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This paper explores the use of single-shot digital holography data and a novel algorithm, referred to as multiplane
iterative reconstruction (MIR), for imaging through distributed-volume aberrations. Such aberrations result in a
linear, shift-varying or “anisoplanatic” physical process, where multiple-look angles give rise to different point
spread functions within the field of view of the imaging system. The MIR algorithm jointly computes the maxi-
mum a posteriori estimates of the anisoplanatic phase errors and the speckle-free object reflectance from the
single-shot digital holography data. Using both simulations and experiments, we show that the MIR algorithm
outperforms the leading multiplane image-sharpening algorithm over a wide range of anisoplanatic
conditions. © 2019 Optical Society of America

https://doi.org/10.1364/JOSAA.36.000A20

1. INTRODUCTION

Digital holography (DH) uses coherent illumination and
spatial-heterodyne detection to sense the amplitude and phase
of light scattered off an object’s surface [1]. The resulting data
are sensitive to phase errors caused by index-of-refraction per-
turbations in, for example, the atmosphere or optical systems.
With this in mind, we can estimate these phase errors directly
from the DH data for wavefront sensing purposes or to digitally
correct aberrated images [2–6].

Image-sharpening (IS) algorithms can estimate the phase
errors from DH data by maximizing an image-sharpness met-
ric. In practice, the sharpened images result from estimates of
the complex-valued reflection coefficient, g , which is the com-
plex-valued ratio of the reflected field to the incident field.
For surfaces that are rough relative to the illumination wave-
length, this estimation process leads to images with high-
spatial-frequency variations known as speckle. Therefore, IS
algorithms require incoherent averaging of multiple speckle
realizations to accurately estimate the phase errors—a process
referred to here as multishot DH [2].

Recently, we developed a model-based iterative recon-
struction (MBIR) algorithm for jointly computing the maxi-
mum a posteriori (MAP) estimates of the phase errors, ϕ, and
the real-valued reflectance, r, from a single data realization—a
process referred to here as single-shot DH [5]. We define the
reflectance as r � E �jgj2�, where E �·� indicates the expected
value [7]. In general, r is smoother and has higher spatial
correlation when compared to the reflection coefficient, g .

Reconstructing r, rather than g , allows us to leverage its
higher spatial correlation to better constrain the estimation
process and produce more accurate estimates of the phase errors
with fewer data and less signal, compared to IS algorithms [5,6].

Both the IS algorithm in Ref. [2] and the MBIR algorithm
in Ref. [5] were designed for the estimation and correction of
phase errors that are isoplanatic. In general, isoplanatic phase
errors (IPEs) result in a shift-invariant point spread function
(PSF) in the image domain. We typically model IPEs using
a single phase screen located near the entrance pupil of the im-
aging system [8]. This model accurately represents scenarios
where the phase errors are concentrated near the observer, such
as the imaging of space-based objects through atmospheric
turbulence along mostly vertical propagation paths.

For other scenarios, the phase errors are often distributed
along the propagation path, such as the imaging of Earth-based
objects through atmospheric turbulence along mostly horizon-
tal propagation paths. In these cases, the phase errors are ani-
soplanatic, meaning they result in a shift-variant PSF in the
image domain. We typically model anisoplanatic phase errors
(APEs) using a discrete representation consisting of multiple
phase screens distributed along the propagation path [8]. To
help quantify APE effects, we use the isoplanatic angle, θ0 [9].
This atmospheric turbulence parameter, in practice, gives us a
gauge for the image-domain angular separation over which the
PSF is essentially unchanged. Therefore, points in the image
separated by an angle larger than θ0 have significantly different
PSFs due to the APEs.
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Importantly, the IS and MBIR algorithms in Refs. [2] and
[5] can only correct for a single PSF across the entire image field
of view (FOV). Thus, in the presence of APEs, these algorithms
cannot obtain diffraction-limited performance. Estimating and
correcting APEs using DH data is difficult due to increased
model complexity and an increased number of unknowns.
Extensions of the basic IS algorithm from [2] have been dem-
onstrated for the correction of APEs [10–12]. In particular,
Tippie and Fienup demonstrated an IS algorithm for estimating
APEs modeled as multiple phase screens distributed along the
propagation path [11]. However, this IS algorithm still requires
multishot DH data to accurately estimate the phase errors and
form a focused speckle-free image.

In this paper, we propose a novel algorithm for estimating
APEs and reconstructing focused speckle-free images from
single-shot DH data. Our algorithm, referred to as multiplane
iterative reconstruction (MIR), uses a Bayesian framework to
jointly estimate both the APEs modeled as multiple phase
screens distributed along the propagation path, along with
the object’s reflectance, r. Using MIR, we compute the joint
MAP estimates of each phase screen along with the focused
image. We compare the proposed algorithm to the multiplane
IS (MIS) algorithm found in Ref. [11] over a range of aniso-
planatic conditions using both simulated and experimental
data. The results show that the MIR algorithm can more
accurately estimate APEs and form focused, speckle-reduced
images from single-shot DH data as compared to the leading
MIS algorithm.

