however, its performance
suffers in high-noise conditions and it still produces a speckled
image.

In addition to IS algorithms, regularized inversion techniques
have been proposed for reconstructing images from DH data. In
both [7] and [8], the authors present different methods for recon-
structing complex-valued images directly from the real-valued
hologram. Unfortunately, neither of these methods consider
speckle variations or phase errors in the system, both of which
degrade performance. Consequently, these frameworks would
require significant modifications for practical use.

In [9]-[11], we developed a regularized inversion approach
for DH image reconstruction. We used a Bayesian framework
for estimating the unaberrated speckle-free image, r, and any
phase errors, ¢, from single-shot DH data (i.e., one sensor mea-
surement). The approach, known as DH model-based iterative
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reconstruction (DH-MBIR), uses the expectation maximization
(EM) algorithm to jointly estimate r and ¢. While the term
MBIR represents a wide class of algorithms, in this work, we
use DH-MBIR for the specific algorithm found in [11].

DH-MBIR provides improved capabilities for reconstructing
DH images in the presence of speckle, measurement noise, and
atmospheric phase errors; however, it uses a simple analytical
image model. In particular, the algorithm uses a Q-generalized
Gaussian Markov random field (QGGMREF) to enforce correla-
tion between neighboring pixels. This approach works well for
simple images (e.g., binary resolution charts); however, it is not
sufficient for more complex grayscale objects.

Recent advances in image processing have resulted in tech-
niques that incorporate advanced image models into regularized
inversion frameworks [12]-[17]. Many of these approaches split
the estimation problem into multiple smaller problems and use
a Gaussian denoising algorithm to enforce regularization of the
image. These so-called “Plug-and-Play” (PnP) methods inherit
the image model associated with the denoising algorithm, either
explicitly or implicitly.

Of particular interest is the use of convolutional neural net-
works (CNNs) as the PnP denoiser. CNNs show an immense
capacity for learning complex image models. While CNNs can
also be used for reconstructing images directly, without iter-
ative regularized-inversion frameworks, most networks do not
explicitly incorporate fundamental knowledge of the underlying
physics that describe the sensing process. For many sensing
applications, including DH, we have a detailed understanding
of the underlying physics. Naturally, we want to include this
information to better constrain the estimation process.

In [18]-[20], the authors explicitly incorporate physics mod-
elsinto the CNN training process using so-called unrolling meth-
ods. However, unrolling methods cannot be directly applied to
our problem due to the structure of the physical forward model.
This limitation results from the fact that the forward model
for estimating the real-valued image from DH data does not
have a tractable form and must be minimized using successive
approximation with the EM algorithm [9]-[11], [21].

While unrolling methods are not feasible for our problem, we
can use PnP methods to couple physics models with advanced
image priors learned using a CNN. However, adapting these PnP
methods to reconstruct real-valued images from DH data cor-
rupted by atmospheric phase errors is not direct. Overcoming the
intractable forward model and integrating the joint estimation
and correction of the phase errors requires significant modifica-
tions to existing frameworks. In [22], we first explored the use
of the alternating direction method of multipliers (ADMM) PnP
framework [12] for coherent data. However, that approach was
for synthetic aperture lidar images in the absence of any phase
errors, and we did not use CNN image models.

Recently, a generalization of consensus optimization prob-
lems, like those solved by ADMM PnP, was developed [16].
The approach, known as Multi-Agent Consensus Equilibrium
(MACE), provides a generalized framework to balance mul-
tiple agents that have different objectives. Furthermore, it re-
laxes the constraints on the denoising operator required by the
PnP framework [13], [16], [23]. MACE has been successfully
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demonstrated for many applications that involve conventional
linear forward models [24]-[27]. However, applying it to image
reconstruction from DH data corrupted by atmospheric phase
errors is more complicated.

In this work, we present a new approach for image reconstruc-
tion from single-shot DH data that is based on an extension of the
MACE framework. We define three agents, two for updating the
image estimate and one for updating the phase-error estimate.
Our first image agent, F', favors images that are consistent with
the stochastic physics-based measurement model of a DH sensor.
To overcome the non-tractability of this coherent-physics model,
we use the EM algorithm to find a suitable surrogate. For our
second image agent, F5, we train a CNN to output images that are
consistent with a learned image model. The functional form of
F is simply a CNN that removes additive white Gaussian noise
with a fixed variance. Thus, training F5 is relatively simple and
we can update it with new and better CNN denoisers as they
become available. Finally, our phase-error agent, F, outputs
estimates of the phase errors, which are consistent with both the
DH physics model and with a relatively simple prior model. We
use the MACE framework to balance the influence of these three
agents during the estimation process.

The resulting algorithm, which we call Coherent Plug-and-
Play (C-PnP), represents a comprehensive estimation framework
that can overcome the combination of speckle, measurement
noise, and phase errors to reconstruct complex grayscale images
from a single-shot of DH data. When tested on synthetic data
over a wide range of conditions, this new approach produces
focused speckle-free images that are significantly more accurate
than those produced by previous approaches for image recon-
struction from single-shot DH data. Additionally, the increased
image quality results in better estimates of the phase errors in
nearly all cases.

Our main contributions include:

® The adaptation of the MACE framework to include the

joint estimation of the atmospheric phase errors, a high-
dimensional nuisance parameter;

® The introduction of a novel form of the MACE equations

that allow for the required use of the EM algorithm in the
formulation of the data-fidelity forward-model agent;

® The verification that the resulting algorithm produces sig-

nificantly higher-quality images when compared to DH-
MBIR over a wide range of signal levels and atmospheric
turbulence strengths;

® The demonstration that improved image modeling leads to

better estimates of the phase errors.

While our approach is based on the MACE framework, we
note that another approach could be developed based on the fast
iterative shrinkage/thresholding algorithm (FISTA) algorithms
proposed in [14] and [17]. However, implementation of these
algorithms is also not direct since they require the evaluation of
a gradient which could be difficult for our problem due to the
intractable nature of the forward model. Therefore, we choose
to adapt the MACE framework given the success of our initial
work with ADMM PnP [22].

In what follows, Section II better formulates the problem at
hand, whereas Section III provides the details associated with
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our new approach to image reconstruction from single-shot
DH data. Section IV then follows with our methodology for
implementing this new approach, and Section V provides results
with comparisons to previous approaches. In Section VI, we
conclude this paper and recap the contributions present within.

II. PROBLEM FORMULATION

In this section we describe the problem associated with re-
constructing images from single-shot DH data in the presence
of unknown atmospheric phase errors. We also motivate the
need for improved image priors that go beyond the conventional
analytical models previously used to solve this problem. Finally,
we introduce the MACE framework and discuss its limitations
for solving our problem.

