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In this paper, we present experimental results for image reconstruction, with isoplanatic phase-error correction,
from single-shot digital holography data. We demonstrate the utility of using a model-based iterative
reconstruction (MBIR) algorithm to jointly compute the maximum a posteriori estimates of the phase errors
and the real-valued object reflectance function. Specifically, we show that the MBIR algorithm is robust to noise
and phase errors over a range of conditions. © 2017 Optical Society of America

OCIS codes: (100.3190) Inverse problems; (100.3020) Image reconstruction-restoration; (010.7350) Wave-front sensing.
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1. INTRODUCTION

Digital holography (DH) can be used to sense both the ampli-
tude and phase information returning from an actively illumi-
nated object [1]. In practice, DH systems are sensitive to phase
errors caused by index-of-refraction perturbations in the atmos-
phere or optical systems. These errors can often be estimated
directly from the DH data. For wavefront sensing applications,
the estimate of the phase errors is the desired sensor output [2].
Alternatively, for imaging applications, the phase errors must be
estimated and corrected to form focused images.

Conventional techniques used to estimate phase errors
from DH data involve maximizing an image sharpness metric
[3–5]. These image-sharpening (IS) techniques reconstruct the
complex-valued reflection coefficient, g , given by the complex-
valued ratio of the reflected field to the incident field. For sur-
faces that are rough relative to the illumination wavelength, this
leads to images with high spatial-frequency variations known as
speckle. IS algorithms are sensitive to speckle variations and
require incoherent averaging of multiple data realizations to
estimate the phase errors with low error [3].

Recently, we developed a model-based iterative reconstruction
(MBIR) algorithm for jointly computing themaximum a posteriori
(MAP) estimates of the phase errors, ϕ, and the real-valued reflec-
tance, r, from single-shot DH data [6]. The reflectance is given by
the real-valued ratio of the reflected power to the incident power.
Furthermore, the reflectance can be expressed as r � E �jgj2�,
where E �·� indicates the expected value. The reflectance, in gen-
eral, is smoother and has higher spatial correlation as compared
to g. We are accustomed to seeing r in conventional images,

and it is of greater interest for many imaging applications.
Additionally, by reconstructing r, we can leverage its higher spatial
correlation to better constrain the estimation process and produce
more accurate estimates of the phase errors with less data and less
signal. In [6], theMBIR algorithm was shown to be robust to high
noise and strong phase errors when tested on synthetic data.

In this paper, we analyze the performance of the MBIR
algorithm using nonsynthetic, experimental data. First, we
describe the laboratory setup used to generate DH data over
a range of signal-to-noise ratios (SNRs) and atmospheric tur-
bulence strengths. We then compare reconstructions from the
MBIR algorithm to those from an IS algorithm.

2. EXPERIMENTAL SETUP

Figures 1 and 2 describe our experimental setup. For our master
oscillator (MO) laser, we used an Oxxius laser source with
300 mW of continuous-wave power and approximately 50 m
of coherence length at 532 nm. We used a half-wave plate
and polarized beam-splitting cube to create two optical legs.
In the first optical leg, we coupled the beam from the MO
laser into a single-mode, polarization-maintaining (PM) fiber
through a variable neutral-density (ND) filter and a half-wave
plate. We then used a collimating lens and 20× optical beam
expander to flood-illuminate the object. In the second optical
leg, we coupled the beam from the MO laser into a separate
single-mode, PM fiber through a half-wave plate to create an
off-axis local oscillator (LO). This off-axis LO created a quasi-
uniform reference beam with the appropriate tilt for digital
holographic detection in the off-axis image plane recording
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geometry (IPRG) [2]. For detection, we used a single lens to
image the scattered light from the object onto the focal-plane
array (FPA) of a Guppy PRO f-125 FireWire camera. We saved
the recorded digital holograms in a 964 × 964, 16-bit TIFF file.