In what follows, we first formulate the overall concept for
the MIR algorithm and review the prior models used in our
Bayesian framework. Next, we formulate the execution of
the MIR algorithm and our methods for quantifying perfor-
mance. Results then follow with discussion and a conclusion.

2. MIR ALGORITHM

Figure 1 shows an example DH system using an off-axis image-
plane recording geometry (IPRG) [4]. The system images an
object with a reflectance function, r, and a corresponding

reflection coefficient, g , through distributed-volume phase er-
rors, ϕ. In this example, atmospheric turbulence causes aniso-
planatic effects in the DH data; however, the analysis is equally
applicable to more general types of APEs, as we show in the
experimental results section. For mathematical simplification,
it is common to treat distributed-volume phase errors, ϕ, as
a finite number of discrete layers, �ϕ1,ϕ2,…,ϕK �, where each
layer is a thin unit-amplitude phase screen that represents the
phase perturbations along an incremental volume [8]. After en-
countering ϕ, the signal is imaged onto a detector array, where
it is mixed with a reference field to form the digital hologram.

Figure 2 provides insight into the conventional image-
processing steps used for a DH system with an off-axis
IPRG. We first extract the signal, y, from the spectrum of
the digital hologram. Due to the discrete Fourier transform
(DFT) relationship between the pupil plane and the image/
detector plane, y is a complex image of the signal at the pupil
plane. Thus, the conventional approach to form an image is to
take an inverse fast Fourier transform (FFT) of the data, y.
Before moving on in the analysis, the reader should note that
we provide additional details about this DH IPRG model in
Appendix B.

In this work, our goal is to jointly compute the MAP
estimates of the reflectance, r ∈ RM , and the phase errors,
ϕ � �ϕ1,ϕ2,…,ϕK �, where ϕk ∈ RM ∀ k, from a single noisy
data realization, y ∈ CM . Here, we use vectorized notation for
all 2D variables. The joint MAP estimates are given by

�r̂, ϕ̂� � argmin
r,ϕ

f−log p�r,ϕjy�g

� argmin
r,ϕ

f−log p� yjr,ϕ� − log p�r� − log p�ϕ�g, (1)

where r and ϕ are assumed to be independent. Here, p�·� and
p�·j·� represent conventional and conditional probability distri-
butions, respectively. For coherent imaging applications, the
log-likelihood function, log p� yjr,ϕ�, is not easily evaluated
due to its computational complexity [13]. Therefore, we re-
quire a simplified approach to solve Eq. (1). In the remaining
subsections, we derive the form of log p� yjr,ϕ�, develop a

Fig. 1. Example DH system using an off-axis IPRG. A laser source is used to flood-illuminate an object that has a reflectance function, r, and
corresponding reflection coefficient, g . In this example, the return signal is corrupted by atmospheric turbulence, which causes APEs, ϕ. We model ϕ
as a layered atmosphere consisting of multiple phase screens, ϕ � �ϕ1,ϕ2,…,ϕK �, where K � 3 in this example. In our discrete model, each
propagation plane, k, has an associated grid sample spacing, δk , and the distance between grids is given by Δzi. The blue and green dotted cones
represent ray traces from two different points on the object. The ray traces show that light from different points on the object will encounter different
phase errors, resulting in anisoplanatic conditions. The returning signal passes through the pupil-aperture function, a, is collimated, and is imaged
onto a focal-plane detector array, where it is mixed with a reference field to form the digital hologram.
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simplified framework using the expectation maximization
(EM) algorithm, and define our distributions for r and ϕ.

A. Log-Likelihood Model for Coherent Imaging

For a DH system using an off-axis IPRG, we model the
complex pupil image,

y � Aϕg � w, (2)

as a linear transform of the reflection coefficient, g ∈ CN , plus
complex-valued measurement noise, w ∈ CM [5]. In Ref. [5],
Eq. (2) was derived for a DH system using an off-axis pupil-
plane recording geometry. However, as shown in Appendix B,
the model also holds for the pupil image, y, obtained from
a DH system using an off-axis IPRG. The transform,
Aϕ ∈ CM×M , accounts for the propagation and measurement
geometry and is dependent on ϕ.

For anisoplanatic conditions, the estimation framework of
Eq. (1) and data model of Eq. (2) are more complex than they
are for the isoplanatic case treated in Ref. [5]. First, we must
account for intermediate propagations between multiple phase
screens, which adds complexity to the structure of Aϕ. With
this in mind, we use the split-step beam propagation method
(BPM) to model Aϕ as a series of Fresnel propagations between
the planes of interest, as described in Appendix A [8]. Second,
we must model and estimate higher dimensional phase
errors, where for K phase screens, we get ϕ ∈ RKM . This
makes the joint estimation of r and ϕ significantly more
challenging, since the number of unknowns increases relative
to the measurements.