A. Digital Holographic Image Reconstruction

A DH sensor allows us to measure the complex electromag-
netic field reflected off of an object using spatial-heterodyne
interferometry. Under the assumption of shot-noise limited de-
tection, we model the complex-valued measurements, y € C M
as

y=Apg +w, (D

where g € CM is the unknown complex-valued reflection coeffi-
cient for the illuminated object, w € C is the complex-valued
measurement noise, and Ay € C MxM ig a linear transform that
accounts for the propagation and measurement geometry and
that is dependent on the phase errors, ¢ [11]. For a review of the
DH sensor concept, we direct the reader to App. A.

In [11], we provided details on a generalized structure for A.
For this work, we restrict ourselves to cases where the distance
between the object and sensor is sufficiently large enough that
we may use a discrete Fourier transform (DFT) to model the
propagation of light. We also restrict our analysis to cases
in which the atmospheric turbulence is concentrated near the
sensor, resulting in a shift-invariant point spread function (PSF)
in the image domain. Our resulting model for A, is given by

Ag = D(a)D(e'"?)F, )

where D(-) denotes an operator that produces a diagonal matrix
from its vector argument, a € R is binary aperture vector that
represents the transparency of our circular aperture in the pupil
plane, and F' € CM*M j5 3 2D DFT matrix. Furthermore, we
introduce an interpolation matrix, P € RM*% where L < M,
that allows us to model the phase errors, ¢ € RZ, on a low-
resolution grid. This low-resolution representation allows us to
reduce the number of unknowns during reconstruction.

Several existing approaches for DH image reconstruction
attempt to invert Eq. (1) to obtain an estimate of the complex-
valued reflection coefficient, g [2]-[5]. However, images formed
from the magnitude, or magnitude squared, of g contain speckle.
Speckle occurs when an object’s surface is rough relative to
the illumination wavelength, resulting in g having a uniformly
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(b)

Fig. 1. Reflectance versus reflection coefficient. In (a), we show an example of
the real-valued reflectance function, r, whereas in (b), we show the magnitude
squared of a corresponding reflection coefficient realization, g.

distributed phase [28]. In this case, g is well-modeled as a con-
ditionally complex Gaussian random variable with distribution

p(glr) ~ CN(O,D(T),O). 3)

where p(+|-) represents a conditional probability distribution and
CN(p, C,T) indicates a multivariate complex normal distribu-
tion with mean, p, covariance matrix, C', and pseudo-covariance
matrix, I' [28]. Here, r is the object’s real-valued reflectance
function, which is typically a smoother quantity with higher
spatial correlation when compared to the reflection coefficient,
g [91, [28].

Fig. 1 shows an example reflectance function, r, and the
magnitude squared for a corresponding realization of the re-
flection coefficient, g. Note that r is the quantity we typically
observe in incoherent images, while |g| or |g|? is observed in
coherent images, like those from single-shot DH data. Images
formed from the amplitude, or amplitude squared, of g contain
speckle, whereas images formed from 7 do not. For pixel s € S,
the two quantities are related according to 7, = E||gs|?|rs],
where E[-|-] indicates the conditional expectation [28]. This
relationship leads to the use of so-called speckle averaging where
independent realizations of g, obtained from multi-shot DH data,
are averaged to better estimate r and reduce speckle contrast in
the image.

While it is possible to apply a smoothness constraint to g
when reconstructing images from single-shot DH data, such
an approach suffers from an inherent disagreement between
the physical model and the regularizer. Figure 1 shows an
example of |g| and illustrates that it is not smooth for diffuse
reflectors [28]. Conversely, r is a smoother quantity with higher
spatial correlation between elements. Enforcing smoothness
when reconstructing r is consistent with the physical model and
leads to more accurate reconstructions [29].

Given the complex data, y, we wish to jointly estimate the
speckle-free image, r, and the phase errors, ¢, from single-shot
DH data. Note that the data, y, is linearly related to g, but not
to r. This means that direct inversion of single-shot DH data
cannot be used to find r. Instead, we formulate this problem as
a joint maximum a posterior (MAP) estimate given by

(7, 0) = argr;lin {—logp (y|r,¢) —logp(r) —logp(¢)},
' )

where we assume that r and ¢ are independent [11].
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Fig. 2. Example image reconstructions using DH-MBIR with a simple prior

model, p(r), for a binary object (top) and a gray-scale object (bottom). The
reconstruction for the grayscale object contains noise artifacts that are inconsis-
tent with what we expect to see in natural images. Here, the prior model is not
effectivly enforcing a realistic distribution for the reconstructed image.

In previous research [9]-[11], we proposed the DH-MBIR
method to solved Eq. (4) using a simple prior model and an
adaptation of the EM algorithm to address the intractable for-
ward model. However, while the simple QGGMREF prior model
is analytically-tractable, it does not capture the subtle charac-
teristics of real image behavior. As a result, reconstructions of
complex grayscale objects contain noise artifacts that are not
consistent with what we expect to see in natural images [21].

Fig. 2 shows example image reconstructions of the DH-MBIR
algorithm for a simple binary resolution chart and a grayscale
object. In this work, the poor performance of the QGGMRF
prior model at enforcing a realistic distribution for 7 motivates
us to solve this problem using more-sophisticated image models
for p(r). Note that since the phase-error functions we wish to
estimate are relatively simple when compared to reflectance
images, we continue to use a simple and analytically-tractable
Gaussian Markov random field (GMRF) model for p(¢).

B. MACE Framework

The MACE framework is a generalization of the ADMM
PnP approach [12] that is often used to incorporate advanced
image models into the reconstruction process. It provides a set
of balance equations that allow us to moderate a solution to
a problem given multiple agents, F; for ¢ € [1,2,...N], with
differing objectives [16]. When the N agents are in consensus,
the equilibrium equation is given by

F(x') = G(x7), )
where
Fi(x1) T
F(x) = : and G(x) = ||, (6)
Fn(zn) T

and x = (2,22 ... 2%) is a set of input state vectors. Here,

F(x) is an operator formed by the application of the N agents,
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and G(x) is an averaging operator [16] where

iz%Zr (7

The solution to the MACE equations is a fixed point of
the mapping T = (2G — I)(2F — I), where I is the identity
map [16]. We can find this fixed point using the Mann iteration
with the following update

x + (1 —p)x+ pT(x), (3)

where p € (0, 1] is a scalar that controls the convergence prop-
erties of the algorithm. Note that this update step allows for the
parallel application of the N agents.

MACE is a generalization of the commonly used MAP recon-
struction given by

& = argmin {f,(z) + Bf2(2)}, )

where f1(z) = —log(ylz) and Bfs(x) = —logp(x) [16]
Here, 3 is a scalar that allows us to control amount of
regularization.