We positioned an Air Force resolution chart, backed by
cardstock, 9 ft away from the imaging lens and ensured that
it was uniformly illuminated. In addition, we positioned the
beam expander to minimize specular reflections from the object.
After setting up the imaging system with an image distance of
18 0 0, we simulated both weak and strong isoplanatic turbulence
by placing different phase screens directly in front of the imaging
lens. A clear piece of plastic was used to simulate the weak
turbulence, and a Lexitek phase screen was used for the strong
turbulence. We recorded digital holograms at four different sig-
nal levels, which we varied with the adjustable ND filter.

The digital hologram, h, must be demodulated and filtered
to obtain the data, y, used for image reconstruction. Figure 3
shows the steps used to obtain y for both the weak-turbulence
(top row) and strong-turbulence (bottom row) cases. In looking
at the spectrum of the strong-turbulence data, we see an
irregularity towards the top of the pupil-plane image, which
may have been caused by a reflection from the Lexitek phase
screen. To avoid this irregularity, we used a smaller subset of
the pupil-plane image samples, as indicated by the green
dashed square. The resulting, smaller pupil-plane image data,
y, was 200 × 200 pixels compared to 338 × 338 pixels for the
weak-turbulence data.

The solid white lines in Fig. 3 indicate the boundary of
the binary aperture transmission function, a, used for image
processing (i.e., a � 1 inside the white line and zero elsewhere).
We used a circular aperture for the weak-turbulence data that
matched the pupil function of our imaging system. For the
strong-turbulence data, we used a square function that filled
the entire data window. The red dashed line in Fig. 3 shows
a region of the data, yn, which contains primarily measurement
noise. To quantify the SNR, we define the samples in the solid
white region, which contains the signal, as ys and compute SNR
according to

SNR � s2� ys� − s2� yn�
s2� yn�

; (1)

where s2�·� computes the sample variance of the argument.

3. ESTIMATION FRAMEWORK

The output data, indicated by a green dashed line in Fig. 3, is a
complex-valued pupil-plane image and can be represented by
a vector, y ∈ CN . In [6] we showed that y can be formulated
using an additive noise model given by

y � Af � w: (2)

Here, f ∈ CN is the field in the object plane given by f � Γg,
where g ∈ CN is the object’s complex-valued reflection coeffi-
cient and Γ ∈ CN×N is a diagonal matrix that applies the
object-plane, quadratic-phase factor from the Fresnel propaga-
tion integral [7]. Given a reflectance function, r, the reflection
coefficient, g , can be modeled using a complex normal distri-
bution given by p�gjr� ∼ CN �0;D�r��, where D�·� denotes an
operator that produces a diagonal matrix from its vector argu-
ment. The vector w ∈ CN in Eq. (2) is the measurement noise
that has a complex normal distribution, p�w� ∼ CN �0; σ2wI�,

Fig. 1. Simplified diagram of our experimental setup. The output
from a 532 nm laser was split into two paths. One path was attenuated
by a variable ND filter and sent through a beam expander to illuminate
the object. The other path was interfered with the scattered signal
using an off-axis IPRG. A phase screen was placed in front of the
imaging lens to simulate isoplanatic atmospheric turbulence.

Fig. 2. Images of the transmitter and receiver optics (left) and the
object (right) used in our experiment. The red-dashed box on the object
shows the approximate field of view (FOV) for the imaging system.

Fig. 3. Example of weak-turbulence (top row) and strong-
turbulence (bottom row) data. The left column shows the raw 964 ×
964 digital holograms, h. The second column shows the spectrum
magnitude of h along with the regions of interest. The green dashed
line shows the subspace used for the complex pupil image, y, having a
magnitude shown in the third column. The white solid line shows the
boundary of the binary aperture transmission function, a, used for
processing, and the red dashed line shows a region of the data, yn,
which contains primarily measurement noise used for computing
the SNR. Note that the center 100 pixels × 100 pixels of the spectrum
have been masked for plotting purposes only.
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where σ2w is the noise variance, and I is the identity matrix.
Finally, the matrix A accounts for the propagation and measure-
ment geometry and can be decomposed as

A � D�a�D�expf jϕg�F : (3)

In Eq. (3), a ∈ RN is the entrance-pupil transmission function
and ϕ is the phase-error function. Finally, we choose the
reconstruction parameters such that F ∈ CN×N is a two-
dimensional discrete Fourier transform (DFT) matrix scaled
so that FHF � I , where the superscript, H , indicates the
Hermitian transpose.