To determine the likelihood function, p� yjr,ϕ�, we first de-
fine distributions for g and w; then we relate these distributions
to y using Eq. (2). For a surface with reflectance, r, which is
rough relative to the illumination wavelength, we model the
vector g as

p�gjr� ∼ CN �0,D�r�, 0�, (3)

whereD�·� denotes an operator that produces a diagonal matrix
from its vector argument and CN �μ,C ,Γ� indicates a multi-
variate complex normal distribution with mean, μ, covariance

matrix, C , and pseudo-covariance matrix, Γ [5]. Here, Γ � 0,
since the phase of g is uniformly distributed. Next, to model the
stochastic nature of coherent detection, we treat the measure-
ment process as being shot-noise limited and use an additive,
zero-mean, complex Gaussian model [14]. The distribution for
w is therefore given by

p�w� ∼ CN �0, σ2wI , 0�, (4)

where σ2w is the noise variance. Finally, using the data model
from Eq. (2) and the distributions from Eqs. (3) and (4),
the likelihood function for y, given r and ϕ, becomes

p� yjr,ϕ� ∼ CN �0,AϕD�r�AH
ϕ � σ2wI , 0�, (5)

where the superscript H indicates the Hermitian transpose.

B. Prior Models

Both the reflectance, r, and the phase errors, ϕk, are modeled
using Markov random fields (MRFs) with the form

p�Δ� � 1

z
exp

�
−
X

fi, jg∈P
bi,jρ�Δ�

�
, (6)

whereΔ is the difference between neighboring pixel pair values,
z is the partition function, bi,j is the weight between pixel pairs,
P is the set of all pair-wise cliques falling within the same
neighborhood, and ρ�·� is the potential function [15]. We
obtain different models for the reflectance and phase errors by
choosing different potential functions.

1. Reflectance

For the reflectance function, r, we used a Q-generalized
Gaussian Markov random field (QGGMRF) potential function
with the form

ρr

�
Δr

σr

�
� jΔr jp

pσpr

0
B@

��� Δr
T σr

���q−p
1�

��� Δr
T σr

���q−p
1
CA, (7)

where T is a unitless threshold value that controls the transition
of the potential function from having the exponent q to having
the exponent p, and σr controls the variation in r̂ [16]. The
parameters of the QGGMRF potential function affect its
shape, and therefore the influence neighboring pixels have
an effect on one another. In general, the QGGMRF potential
function is designed to preserve edges.

2. Phase Errors

We assume that the layers of the distributed-volume phase
error, ϕ, are statistically independent [8]. Therefore, we can
write the distribution for ϕ as the product of the distributions
for the individual screens, such that

p�ϕ� �
YK
k�1

p�ϕk�: (8)

Estimating phase-error functions for multiple planes can sig-
nificantly increase the number of unknowns that must be
estimated relative to the number of measurements, M . For K
screens, we must estimate KM unknowns for ϕ, plus M
unknowns for r, giving a total of M �K � 1� unknowns. To
reduce the number of unknowns, we model the phase errors,

Fig. 2. Conventional image-processing steps for a DH system
using an off-axis IPRG. Here, we show the magnitude squared of any
complex-valued quantities. To extract the signal, we start with (a) a
real-valued digital hologram, then take a 2D FFT to obtain the
(b) complex-valued holographic spectrum. Note that the digital
hologram, shown in (a), naturally has low contrast. Next, a section
of the spectrum is isolated (c), as indicated by the dashed white line.
This subset of the spectrum, y, represents a complex image of the
signal field in the pupil plane. Finally, for basic image formation,
we take an inverse FFT (IFFT) of y to form the image shown in (d).
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ϕk, using a low-resolution Gaussian Markov random field
(GMRF), denoted as ϕ̄k [5]. If ϕk is subsampled by a factor
of nb in both dimensions to obtain ϕ̄k, each screen will have
M∕n2b unknowns. The value of nb can be a function of the
propagation plane, k. When the same value is used for all
planes, this technique reduces the total number of unknowns
to M �K ∕n2b � 1�.

The Gaussian potential function for ϕ̄k is given by

ρϕ̄k

�
Δϕ̄k

σϕ̄k

�
� jΔϕ̄k

j2
2σ2

ϕ̄k

, (9)

where Δϕ̄k
is the difference between neighboring phase samples

and σϕ̄k
controls the assumed variation in ϕ̄k. This potential

function enforces a strong influence between neighboring
samples, which generates a more smoothly varying output
when compared to the QGGMRF model.

While the phase errors are estimated as a low-resolution
function, ϕ̄, we must up-sample the estimate to the resolution
of ϕ when applying the forward-model operator, Aϕ. Our
interpolation scheme is given by

ϕk � Pϕ̄k, (10)

where P is an M ×M∕n2b nearest-neighbor-interpolation
matrix with elements in the set {0, 1}. More complex interpo-
lations can be used; however, nearest neighbor allows for fast
computation.