When using MACE to solve Eq. (9), we may define our agents
as proximal maps for fi and 3 f5 [16], [24]-[27], given by

. 1
Fi(x) = arggrgmn{ filz) + T‘QHI — ;1:m|2} (10a)

1
Fy(x;,) = argmin {ﬂfg(x) + ﬁﬂx - $m|2} . (10b)

These proximal maps take an arbitrary input image, x;,, and
map it to an output that is closer in proximity to the minimum of
f1 and S fs, respectively. The second term in each agent restricts
how strongly we map x;,, towards the minimum of f; or 3 fo. We
control the strength of this mapping by adjusting the parameter
o2,

Intuitively, both F; and F5 are competing agents for our image
update. The agent, I, pushes the output towards a solution that
is consistent with the physical measurements, and F> pushes
the output towards a solution that is consistent with our prior
knowlege. We use MACE to balance these two image agents
and produce an output that is consistent with both.

While we initially define our agents using proximal maps
that incorporate optimization of explicit analytical functions, a
critical advantage of using MACE is that we can move beyond
such restrictive frameworks. MACE allows us to generalize
the estimation process by replacing these proximal maps with
agents that use machine learning techniques and require no
optimization.

To see why this works, consider that Eq. (10b) is mathemati-
cally equivalent to a Gaussian denoiser [12], [23]. The operation
outputs the MAP estimate of = given a noisy input, ;,, and a
Gaussian forward model with variance, 031 = Bo?. Therefore,
we borrow from the Plug and Play approaches and replace I,
with a denoiser designed to remove Gaussian noise with standard
deviation o,. In particular, we can use a CNN denosier that has
been trained to implicitly learn p(r).
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Using a CNN Gaussian denoiser for F5 provides three primary
benefits. First, we are not required to conduct an optimization
step when applying this agent. Instead, we simply apply the
denoiser. Second, we inherit the implicit p(r) learned by the
CNN to better capture subtle image characteristics that explicit
analytical models lack. The third benefit of using a denosier for
our agent is that we can replace it with better denoisers as they
become available.

A direct implementation of the MACE framework for our
DH imaging problem is not possible for two reasons. First, we
are reconstructing the real-valued reflectance, r, directly from
data, y, and therefore the forward model is intractable. Using
Eqgs. (1)—(3) and (34), we find the form of our likelihood function
is given by

p(y|7", ¢) ~ CN(O7 Cy\r,¢7 0)7

where C|,. 4 is a dense covariance matrix given by

(1)

Cyjrp = AgD(r) Al + 021, (12)

and the superscript H indicates the Hermitian transpose [11].
The resulting log likelihood function becomes

fi(r, 8) =1og |Cyjrg| + 4™ Cypp -

From Eq. (13) we see that evaluating f;(r, ¢) requires finding
the determinant and inverse of a large dense matrix, making it
intractable to use in practice. Therefore, the proximal map in
Eq. (10a) cannot be used directly.

The second reason we cannot implement MACE directly for
our problem is that we must jointly estimate the phase errors.
As detailed in the next section, we require three different agents
operating on two separate unknowns. Our approach generalizes
the basic framework developed in [16].

13)

III. COHERENT PLUG-AND-PLAY

In this section we present our extension of the MACE frame-
work for use in reconstructing images from single-shot DH data
corrupted by phase errors. We start by defining an ideal set of
equilibrium equations and agents. Next we use the EM algorithm
to define new agents that are analytically tractable. Finally, we
present the full set of update steps for our algorithm.

A. Ideal Agents

We start by rewriting our original MAP estimation problem,
given by Eq. (4), as

(7, ) = al“glilin {fs2(r,0)} . (14)

where
fx(r,0) = fi(r,¢) + Bfa(r) + fs (¢), (15)
and
fi(r,¢) = —logp (y|r, ¢)
Bfa(r) = —logp(r)

f3(¢) = —logp (o). (16)
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Similar to the baseline MACE framework, we introduce a 3 in
front of f5 as a means to control the amount of regularization for
r when we use a denoising algorithm as our prior agent. We do
not need a similar term for f3 since we use an analytical function
that already contains a parameter to control the regularization of
?.
With Eq. (15) in mind, we define roles for three agents:
e Agent I: Enforces consistency between the image estimate
and our physical measurements
e Agent 2: Enforces consistency between the image estimate
and our image model learned using a CNN denoising
algorithm
e Agent 3: Estimates and corrects phase errors
Given these desired roles, we propose the following three
agents

. 1
Fi(7in, ¢in) = argmin {fl (7, din) + 252 |[r — Tz'n|2} ;
(17)

1
Fatrn) = avgmin { 8720 + 505 [ = .
(17b)

Fs(rin) = arg;nin {f1(rin,®) + f3()}. (17¢)
Here, F} is a proximal map for f; with respect to 7 only and F5
is a proximal map for fo. The third agent computes the MAP
estimate of the phase errors given the input image, r;,,. Note that
F3 is a function of r because f7 is a function of r.

We refer to the agents in Eq. (17) as our ideal agents. They are
designed to solve the original MAP problem defined in Eq. (14)
through the direct optimization of our intractable log likelihood
function, f7. Therefore, explicit application of agents F; and Fj
is not possible. In the next section, we adapt ideas from [9] and
use the EM algorithm to develop alternate forms of F} and Fj
that we can use in practice.

B. EM Extension

To overcome the intractable forms of F and Fj3, we de-
sign a surrogate for the log likelihood function, written as
Q(r, ¢;1', ¢'), where r’' and ¢’ are the current estimates of the
reflectance and phase errors, respectively [9]. We then use this
surrogate to define two alternate agents, Fl and Fg, that allow
us to establish a set of MACE equations that we can solve in
practice.

Surrogate functions are useful because they allow us to ap-
proximate a complex function, f, about some point, x’, with
a simpler function, @), similar to a Taylor series approxima-
tion [30]. For any function f(x), we define a surrogate function,
Q(z;2"), to be an upper-bounding function such that f(z) <
Q(z;2') + ¢ Va, where ¢ = f(z') — Q(a'; 2') is a constant rep-
resenting the difference between the two functions at the point
of approximation, 2’ [30].!