Our goal is to jointly compute the MAP estimates of r and ϕ
from y, which are given by

�r̂ ; ϕ̂� � argmin
�r;ϕ�∈Ω

f−log p� yjr;ϕ�p�r� log p�ϕ�g; (4)

where Ω represents the jointly feasible set. Direct optimization
of Eq. (4) is not practical, because it requires computing the
determinate and inverse of a dense matrix. Instead, we use
the expectation maximization (EM) algorithm to replace the
cost function with a surrogate function given by

Q�r;ϕ; r 0;ϕ 0� � E �− log p�yjf ;ϕ�p�f jr�p�r� log p�ϕ�jy; r 0;ϕ 0�;
(5)

where r 0 and ϕ 0 are the current values of r and ϕ, respectively,
and the expectation is taken over the random vector, f , to form
the Q function [6]. Evaluation of the expectation in Eq. (5)
constitutes the E-step of the EM algorithm.

Figure 4 shows the alternating minimization approach used
for implementing the M-step. We used iterative coordinate
descent (ICD) to minimize Q with respect to r and ϕ [8].
Appendix A provides details on the exact form of Q as well
as the prior models and parameters used for this experiment.

We use the iterative initialization process for ϕ described in
[6]. The EM algorithm is run for NK iterations. We then re-
start the process by using our last estimate of ϕ as the new ini-
tial estimate, but reinitializing r as r 0 ← jAHyj°2. This process is
repeated NL times. On the NLth time, we allow the algorithm
to run until kr�k� − r�k−1�k1∕kr�k−1�k1 ≤ 1 × 10−4, where k is
the iteration index and k · k1 indicates the L1 norm of a vector.
For this work, we set NK � 10 and NL � 50 for the
weak-turbulence reconstructions and NK � 100 for the
strong-turbulence reconstructions.

Fig. 4. EM algorithm for joint MAP estimation of r and ϕ. Here,
j · j°2 indicates the element-wise magnitude square of a vector.

Fig. 5. (a) 338 × 338 weak-turbulence reconstructions, and (b) 200 × 200 strong-turbulence reconstructions. For both subplots, the left column
shows the original blurry image, the middle column shows the image-sharpening results, and the third column shows the MBIR results. It is
important to note that these results are shown using a log-based decibel scale.
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4. RESULTS AND CONCLUSIONS

We chose to compare the MBIR algorithm to the point-
by-point IS approach presented in [3] using the M 2 sharpness
metric. The algorithm computes the phase-error estimate
according to

ϕ̂ � argmax
ϕ

f−k�jFHD�expfjϕg�Hyj°2�°0.5k1g; (6)

where ° indicates the application of an exponent to each vector
element. Following the process described in [3], we used 20
iterations of conjugate gradient to optimize Eq. (6), and the
algorithm was initialized using a 15th-order Zernike polyno-
mial estimate obtained using an iterative method to estimate
only up to the 3rd-order terms, then up to the 4th, and so
on, continuing up to 15th order.

Figure 5 shows reconstructions for both the IS and MBIR
algorithms along with the original blurry images for four differ-
ent SNRs and two turbulence strengths. To compress the large
dynamic range that occurs in coherent images, we present
the images using a log-based decibel scale given by rdB �
10 log10�r̃�, where r̃ ∈ �0; 1� is the normalized reflectance func-
tion. Figure 6 shows the phase-error estimates corresponding to
the reconstructions in Fig. 5.

The weak-turbulence results show that the IS algorithm is
able to correct most of the phase errors; however, the resultant
images are speckled, they have low contrast, and there is
residual blurring. On the other hand, the MBIR algorithm pro-
duces images that have high contrast, with most of the object
near the peak image value and the background more than
30 dB below that. Furthermore, the MBIR algorithm produces
images that have much less speckle variation and residual blur-
ring compared with the IS algorithm. At the lowest SNR, the
MBIR algorithm makes it easier to distinguish the object from
the background.