C. MIR Framework

Using Eqs. (5)–(10), we can write the MAP cost function from
Eq. (1) as

c�r,ϕ̄��−log p� yjr,ϕ̄�− log p�r�− log p�ϕ̄�
� log

���Aϕ̄D�r�AH
ϕ̄
�σ2wI

����yH
�
Aϕ̄D�r�AH

ϕ̄
�σ2wI

�
−1y

�
X

fi,jg∈P
bi,jρr

�
Δr

σr

�
�
XK
k�1

X
fi,jg∈P̄

ρϕ̄k

�
Δϕ̄k

σϕ̄k

�
: (11)

As noted in Ref. [5], the determinant and inverse in Eq. (11)
make it difficult to evaluate; however, we may use the EM
algorithm to replace Eq. (11) with a more tractable surrogate
function.

The EM algorithm represents a special case of majorization
minimization using a surrogate function. For any function
c�x�, we define a surrogate function, Q�x; x 0�, to be an
upper-bounding function, such that c�x� ≤ Q�x; x 0� � κ,
where x 0 is the current value of x that determines the functional
form of Q, and κ is a constant that ensures the two functions
are equal at x 0. Surrogate functions have the property that
minimization of Q�x; x 0� implies minimization of c�x� [15].

The EM algorithm provides a formal framework for
developing a surrogate function [17]. If we choose g to be the
unobserved data, our surrogate function becomes

Q�r, ϕ̄; r 0, ϕ̄ 0� � −Eg �log p� y, gjr, ϕ̄�jy, r 0, ϕ̄ 0�
− log p�r� − log p�ϕ̄�, (12)

where the conditional expectation is taken over g, given the
data, y, the current estimate of the reflectance, r 0, and the

current estimate of the phase errors, ϕ̄ 0. By introducing g as
the unobserved data, we create a cost function that is more
tractable than Eq. (11) because of the linear relationship
between the data, y, and the reflection coefficient, g . Taking
the expectation helps overcome the fact that we do not know
g . Evaluation of the expectation in Eq. (12), with respect to the
random vector, g , constitutes the E-step of the EM algorithm.
This step establishes the specific functional form ofQ . Next, we
conduct the M-step to jointly minimize Q according to

�r̂, ˆ̄ϕ� � argmin
r,ϕ̄

fQ�r, ϕ̄; r 0, ϕ̄ 0�g: (13)

The EM algorithm consists of iteratively applying the E- and
M-steps shown in Eqs. (12) and (13) and updating r 0 and ϕ 0.
For the optimization during the M-step, we use iterative coor-
dinate descent (ICD) to sequentially minimize the entire
surrogate cost function with respect to each element, rs and
ϕ̄k,s, where the joint subscripts k, s indicate the sth sample
of the kth phase screen [15]. Figure 3 shows the steps of
the MIR algorithm. In Appendix D, we provide the update
equations for each step. The update for each reflectance
element, rs, has a closed form solution and the update for each
phase-error element, ϕ̄k,s, requires a 1D line search. Notice that
the separable form of Q derived in Appendix C ensures that
sequential optimization of r and ϕ is equivalent to joint
optimization of these two quantities.

Since Q�r, ϕ̄; r 0, ϕ̄ 0� is a surrogate function for c�r, ϕ̄�, the
alternating steps of the EM algorithm converge in a stable man-
ner to the local minima of the original MAP cost function given
by Eq. (11) [13]. Furthermore, since both the MAP cost func-
tion and its surrogate are nonconvex, the algorithm is likely to
converge to a local minimum that is not global. Since we
cannot directly evaluate the MAP cost function to compare dif-
ferent local minima, we cannot easily select among different
local minima based on the values of their MAP cost function.
Thus, to ensure we find a good local minimum, in the sense
that it produces a focused and useful image, we pay close
attention to our initial conditions, and we employ an iterative
initialization process first developed in Ref. [13]. For a set num-
ber of outer-loop iterations, NL, we allow the basic MIR algo-
rithm to run forNK iterations. Each time the MIR algorithm is
called, r is reinitialized, but the previous value of ϕ is used.
After the outer loop runs NL times, we again run the basic

Fig. 3. MIR algorithm for the MAP estimates of r and ϕ. Here, S is
the set of all samples in r, K is the number of partial-propagation
planes, S̄ is the set of all samples in the low-resolution phase screens,
and i is the iteration index.
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MIR algorithm. For this final reconstruction run, we stop the
algorithm when a metric, ϵ, falls below a threshold value of ϵT ,
where

ϵ � ∥ri − ri−1∥
∥ri−1∥

: (14)

3. RESULTS

In this section, we demonstrate the utility of our proposed MIR
algorithm using both simulated and experimental data. In both
cases, we compare the performance of MIR to the MIS algo-
rithm from [11] over a range of anisoplanatic conditions.
Additionally, we include reconstructions from the MBIR algo-
rithm [5], which assumes IPEs. For the reader’s convenience,
we provide an overview of the MIS algorithm in Appendix E.