The constant, ¢, depends on the point of approximation ='. However, for
more concise notation, we drop this dependency.
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There are several properties of a surrogate function that make
them useful for optimization problems. First, the monotonicity
property implies that if we construct a surrogate at point 2’ and
minimize it with respect to =, we have also minimized f with
respect to x. That is, if Q(z;2") <= Q(2';2"), then

flx) <Q(z;2) +c < Q(2'52") + ¢ = f(2). (18)

Here, the first inequality comes directly from our definition of @,
the second inequality comes from the fact that we have reduced
Q, or at least kept it constant, and the third inequality comes
from our definition of ) evaluated at «’. The second property of
surrogate functions states that if both () and f are continuously
differentiable functions of x, then the gradients of both functions
are equal at point 2’. Lastly, the third property of surrogate
functions states that any fixed point of the surrogate function,
x*, must be a point where V f(z*) = 0. Additional properties
and explanations of surrogate functions can be found in [30].
In this work, we use the EM algorithm as a formal framework
for constructing a surrogate function for fi(r, ¢). Specifically,
we introduce g as the unobserved data which simplifies the
functional form of f;. Next, we marginalize over g by taking
the expected value. The resulting surrogate function is given by

Q(r,¢;1",¢") = Ey [~ logp(ylg,r, ¢) | 7', ¢'],
:Eg [_ 10gp(y‘g7¢)p(g|’l") | T/7¢/]a
=Qr(ri7",¢') + Qules 1, ¢') + ¢,

where E,[-|-] indicates a conditional expectation with respect to
g, ¢ is constant with respect to 7 and ¢, and

Qr(rir',¢') = Ey [¢"D(r)"'g | ', ¢'] —log|D(r)],
(20a)

19)

Qi ¢) = By | Iy~ Asgl* | 7,0/ . @0b)

By introducing ¢ in Eq. (19) we simplify the forward model,
when compared to Eq. (13), since there is a linear relationship
between y and g, and a relatively simple relationship between
g and r. Note that we still must take a determinant and inverse
in Eq. (20a); however, because D(r) is diagonal, this becomes
trivial. Also note that Eq. (19) is separable in 7 and ¢ which
further simplifies optimization with respect to each variable.

Using our surrogate function for f;, we define our new EM-
based agents as

- 1
Fl(Tm; 7’/7 ¢,) = argmin {QT(T;T,a ¢/) + 292 ||7’ - 7‘m|2} )
(21a)

1
Fatrn) = argmin {3£2(0) + 51z I = vl
21b)

Exﬂ,d)zxw%ym{Q¢@mrc¢ﬁ4—ﬁx¢»‘ (2lc)
Applying these agents represents a single iteration of the EM
algorithm. Taking the expectation in Eq. (19) constitutes the
E-step, and minimizing with respect to r and ¢ during the
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optimizations associated with Eqs. (21a) and (21c) constitutes

the M-step.
Given our EM agents, we define our equilibrium equations as
Fy(rt 7, ¢%) 7
By (r3) = |7, (22)
F3 (’F*v ¢*) ¢*
where
7= (r1 +73)/2. (23)

Equation (22) represent the basis of our C-PnP framework.
Solving this equation allow us to jointly estimate both the
real-valued reflectance and the phase errors from single-shot DH
data in a way that separates the data fidelity and prior terms for
r. Furthermore, theorem III.1 shows that, for the agents defined
in Eq. (21), any solution, [r*, ¢*|, to the EM-based MACE
equations is also a solution to the original MAP estimation
problem.

Theorem III.1: For the agents defined in Eq. (21), any so-
lution, [r*, ¢*] to the EM-based MACE equations given by
Eq. (22) also has the property that V.. , f5~ (7, ¢*) = 0, where
v = [T 51T and 7 = (1} 4+ 15) /2.

Proof: See Appendix B. |

To solve Eq. (22), we use a combination of the Mann iteration
for r and the application of Fyto update ¢. Our update equations
are given by

Fy(ry; 7, cb’)]
Fy(rz)

6 Py(, )
r<r+2p[G2w—r)—w]|,

o]

(24)
wherer = [r{, 737, 7 = (| +r,)/2, and G is the averaging
operator defined in Eq. (6). Note that the three agents can be
applied in parallel.

The separable nature of our problem ensures that sequential
updates of r and ¢ are equivalent to jointly updating the two
variables. Our approach applies the Mann iteration to update
r in a manner that converges to a fixed point of the operator
T = (2G — I)(2F — I). We also update ¢ until it converges to
afixed point of F3. Theorem I11.2 shows that when these updates
converge to a fixed point, that fixed point is also a solution
to the MACE equations defined in Eq. (22). Additionally, per
Theorem III.1, any solution to the EM MACE equations is a
point at which the gradient of our original MAP cost function is
Zero.

Theorem II1.2: When the update steps in Eq. (24) converge
to a fixed point, [w*, ¢*,r*], where w* = [w;T w3T|T and
r* = [r;T,r3T]7T, the fixed point is also a solution to the MACE
equations defined in Eq. (22).

Proof: See Appendix B. |

C. Agent Implementation

In this section, we provide an overview of how we imple-
ment our EM-based agents in practice. Appendix C-A contains
explicit details for how we generate the surrogate function and
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App. C-B and C-C provide the update equations used for both
F and Fj, respectively.

1) Image Agent, Fy: Application of the agent, F}, requires
that we first specify our surrogate function about our current
point, (1, ¢'). Once we have our surrogate, we minimize the
argument of Eq. (21a). Fortunately, the update for each pixel
during this minimization is decoupled and has a closed-form
solution. The solution is equivalent to rooting the 3rd order
polynomial given by Eq. (58). This process is well suited for
parallelization. Note that agent i3 1s parameterized by o2 , which
is shared with agent F3 and by o which is shared with agent
Fy.

2) Image Agent, F»: One of the key benefits of C-PnP is that
it allows us to replace the proximal map, given by Eq. (21b),
with a CNN denoiser, G, designed to remove Gaussian noise
with variance

Ui = fo? (25)
We therefore implement F» according to
3! (Tin) = g(rin)- (26)

While we can replace Fb with other Gaussian denoising algo-
rithms, for this work, we use a modified version of the denoising
convolutional neural network (DnCNN) architecture [31]. We
provide details for our specific network in Section IV-B. Note
that agent F; is parameterized by 3 and by o2, which is shared
with agent Fj.

3) Phase-Error Agent, 13'3: As was the case for Fl, we must
first specify our surrogate function about the current point,
(r',¢'), in order to implement agent }7_'3 Next, we minimize
according to Eq. (21c¢). Given the relatively simple structure of
atmospheric phase errors, when compared to natural images,
we use an analytical function to model ¢. In particular, we use
a GMREF given by

p(¢) 27)

1 Z |pi — 95
z eXP K 203j

{i,j}eP

Here, z is the partition function, b; ; is the weight between pixel
pairs, P is the set of all pair-wise cliques falling within the same
neighborhood, and o, controls the variation in ¢ [30].

Equation (27) is a model of the low-resolution phase errors,
¢. When applying our forward-model operator, Ay, we must
interpolate to a full-resolution representation. In this work, we
use a nearest-neighbors interpolation scheme. This simplifies the
form of P to a M x L matrix with elements in the set {0, 1}.
Each row of the tall matrix, P, has a single non-zero element
corresponding to the nearest low-resolution sample.