The strong-turbulence results show that the IS algorithm is
not able to estimate strong phase errors from single-shot data.
Conversely, the MBIR algorithm is able to produce highly
focused images with reduced speckle variations and high

contrast at all but the lowest SNR. These experimental results
closely resemble the simulated results in [6].

In summary, we have experimentally demonstrated the
utility of the MBIR algorithm for image reconstruction from
single-shot DH data. The MBIR algorithm was shown to out-
perform an IS algorithm over a range of SNRs and turbulence
strengths. Overall, the MBIR algorithm was able to produce
highly focused images with reduced speckle variation and high
contrast for all but the lowest SNR cases.

APPENDIX A: EM SURROGATE FUNCTION

Following [6], the EM surrogate function is given by

Q�r;ϕ; r 0;ϕ 0� � −
1

σ2w
2RefyHAϕμg � log jD�r�j

�
XN
i�1

1

ri
�Ci;i � jμij2�

�
X

fi;jg∈P
bi;j

jΔr jp
pσpr

 �� Δr
T σr

��q−p
1�

�� Δr
T σr

��q−p
!

�
X

fi;jg∈P
bi;j

jΔϕj2
2σ2

ϕ

: (A1)

Here, Ref·g indicates the real part of the argument, the super-
script, H , indicates the Hermitian transpose, and the subscript,
ϕ, indicates the dependence of A on ϕ. The variables μ and C
are the mean and covariance matrix for the complex normal
posterior distribution, p�f jy; r;ϕ�, and are given by

μ � C
1

σ2w
AH
ϕ 0y (A2)

and

C �
�
1

σ2w
AH
ϕ 0Aϕ 0 �D�r�−1

�
−1

≈D

 
σ2w

1� σ2w
r

!
: (A3)

For circular apertures, we approximate the covariance matrix
as shown in Eq. (A3), since it simplifies computations, and
we have found that it works well. For square apertures, the
approximation in Eq. (A3) is exact.

To reduce the number of unknowns, we allow the phase-
error function, ϕ, to be modeled on a grid that has lower res-
olution than the measured data, denoted as ϕ. To scale ϕ to the
resolution of ϕ, we use a nearest-neighbor interpolation scheme
given by ϕ � Pϕ, where P is an N × N∕n2b interpolation
matrix with elements in the set {0, 1}, and nb is the factor
of subsampling used in both dimensions. In this work, we used
nb � 4.

The last two terms in Eq. (A1) result from using Markov
random field prior models for r and ϕ. The variable bi;j is
the weight between neighboring pixel pairs (ri and rj, or ϕi
and ϕj), and P is the set of all pair-wise cliques falling within
the same neighborhood. We used a 3 × 3 Gaussian kernel
with standard deviation 0.1 pixels for b. Δr � ri − rj and Δϕ �
ϕi − ϕj are the difference between pixel-pair values, T is a
unitless threshold value that controls the transition of the
potential function from having the exponent, q, to having
the exponent, p [9]. In this work, T � 0.1, q � 2, and

Fig. 6. IS and MBIR phase error estimates, ϕ̂, for (a) the weak-
turbulence cases and (b) the strong-turbulence cases, corresponding
to Fig. 5.

106 Vol. 35, No. 1 / January 2018 / Journal of the Optical Society of America A Research Article



p � 1.1. The variable, σr , controls the variation in r̂, and σϕ
controls the variation in ϕ̂. We set σϕ � 0.5 rad for weak tur-
bulence and σϕ � 1.0 rad for strong turbulence. The values of
σr and σw were set according to σr ← γ−1�s2�r�0���0.5 and σw ←
�N −1yH y�0.5, where r�0� is the initialized value of r, γ is a unitless
parameter introduced to tune the amount of regularization in r,
and s2�·� computes the sample variance of a vector’s elements.
We set γ � 2 for N � 3382 and γ � 1.5 for N � 2002.
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