A. Simulation

To generate synthetic data, we simulated the scenario shown in
Fig. 1 in which atmospheric turbulence causes APEs. We used
the split-step BPM MATLAB code from [8] to simulate the
propagation of light from the object to the pupil plane. For
atmospheric turbulence, we used three Kolmogorov phase
screens of equal strength, distributed over the propagation path.
We quantified the strength of the distributed-volume phase
errors using two parameters, D∕r0,sw and θ̃0 � θ0∕�λ∕D�. The
first parameter, D∕r0,sw, is the ratio of the pupil diameter, D, to
the spherical-wave coherence length, r0,sw [9]. High values of
D∕r0,sw correspond to strong phase errors, and low values cor-
respond to weak phase errors. The second parameter, θ̃0, is the
isoplanatic angle, θ0, normalized by the diffraction-limited
viewing angle, λ∕D. As previously noted, θ0 provides a gauge
for the image-domain angular separation over which the PSF is
essentially unchanged [9]. Thus, high values of θ̃0 indicate
neighboring points in the image have similar PSFs. As
θ̃0 → 1, points that are just barely resolved will have different
PSFs, making reconstruction difficult. After propagating the
fields to the pupil plane, we simulated the detection process
for a DH system using an off-axis IPRG. The signal-to-noise
ratio (SNR) was fixed for all data sets, and in Appendix F, we
provide additional details about the simulations.

To numerically quantify algorithm performance in simula-
tion, we used two metrics, normalized root mean square error
(NRMSE) and peak Strehl ratio. NRMSE measures the distor-
tion between the reconstructed images, r̂, and the simulation
input, r. It is given by

NRMSE �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∥α�r̂ − r∥2

∥r∥2

s
, (15)

where

α� � argmin
α

f∥αr̂ − r∥2g (16)

is the least-squares fit for any multiplicative scalar offset
between r and r̂.

The peak Strehl ratio, Sp, measures the quality of our phase-
error estimate, ϕ̂. It is important to note that we should not
simply compare ϕ̂ to the simulated phase errors, ϕ, directly.
The imaging system is underdetermined, and there are

infinitely many solutions that will produce the same effects.
It is possible to obtain an estimate, where ϕ̂ ≠ ϕ, that can still
conjugate the effects of the distributed-volume phase errors and
form a focused image. Therefore, to assess the quality of the
reconstructed phase errors, we measure how well ϕ̂ conjugates
the effects of ϕ during backpropagation. Specifically, we back-
propagate the pupil function, a, with uniform phase, from k �
3 to the object plane at k � 0, through a set of phase screens,
ϕc � ϕ − ϕ̂. Our estimate, ϕ̂, should ideally cancel out the
effects of ϕ during backpropagation. We define the peak
Strehl ratio as

Sp �
�jAH

ϕc
D�a�j∘2�

max

�jAH
0 D�a�j∘2�max

, (17)

where AH
0 indicates the backpropagation through a vacuum and

�·�max indicates that we take the maximum value of the
argument. In Eq. (17), the numerator is the maximum intensity
in the object plane that occurs when we backpropagate the
function a, using ϕ̂ to conjugate the effects of ϕ at each
partial-propagation plane. The denominator represents the
maximum intensity that occurs in the object plane when there
are no turbulence effects (i.e., backpropagation through a vac-
uum). Thus, Sp quantifies how close we are to the diffraction
limit, ignoring the effects of tilt. Note that this Strehl-ratio met-
ric only measures the phase-error conjugation for a single propa-
gation angle; however, we observed that other angles have similar
degrees of correction. Furthermore, we found this Strehl-ratio
metric to be more useful at assessing the quality of ϕ̂ compared
to image-quality metrics, such as those used in Ref. [11].

Using the methods described above, we generated 10 inde-
pendent and identically distributed (i.i.d.) data realizations
for 10 different values of θ̃0 ∈ �100, 1�, and three different
values of D∕r0,sw ∈ f5, 10, 15g. Each i.i.d. data realization had
unique turbulence, speckle, and noise realizations. Figures 4–6
show example reconstructions. The images displayed were

Fig. 4. Example single-shot reconstructions (simulated) for
D∕r0,sw � 5. Images are displayed on a log-based decibel (dB) scale
obtained according to rdb � 10 logfr∕max�r�g, where max�·� indi-
cates the maximum value in the 2D array.
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those with the median value of Sp from the 10 i.i.d. realizations
at each value of θ̃0 and D∕r0,sw. We also show the original un-
compensated image in the left column. Figures 7 and 8 show Sp
and NRMSE, averaged over the 10 i.i.d. realizations, as a func-
tion of θ̃0, for each D∕r0,sw. We include the Strehl ratio for the
uncompensated phase errors, computed using Eq. (17) with
ϕ̂ � 0, and the NRMSE for the original uncompensated image
obtained according to r̂ � jAH