To evaluate agent I3, we use a single iteration of iterative coor-
dinate descent (ICD). In App. C-C, we provide the cost-function
used for updating each pixel with a 1D line search. Note that
agent Fyis parameterized by the size of the interpolation matrix,
L, the neighborhood weights, b; ;, and a;, which controls the
variation in ¢. It is also parameterized by o2, which is shared
with agent F.
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Initialize: ¢’ < 0
Repeat N; times: {outer loop}
{Initialize: r' < rj < r) + |A;Iy\°2
Repeat N, times: (inner loop)

( E-step:
0 (r;r,9") = Eg [¢"D(r)~'g | r',¢'] —log|D(r)|
Qo (957,9") = g[(,zHy As|P| 7 ¢]
M-step:

W FI(QEZ;M}
¢ F3(’7/a ¢/)
r<r—+2p[G2w—r)—w]

7 %(rl +r), ¢ ¢

Fig.3. The C-PnP algorithm consists of an outer loop used to initialize ¢ and
an inner loop to iteratively conduct the joint estimation. Here, | - |°2 indicates
the element-wise magnitude square of a vector. As noted in Theorem III.2,
when the update steps converge to a fixed point, it is also a solution to the
MACE equations defined in Eq. (22). We include the explicit form of the update
equations in App. C.

D. C-PnP Algorithm

In this section, we provide the full set of steps used in the C-
PnP framework. These steps consists of a set of nested iterations,
as shown in Fig. 3. Specifically, there is an outer loop used for
initializing the phase errors and an inner loop that implements
the update equations defined in Eq. (24). We first describe the
inner loop, which is the heart of the C-PnP framework, then
explain the utility of the outer loop.

1) C-PnP Inner Loop: In general, the steps of the inner loop
iteratively apply the E and M-steps of the EM algorithm. For
the E-step, we compute the surrogate function terms, (), and
Q4. according to Eq. (56) of App. C-A. During the M-step, we
use these functions in our agents to update r and ¢ according to
Eq. (24). We repeat the steps of the inner loop until we reach a
convergence criteria. This convergence criteria may be in terms
of how close the output of the two agents are to each other, the
change in ¢, or in terms of reaching some predetermined number
of iterations, Ny, as shown in Fig. 3.

2) C-PnP Outer Loop: While the inner loop is the heart of
the C-PnP estimation framework, we designed the outer loop
to produce improved initialization of ¢ [9], [29]. Since both
the log likelihood function and its surrogate are nonconvex, the
algorithm is likely to converge to a local minimum that is not
global [29]. With respect to the MACE framework, this means
that multiple MACE solutions exist, with some being better than
others.

To ensure we find a good solution, in the sense that it produces
a focused image, we iteratively change our initial conditions. At
the start of the algorithm, we initialize the phase-error function
with zeros. Then, for a fixed number of outer-loop iterations,
N1, we run the inner loop N> times. Each time we restart the
inner loop, r is re-initialized, but we keep the previous value
of ¢. Thus, with each iteration of the outer loop, the inner loop
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begins with a slightly better estimate of ¢ which results in better
initialization of r. On the final outer-loop iteration, we run the
inner loop until we achieve our convergence criteria.

IV. METHODS

In this section, we explain the methods used to assess the
performance of the C-PnP over a range of grayscale object types,
phase-error strengths, and measurement-noise levels. Given the
success of the DH-MBIR algorithm when compared with IS al-
gorithms [9]-[11], we use the DH-MBIR algorithm as a baseline
for comparison.

A. Data Generation

To generate synthetic test data, we used the DH simulation tool
developed in [11]. For our input reflectance functions, r, we used
the first ten images in Set12, obtained from [32]. Note that these
images were not used to train our denoiser, G. To simulate the
return field for a given reflectance function, r, we first generated
a reflection coefficient according to Eq. (3). Next, we used
the numerical techniques from [33] to propagate g through a
single phase screen located at the pupil plane. Following [33],
we generated the atmospheric phase errors using an FFT-based
technique and a Kolmogorov model for the refractive-index
power-spectral density (PSD). For this simulation, we set the
physical size of the 256 x 256 source grid to be 5 x 5 m, and
the 256 x 256 pupil-plane was 0.27 x 0.27 m. The propagation
distance was set to 5 km and our aperture pupil diameter was
D = 0.27. We characterized the strength of the atmospheric
phase errors according to the metric D/rg, where rg is the
coherence length of the phase screen. Large values of D/r
indicate phase errors with significant variation over the receiving
aperture area.

To simulate detection by a DH system using an off-axis [IPRG,
we padded the 256 x 256 propagated field to obtain an array size
of 512 x 512. Next, weapplieda 512 x 512 binary circular pupil
function, a, which had a circle of ones, 256 pixels wide, centered
in an array of zeros. After the pupil, we first applied a thin-
lens phase function which collimated the propagated light, then
applied a Fast Fourier Transform to form an image in the focal
plane. Next, we mixed the image with an off-axis reference beam
and detected the resultant power. The reference-beam power
was set at approximately 80% of the well depth per detector
element [i.e., 80% of 5 x 10* photoelectrons (pe)]. We also
modeled Gaussian read noise with a standard deviation of 40 pe
and digitized the output to 12 bits. After detection, we took an
FFT of the single-shot holographic data and isolated the signal of
interest, which was a 256 x 256 complex image of the signal in
the pupil plane. We set the signal-to-noise ratio (SNR) according
to

SNR = 2 (28)

where s2(-) indicates the variance of the vector argument.
For a complex-valued vector, x, the complex-valued mean and
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real-valued variance are given by

1 N
e = 5 ;x (29)
and
1 N
Ho) = 5 L)) GO

B. CNN Image Agent

Our CNN image agent is based on the DnCNN architecture
and uses residual learning to estimate and remove Gaussian noise
from images. We started with the Keras/TensorFlow DnCNN
code and the 400 training images found at [32] and retrained
the network using an L1 loss function. In accordance with [34],
we found the L1 loss function to produce sharper edges when
compared to the standard L2 loss function. After training for 50
epochs, we imported the network into MATLAB for use with
the C-PnP code. Note that we only trained a single network with
o, = 0.1. Fixing o,, reduces the number of hyperparameters
and simplifies training and execution since we only have to train
and deploy a single CNN.

C. Hyperparameter Selection

Prior to reconstruction, we normalized the input data, ¥, so
that it had zero mean and unit variance. To do so, we first find
the complex-valued mean using Eq. (29) and subtract that from
y. Next, we divide by the standard deviation of the result using
Eq. (30). We found this normalization process simplified the
selection of hyperparameters.

The C-PnP framework has a total of nine hyperparameters.
These parameters can be grouped according to the agent param-
eters, consisting of

e [: Size of the phase-error vector
o2 : Variance of measurement noise
o“: Strength of the proximal mapping
oz Strength of CNN Gaussian denoiser
o4: Variance in phase-error model
b;,;: Neighborhood weights for phase-error model

and the algorithm parameters, consisting of

e N;i: Number of outer loops

® Ns: Number of inner loops

® p: Convergence rate for Mann iteration

We found that many of these hyperparameters can be fixed
and still provide good reconstruction quality over a wide range
of conditions. For this work, we fix eight of these parameters and
automatically set the ninth, Ufu, based on the measured signal
strength of the input data.

Table 1 shows the values of the fixed parameters for both C-
PnP and DH-MBIR. These two algorithms share a similar nested
loop structure parameterized by Ny and Ns. To ensure a fair
comparison, we set N1 = 20 and No = 250 for both algorithms.
In addition to sharing a similar nested-loop structure, both al-
gorithms estimate ¢ using a low-resolution representation. For
both algorithms, we set L = 1282 which amounts to a down

e o o o o
SOI N0 N
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TABLE I
PARAMETERS USED FOR C-PNP AND DH-MBIR ALGORITHMS

C-PnP DH-MBIR
Common Parameters
Number of outer loops, N; 20 20
Number of inner loops N, 250 250
Size of phase-error vector, L 1282 1282
Variance in phase-error model, [N 0.1 rad 0.1 rad
Neighborhood weights for p(¢), b 3x3G(0.1) | 3x3G(0.1)
C-PnP Specific Parameters
Strength of proximal mapping, 2 0.075 -
Strength of CNN denoiser, 62 0.01 -
Convergence rate for Mann iteration, p | 0.8 -
DH-MBIR Specific Parameters
Image-model parameter, y - 3
Image-model parameter, T - 0.1
Image-model parameter, ¢ - 2
Image-model parameter, p - 1.1

sampling of the raw data size, M = 2562, by a factor of 1/4. We
also set o, = 0.1 rad, and used a 3 x 3 neighborhood for both
algorithms, where we set the neighborhood weights, b, using a
Gaussian kernel, G(-), with a standard deviation of 0.1 pixels.
For the MBIR-specific parameters, we used v =3, T'= 0.1,
q = 2,and p = 1.1 for the QGGMRF image model [11]. For the
C-PnP-specific parameters, we fixed p = 0.8 and o = 0.075.
Through trial and error, we found these two C-PnP parameters
to work well over a wide range of conditions.

For the noise parameter, 02, we found that a higher value
produced better estimates of the phase errors, but it also reduced
the image quality by increasing the contrast. Therefore, we used
ahigher value, a?u = 0.3, during the iterative phase-initialization
process, and an equal or lesser value during the final outer-loop
iteration. This final lower value was set based on the SNR of the
dataaccording to 02, = 1/SNR. Note that we measured the SNR
directly from the noisy hologram spectrum using the method
described in [10].

D. Quality Metrics

To measure the distortion between the reconstructed
images, 7, and the simulation input, 7, we used
the SSIM function in MATLAB with parameters
[aluminancmBcontrast;73tr1¢ctu7’e] = [025 0.50 100] These
values place more emphasis on the structural similarity and less
on the luminance similarity. We found these values useful in
penalizing over-regularization and blurring.

To measure the quality of the reconstructed phase error, we
compare the interpolated phase-error estimate, PQAS, to the actual
full-resolution phase error. We used a metric referred to here as
the peak Strehl ratio, .S),. We define .S, as

S o {PSFcorrected}max
p )
{PSFifraction limited } max

3D

where {-}n.x indicates that we take the maximum value of
the argument, PSF gy ected 1S the point-spread function (PSF)
of the imaging system after correction of phase errors, and
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Fig. 4.

True reflectance function, r, for Figs. 5 and 6

PSFiffraction limited 15 the diffraction limited PSFE. Thus, the peak
Strehl ratio is a normalized measure of how close the imaging
system performance is to the diffraction limit, neglecting the
effects of tilt.

Finally, to measure how well our C-PnP reconstructions solve
the MACE equations, as defined in Eq. (22), we measured the
normalized MACE Eq. error, defined as

B G g < S [T [ YOI
Il il ol

Here, the metric € tells us how well the left and right sides of the
MACE equations agree.

V. RESULTS

Using the DH simulation environment described above, we
generated test data with SNR = [20, 10, 5, 2] and D/rg =
[0, 5, 10, 15] for each of the tenimages (4 x 4 x 10 = 160 total
realizations). In Figs. 5 and 6, we show example reconstructions
for two of the ten test images, as a function of D/rg. On the
top row, we show the corrupted images formed by a simple
back projection with no phase correction, given by | A% y|°2. We
show the DH-MBIR and C-PnP reconstructions in the middle
and bottom rows, respectively. Additionally, we provide the
true reflectance functions in Fig. 4. These results show a stark
difference between the two algorithms. Similar to Fig. 2, the DH-
MBIR reconstructions contain high-spatial-frequency variations
that resemble salt and pepper noise. We conjecture that these
artifacts may be caused by extremely dark and bright speckles in
the initial estimate which are not regularized sufficiently by the
QGGMRF model. Conversely, the C-PnP algorithm produces
much more-natural looking images with no noticeable speckle
variations.

While Figs. 5-6 show a qualitative improvement in recon-
struction quality when using C-PnP, we also provide a quantita-
tive comparison in Figs. 7-8. In Fig. 7, we plot image quality,
measured using SSIM, as a function of the phase-error strength,
D/rg, for the four different SNR values. The results show
that C-PnP produces higher quality images when compared
with DH-MBIR. In fact, C-PnP produces a higher SSIM in all
cases. Furthermore, over the 160 realizations, the average C-PnP
SSIM value was 2.2 x higher than the average DH-MBIR SSIM.
This doubling of image quality is significant; however, it is not
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Fig. 5. Example results as a function of phase-error strength, D /rq, for SNR=10. The top row, labeled |A£{ y|°2, shows a back projection of the data with
no phase error correction. The middle row shows the DH-MBIR reconstructions obtained using an analytical QGGMRF image model. These DH-MBIR images
contain artifacts in the form of high-spatial-frequency variations. The bottom row shows the C-PnP reconstructions obtained using a CNN image model. The C-PnP
images more-closely resemble the true reflectance function shown in Fig. 4.

DH-MBIR
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0 S 10 15
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Fig. 6. Example results as a function of phase-error strength, D /rq, for SNR=10. The top row, labeled |A6{ y|°2, shows a back projection of the data with
no phase error correction. The middle row shows the DH-MBIR reconstructions obtained using an analytical QGGMRF image model. These DH-MBIR images
contain artifacts in the form of high-spatial-frequency variations. The bottom row shows the C-PnP reconstructions obtained using a CNN image model. The C-PnP
images more-closely resemble the true reflectance function shown in Fig. 4.
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Image reconstruction quality as a function of turbulence strength, D / r0, for SNRs of 20, 10, 5, and 2. Here, the lines show the average value taken over

ten different images and the error bars show the corresponding standard deviation. We also plot each data point to show the distribution of values. The results show
that, by incorporating a more-advanced image model learned by a CNN, we obtain significantly higher quality images.
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Degree of phase-error correction, Sp, as a function of turbulence strength, D /rg, for SNRs of 20, 10, 5, and 2. Here, the lines show the average value

taken over ten different images and the error bars show the corresponding standard deviation. We also plot each data point to show the distribution of values. These
plots show that, in a joint estimation framework, a more-sophisticated image model results in higher-quality phase-error corrections.

surprising given that we designed the algorithm to incorporate
a more-advanced image model.