ϕ�0yj∘2.
The results show that the polynomial-based MIS algorithm

is able to correct aberrations in the less challenging conditions
whenD∕r0,sw is low and θ̃0 is high. For a fixed value ofD∕r0,sw,
the MIS algorithm’s performance tapers off as θ̃0 decreases. For
fixed values of θ̃0, MIS performance falls off quickly as D∕r0,sw
increases. Similar to MIS, for a fixed value of D∕r0,sw, the MIR
performance tapers off as θ̃0 decreases. However, the MIR

algorithm is able to achieve much higher peak Strehl ratios
and lower NRMSE than the MIS algorithm in all scenarios.
The significantly lower NRMSE produced by the MIR algo-
rithm can be attributed to both a better estimate of ϕ̂ and a
reduction in speckle variation, as seen in Fig. 4. Unlike the
MIS algorithm, MIR performance does not fall off as rapidly
as D∕r0,sw increases for fixed values of θ̃0. Lastly, we see that in
most cases, the MBIR algorithm, which again assumes IPEs,
performs as well or better than the MIS algorithm in terms
of average Strehl ratio and outperforms the MIS algorithm
in terms of average NRMSE. When visually compared to the
MIR algorithm, the MBIR reconstructions look similar in
the weaker turbulence cases and differ more drastically in the
stronger turbulence cases. Upon close inspection of the weaker
turbulence cases, we see more irregularities in the MBIR recon-
structions than in the MIR reconstructions. This is due to the
large difference in average Strehl ratios of the two algorithms,
as shown in Fig. 7. The MBIR algorithm is simply not able
to produce as accurate estimates of the APEs as the MIR algo-
rithm. This large difference is not as apparent in the images,
since some of the energy that gets spread out by the turbulence
is removed during the MBIR regularization process.

To assess algorithm run time, we measured Sp as a function
of time for two different cases. In Case 1, the turbulence was

Fig. 5. Example of single-shot reconstructions (simulated) for
D∕r0,sw � 10.

Fig. 6. Example of single-shot reconstructions (simulated) for
D∕r0,sw � 15.

Fig. 7. Average peak Strehl ratio, Sp, as a function of θ̃0 for
D∕r0,sw � 5 (top), D∕r0,sw � 10 (middle), and D∕r0,sw � 15 (bot-
tom). The error bars show the standard deviation at each point.
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relatively weak, with D∕r0,sw � 5 and θ̃0 � 100. For Case 2,
the turbulence was strong, with D∕r0,sw � 15 and θ̃0 � 2.8.
In both cases, we used MATLAB on a PC with a 2.2 GHz Intel
Xeon processor. Figure 9 plots the results for both the MIS and
MIR algorithms, and Fig. 10 shows the intermediate estimates,
r̂, as a function of time for Case 1. The plots show that in gen-
eral, the MIR algorithm achieves higher values of Sp much
faster than the MIS algorithm. Additionally, we see that, for
Case 1, the MIR estimate changes very little in the last

90% of the total run time; thus, we can shorten the run time
and still get similar results. However, as noted in Appendix F,
for simplicity we fixed the number MIR and MBIR outer-loop
iterations at NL � 50 and the inner-loop iterations at NK �
20 for all cases. During the last outer loop, we let the algorithms
run until the stopping criteria were met. On average, MIS ran
60 iterations in 67 min, MBIR ran 2565 iterations in 11 min,
and MIR ran 2674 iterations in 28 min.

B. Experiment

To demonstrate the utility of the MIR algorithm with real data,
we also conducted a laboratory experiment, as outlined in
Appendix F. A laser with wavelength λ � 1064 nm was
used to illuminate an Air Force resolution chart 2.5 m away.
To simulate APEs over the propagation path, we introduced
multiple phase screens made from plastic CD jewel cases.
For the experiment, we started with three screens located at
z � �2.2, 2.3, 2.4� m, then incrementally added additional
screens at distances 2.1 m, 2.0 m, and 1.9 m. However, to sim-
plify reconstruction, we only estimated four screens located at
z � �1.9, 2.1, 2.3, 2.5� m for all data. Figure 11 shows the im-
ages reconstructed from the experimental data for three, four,
five, and six plastic phase screens. The left column shows the
original images reconstructed with no phase-error mitigation.
Due to the nonuniformity of the plastic phase screens used,
we see anisotropic (not to be confused with anisoplanatic)

Fig. 8. Average NRMSE as a function of θ̃0 for D∕r0,sw � 5 (top),
D∕r0,sw � 10 (middle), and D∕r0,sw � 15 (bottom). The error bars
show the standard deviation at each point.

Fig. 9. Peak Strehl ratio as a function of run time for both weak
(blue) and strong (red) APEs.