In Fig. 8, we plot the quality of the phase-error correction,
measured using S, as a function of the phase-error strength,
D/ro, for the four different SNR values. These plots show a
less-intuitive result in the quality of the phase-error estimate.
Specifically, C-PnP produces a higher peak Strehl ratio in nearly
all cases. Over the 160 realizations, the average C-PnP peak
Strehl ratio was 2.9 higher than the average DH-MBIR peak
Strehl ratio. While this difference is less pronounced for lower
values of D/rg, it becomes more significant as the turbulence
strength increases. This nearly 3 X improvement in average peak
Strehl ratio may be surprising since the two algorithms both
estimate ¢ using the same prior model, p(¢). However, since
we are jointly estimating the two quantities using an iterative
process, a better estimate of r results in a better estimate of
¢. The two are jointly tied together through the EM surrogate
function.

In addition to producing more-accurate reconstructions, we
also find that the C-PnP algorithm consistently produces results
that solve the MACE equations given in Eq. (22). Figure 9 shows
the normalized MACE equation error, €, for all 160 reconstruc-
tions. As shown in the plot, we found that SNR is a major
factor in how well the output of the C-PnP algorithm solves
the MACE equations. However, even for the cases where SNR
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Fig. 9. Normalized MACE equation error, €, as a function of SNR for all 160
reconstructions. These results show that the C-PnP algorithm consistently solves
the MACE equations given in Eq. (22).

= 2, e was still less than 0.03, and the highest error measured
was 0.042. This error metric decreased by several orders of mag-
nitude as the SNR increased. Thus, we surmise that the C-PnP
algorithm consistently solves the MACE equations, as defined in
Eq. (22).
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(b)

Overview of DH system using an off-axis IPRG. (a) We use a laser source to flood illuminate an object. In this example, atmospheric turbulence corrupts

the the scattered signal light, resulting in isoplanatic phase errors, ¢. The scattered light passes through the pupil-aperture function, a, where it becomes collimated.
From the pupil plane, we focus the collimated light onto a detector array where we mix it with a reference field to form the hologram. In (b), we show conventional
image-processing steps for a DH system using an off-axis IPRG. Here, we show the magnitude squared of any complex-valued quantities. To extract the signal,
we start with a real-valued digital hologram (top left), then take a 2D FFT to obtain the complex-valued holographic spectrum (top right). Note that the digitized
hologram has low contrast. Next, we filter and demodulate a section of the spectrum (bottom left). This subset of the spectrum, y, represents a complex image of
the signal field in the pupil plane. Finally, for basic image formation, we take an inverse FFT (IFFT) of y to form a complex image (bottom right).

VI. CONCLUSION

In conclusion, we presented a new approach for single-shot
DH-image reconstruction that couples a CNN-based image
model with stochastic physics-based models. Using the EM
algorithm, we extended the MACE framework to overcome
the intractable forward model associated with reconstructing
real-valued speckle-free images from coherent data. We also
extended the framework to include the joint estimation of
atmospheric-phase errors. We designed three agents, two image
agents that ensure that the resulting images are both natural
looking and are consistent with the data we measured, and a
phase-error agent that ensures we produce a focused image.
Our approach balances the influence of these three agents to
produce a comprehensive framework capable of overcoming
a combination of speckle variations, measurement noise, and
phase errors.

When compared to the DH-MBIR algorithm from [11], C-PnP
produces significantly higher-quality images. Over the range of
images, SNRs, and turbulence strengths we considered, C-PnP
consistently produces reconstructions with higher SSIM values.
On average, the C-PnP SSIM was 2.2 times higher than the DH-
MBIR SSIM value. This improvement in image quality also lead
to an improvement in phase-error estimation. On average, the
C-PnP peak Strehl ratio was 2.9 times higher than the DH-MBIR
peak Strehl ratio, even though the two algorithms use the same
approach for jointly estimating ¢. This surprising result shows
that improved image estimates, as part of a joint reconstruction
framework, lead to better atmospheric-phase-error estimates.

APPENDIX A
REVIEW OF DIGITAL HOLOGRAPHY SENSOR MODEL

In this section, we provide a brief overview of the DH sensor
concept and measurement model. For a more-comprehensive ex-
planation, we direct the reader to [11], [35]. Fig. 10(a) illustrates

an example DH system using an off-axis image-plane recording
geometry (IPRG) [11], [35]. The field reflected by the object
encounters unknown atmospheric-phase errors, ¢. Note that ¢
is a high-dimensional phase function caused by variations in the
index of refraction of the atmosphere[36]. After reaching the
sensor, the reflected field is imaged onto a detector array where
itis mixed with a reference field, to form the digital hologram [1].
The intensity of the interference pattern obtained when mixing
our signal field, S, with our reference field, R, is given by

=15+ R[%

) ) (33)
=|S|*+|R|*+ SR+ SR",

where * indicates a the complex conjugate operator. In Eq. (33),
the first two terms are commonly known as the zero-order terms
and last two terms are known as the cross terms. The cross terms
are of particular interest since they contain information about the
amplitude and phase of the complex-valued signal. By offsetting
our reference from the primary axis of propagation, we modulate
the interference pattern in a way that makes separating the four
terms in Eq. (33) trivial [10], [11].

Fig. 10(b) shows the basic processing steps used to recover
complex image information from the real-valued digital holo-
gram [11]. We first extract a discrete version of the complex-
valued signal from the spectrum of the digital hologram. The
top right plot in Fig. 10(b) shows the hologram spectrum where
the cross terms appear as two diagonally-separated circles. Note
that we suppressed the zero-order terms for easier viewing. We
spatially filter one of the cross term to obtain the complex image
spectrum, y € CM shown in the bottom left plot of Fig. 10(b).
Due to the discrete Fourier transform (DFT) relationship be-
tween the pupil plane and the image/detector array, this spectral
information, y, is a complex image of the signal at the pupil
plane. Finally, we can form a basic image by digitally back
propagating y to the image plane using the appropriate Fresnel
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or Fraunhofer diffraction model and then taking the magnitude
squared.

In our model for the complex-valued data, , given by Eq. (1),
we assume our DH sensor is shot-noise-limited and we model
our measurement noise as

p(w) ~ CN(0,021,0), (34)

where, [ is the identity matrix and 0721) is the variance of the
measurement noise.

Using Egs. (1), (3) and (34), we model the data from our DH
sensor as a conditionally complex Gaussian random variable
with distribution

p(y|7", ¢) ~ CN(O7 Cy\r,(i)a 0)7 (35)
where C|,. 4 is a dense covariance matrix given by
Cyjrp = AgD(r) A + o2 1, (36)

and the superscript H indicates the Hermitian transpose.

APPENDIX B
THEOREMS WITH PROOF

Theorem III.1: For the agents defined in Eq. (21), any so-
lution, [r*,¢*] to the EM-based MACE equations given by
Eq. (22) also has the property that V. 4 fs~ (7, ¢*) = 0, where
r* = [T T and 7 = (r] +13) /2.

Proof: If [r*, ¢*] is a solution to the EM-based MACE equa-
tions given by Eq. (22), then

V., Q. (T 7%, ¢") + % (7 —ry) =0, 37)
T e e E <
V¢Q¢(¢*7 77*7 ¢*) + V¢f3(¢*) = 0, (39)

From the separable nature of (), and from the gradient prop-
erty of surrogate functions [30], we know that at the point of
approximation, 7", ¢*,

VieQr(T7,07) = V,Q(", 9%, ¢") = V, f1(7", 97),
VoQo (057", 0%) = VoQ(7™, ¢%;17,¢") = Vo f1(7", ¢7).

(40)

Substituting Eq. (40) into Eqgs. (37-39)
VoA( )+  (F -r) =0, @D
VBRI () =0, @)
Vo 1T, 6%) + Vo f3(67) = 0, (43)

Adding Egs. (41) and (42), we get

—% * _x 2 % 7'* + 7'*
vrfl(r >¢ ) + V'rﬂfQ(T' ) + ; (T‘ — 122> =0.
(44)
Next, we use 7* = (r] + r3)/2 to simplify Eq. (44), leaving

Vi f1(7,¢%) + VB f2(77) = 0. (45)
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When Eqgs. (43) and (45) are true, then

Vo s (7, ¢%) =0, (46)
and

Ve fs2(7,97) =0, (47)

respectively. Finally, it is also true that
waz (77*, ¢*) =0. (48)
|
Theorem II1.2: When the update steps in Eq. (24) converge
to a fixed point, [w*, ¢*,r*], where w* = [wi?, w3T]T and
r* = [T, r3T]7T, the fixed point is also a solution to the MACE

equations defined in Eq. (22).
Proof: If [r*,w*, ¢*] is a fixed point of the update steps
defined in Eq. (24), then

w [Fl (;12(77:2) ¢ )} (492)
¢* = F3(7, ¢"), (49b)
r'=r"+2p[G (2w —r*) — w]. (49¢)
From Eq. (49¢), we get
G 2w" —1r*) = w" (50)

Using w = [wiT, wiT]T, v* = [r;T, 7377, and our definition

for the averaging operator, G, we rewrite Eq. (50) as

* * * * [, %
1 2wy — i 4 2wh —r3) _|wi
2 | (Qwi — 7] +2w5 —13) | (w3 |’
s ] r
wi +wy — 252 wq
rirs - * | 9
wi +wy — —5=2 | W2
%7 _r’iJrr;
" 2|
w 11773
= 2 (51)

Next, Eq. (49a), 7* = (r] + r3)/2, and Eq. (51) together results
in the following relationship

Fy(ri; 7 <z>*>} K ]
) ) =1, 52
[ Fy(r3) G 62
Finally, we include Eq. (49b) to get
Fy(r3; 7, ¢%) [
B(ry) | = |7, (53)
By, ¢%) K
which are the MACE equations defined in Eq. (22) |
APPENDIX C

UPDATE EQUATIONS

In this section, we provide details about how we establish the
surrogate function and we provide the update equations used to
implement our agents.



1620

A. E-Step: Update for Surrogate Function

To evaluate the expectation with respect to g in Eq. (19), we
start by defining the conditional posterior distribution of g. In[9],
we showed that this distribution is complex Gaussian with mean

1
= CU—QAgy, (54)
and covariance
1 -1 o2
C= UTAQI,AW +D() Y =D . +wga (55)

The approximation in Eq. (55) assumes that A% A, ~ I. In
practice, we have found this approximation to work well [9]—
[11]. Furthermore, we can modify the spatial-filtering of the
hologram spectrum to make the approximation exact [10]. How-
ever, this modification reduces the size of the data, y.

Using Eqgs. (54-55), we can write Eq. (19) as

Qr. ¢, ¢') = Qr(r;r', ¢') + Qu(57',¢') + ¢

1
— 0—22Re {yHA¢M}

w

N
1
+ 35 (Coi+ il?) +1og D) + ¢
i=1

(56)
where y; is the i*" element of the posterior mean, C; ; is the i*"
diagonal element of the posterior covariance, and c is constant
with respect to r and ¢.

B. M-Step: Update for F

For the EM-based image agent, Fy, there is no coupling
between the elements of r. Therefore, we update each element,
rs, independently of the others with a closed-form solution.
Starting with Eq. (21a), we write the 1D cost function for the
st" element as [11], [21]

Cs7s+|/'65|2 1 2
T-ﬁ-ﬂ (7“5 —27“57"175) ,
(57)

where 7 , is the s element of the input state vector, ;. Note
that Eq. (57) depends on 7’ and ¢’ because C' and p depend on
r’ and ¢'.

To minimize Eq. (57), we differentiate with respect to r;, set
the left-hand side equal to zero, and multiply both sides by 72.
The result is a 3"¢ order polynomial given by

c(re;ry, v, ¢') =logrs+

0= alrg + ozgrg + aszrs + ay, (58)
where
—T1,s 2
=3 =— =1, as=—(Ci; + |ml”) -
aq O'%, (0%) O'% , Q3 , Qg ( s + |,LL ‘ )
(59

Thus, we update each element, 7, by simply rooting Eq. (58).
The cubic equation provides a general closed-form solution for
the roots of a 3" order polynomial. If multiple real-valued roots
exist, we use Eq. (57) to determine the root with the lowest cost.
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C. M-Step: Update for }:7‘3

Similar to the reflectance update, we also use ICD to update
the phase errors. Furthermore, we use a nearest-neighbors in-
terpolation matrix, P € RMxL a5 described in Section I1I-C3,
that maps ¢ € R’ to the full M x M size required for use in the
forward model. Our 1D cost function for element, ¢, is given
by

1 _
e(sir,¢) = —|xsl cos (Lix—ds)+ 5z D biglda—5f%,
% jE€Bs
(60)
where

2
Xs = =5 [PT (y" Aop)], - (61)

Ow

In Eq. (60), j € Os is an index over neighboring phase samples
and Zy indicates the the phase of the complex-valued scalar, x.
The operator A indicates we apply A using zeros for ¢. This
acts to propagate p to the pupil plane, but does not apply the
phase errors. Intuitively, x, is the difference between the fields on
either side of the phase screen, summed over all high-resolution
points that correspond to the single low-resolution point, ¢,
being updated.
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