Fig. 10. Example of the intermediate samples of r̂ taken at various
times during the algorithm run time corresponding to Case 1 in Fig. 9.
The top images are the MIS estimates at t � 0, 341, 706, 2086, 3134,
and 4501 s. The bottom images are the MIR estimates at
t � 0, 9.9, 21.4, 33.2, 163, and 1324 s (ordered from left to right first,
then top to bottom).
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phase-error effects in the images. Here, the multiplane phase
errors encountered in the experiment had stronger effects in
the x axis than in the y axis. In Fig. 11, we also see that the
phase errors were stronger in some areas of the image than
others, making for a more challenging reconstruction problem.

Since the underlying statistics of the plastic phase screens
used in the experiment were unknown, we cannot easily quan-
tify performance in terms of atmospheric turbulence parame-
ters such as D∕r0,sw and θ̃0. However, we can compare against
the simulated results to get a general idea of the experimental
conditions. Doing so, we see that the overall turbulence
strength most closely resembles our simulated data when
D∕r0,sw � 5. Furthermore, including the reconstructions from
the MBIR algorithm provides a visual representation of the
degree of anisoplanatic effects, since it assumes IPEs.

Figure 11 shows that the MBIR algorithm is not able to fully
correct the multiplane phase errors encountered in the experi-
ment. Alternatively, the MIS algorithm is able to improve upon
the original image in all cases, although the sharpness is reduced
as the number of screens increases. Similar to the simulations,
the MIR algorithm is able to produce sharper and higher-
contrast images with less speckle. Note that while the experi-
mental phase errors were clearly anisoplanatic and anisotropic,
the conditions were not as challenging as those produced in the
simulation.

4. CONCLUSION

In summary, we have developed a novel algorithm for jointly
estimating APEs and an object’s reflectance from single-shot
DH data using a Bayesian framework. Our MIR algorithm
models the APEs using multiple phase screens distributed along

the propagation path and computes the MAP estimates of each
phase screen along with the focused reflectance image.

To test our algorithm, we designed a simulation and experi-
ment to produce data representative of a DH system using an
off-axis IPRG. We generated data for a range of anisoplanatic
conditions and compared theMIR algorithm to the polynomial-
based MIS algorithm from [11]. To assess the results, we pre-
sented both qualitative and quantitative comparisons.

In all cases, we observed that the polynomial-based MIS
algorithm works moderately well for the less severe APEs
(e.g., when the value of θ̃0 is high and D∕r0,sw is low).
However, the performance of the MIS algorithm falls off
quickly as the APEs worsen (i.e., with decreases in θ̃0 and in-
creases of D∕r0,sw ). Additionally, we observed that the MIR
algorithm produces high-quality images and phase-error esti-
mates over a wide range of anisoplanatic conditions. We there-
fore believe the MIR algorithm provides a robust alternative to
the MIS algorithm for estimating APEs and for producing
focused, speckle-reduced images from single-shot DH data.

APPENDIX A: PROPAGATION MODEL

In Eq. (2), the linear transform, Aϕ, represents the propagation
of light from the object to the observer through a number of
intermediate planes containing phase screens. Using the split-
step BPM found in Ref. [8], we model Aϕ as a series of partial
propagations between consecutive planes. This technique uses
the angular spectrum method (ASM) to model each partial
propagation followed by the application of a phase screen. In
this section we first review the ASM, then we use the split-step
BPM to provide an explicit definition for Aϕ in Eq. (A9).

1. ASM

To model the vacuum propagation of a monochromatic field,
ũ0�x0, y0�, at some arbitrary distance,Δz, we use the ASM [18].
Here, we use tildes to indicate continuous functions. The ASM
computes the convolutional form of Fresnel diffraction integral
by multiplying the input field in the spatial-frequency domain
with the free-space transfer function. Note that the free-space
transfer function is given by

H̃ �f x0 , f y0
� � ej

2π
λ Δze−jπλΔz�f

2
x0
�f 2

y0
�, (A1)

where λ is the wavelength and f x0 and f y0
are the spatial

frequency coordinates [18]. Thus, at a distance Δz away, the
diffraction pattern from ũ0�x0, y0� is given by

ũ1�x1, y1� � CSFT−1�H̃ �f x0 , f y0
�CSFT�ũ0�x0, y0���, (A2)

where CSFT�·� and CSFT−1�·� indicate the continuous-
space Fourier transform (CSFT) operation and its inverse,
respectively.

In practice, we leverage the discrete version of Eq. (A2)
found in Ref. [8]. Here, we write that discrete model, using
vector notation, as

u1 � F −1HFu0, (A3)

where u0 ∈ CM is the vectorized input field, u1 ∈ CM is the
vectorized output field, and F ∈ CM×M is a 2D DFT matrix.
The diagonal matrix, H , is the matrix form of the free-space
transfer function and is given by

Fig. 11. Experimental results for three, four, five, and six plastic
phase screens. The original reconstruction with no phase-error com-
pensation is shown in the left column, the MIS reconstructions are in
the second column, and the MIR reconstructions are in the third
column. Additionally, we show reconstructions from the isoplanatic
MBIR algorithm.
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H � D
�
vec



e
−jπ λΔz

N 2δ2
0

�p2�q2�
��

: (A4)

Here, vec�·� is an operator that forms a 1D vector from a 2D
argument, δ0 is the sample spacing,N is the number of samples
in each dimension of the 2D transfer function, and p, q ∈
�−N∕2,N∕2 − 1� are indices in the spatial-frequency domain.
For simplicity, we have dropped any complex scalars and
assumed a square sampling grid where N × N � M .

We can only use Eq. (A3) when the input- and output-field
sample spacing and grid lengths are the same (i.e., δ1 � δ0).
Since this is restrictive, we use a modified version of the
ASM found in Ref. [8] to control the ratio β1 � δ1∕δ0, and
thus adjust the output grid size, δ1N . The modified propaga-
tion model is given by

u1 � Λ1F −1H 0,1FΛ0u0, (A5)

where

Λ0 � D
�
vec

h
e j

π
λ
1−β1
Δz δ

2
0�m2�n2�

i

,

Λ1 � D
�
vec

h
e j

π
λ
β1−1
β1Δz

δ21�m2�n2�
i


, (A6)

and

H 0,1 � D
�
vec

h
e
−j πλΔz

N2δ1δ0
�p2�q2�i


: (A7)

Here, Λ0 and Λ1 are diagonal matrices that apply quadratic
phase factors, β1 � δ1∕δ0 is the ratio of the sample spacing
in each grid, and m, n ∈ �−N∕2,N∕2 − 1� are indices in the
spatial domain. We add the subscript 0,1 to indicate that
H 0,1 is the free-space-transfer function between planes k � 0
and k � 1.

2. Split-Step BPM Model

The split-step BPM model combines multiple partial propaga-
tions between phase screens using the modified ASM approach
described by Eq. (A5). It accounts for differences between the
object-plane sample spacing, δ0, and the pupil-plane sample
spacing, δK . If we convert the spit-step BPM operators found
in Ref. [8] to vector notation, we can write the field passing
through the pupil in the K th propagation plane as

uK � Aϕu0, (A8)

where

Aϕ � D�a�ΛK


YK
k�1

D�e jϕk �F −1Hk−1,kF
�
Λ0,

Λ0 � D
�
vec



e j

π
λ
1−β1
Δz1

δ20�m2�n2�
��

,

ΛK � D
�
vec



e j

π
λ

βK −1
βK ΔzK

δK �m2�n2�
��

, (A9)

and

Hk−1,k � D
�
vec



e
−j

πλΔzk
N2δk−1δk

�p2�q2�
��

: (A10)

Here, δk is the sample spacing in the kth plane, N is the
number of samples in each dimension of the 2D functions,
m, n ∈ �−N∕2,N∕2 − 1� are indices in the spatial domain,

and p, q ∈ �−N∕2,N∕2 − 1� are indices in the spatial-
frequency domain. Additionally, in Eq. (A9), ϕk is the phase
screen in the kth plane, Δzk is the partial-propagation distance
between plane �k − 1� and plane k, and βk � δk∕δk−1. We add
the subscript k, k − 1 to indicate that Hk−1,k is the free-space-
transfer function from planes k − 1 to k. As previously noted,
D�a� is a diagonalization of the pupil-aperture vector, a, and
F is a 2D DFT. Note that we have dropped any complex
scalars and assumed a square sampling grid for simplicity
(i.e., N × N � M ).

In Eq. (A9), we see that in order to model the propagation
using Aϕ, we must have knowledge of the geometry. Specifically,
we must know the total distance, Δz, and the sample spacings,
δ0 and δK . In practice, these values can be determined from
knowledge of the object range, sensor FOV, and pupil diameter.
The partial-propagation distances can be an arbitrary set,
depending on how many screens are to be modeled and their
desired locations. Following [8], the values of δ1 through
δK −1 are set automatically from the values of δ0 and δK .

APPENDIX B: MEASUREMENT MODEL

In this section, we derive a discrete input–output relationship
for a DH system using an off-axis IPRG. We start with the
complex signal image, ũS�x, y�, a continuous quantity located
at the focal-plane array (FPA) of the DH sensor. For the off-axis
IPRG, we perform spatial-heterodyne detection by mixing the
signal image with a reference field from a local oscillator (LO)
that is split off from the master-oscillator laser. For a point
source LO, located at point �xp � rx , yp � ry� in the pupil
plane, the reference field at the FPA is given by

ũR�x, y� � R̃0e
j2π�f rx x�f ry y�, (B1)

where R̃0 is the amplitude, assumed to be spatially uniform. For

brevity, we ignore the quadratic phase factor, e j
π2

λf �x2�y2�, applied
to the reference, uR�x, y�, by the imaging lens. Since this phase
is applied to both the reference and the signal, it cancels out of
Eq. (B2). In Eq. (B1), f rx � rx∕�λf � and f ry � ry∕�λf � are
the spatial frequencies associated with the modulation from the
off-axis reference, and f is the focal length of the imaging lens.
The resulting hologram intensity is given by

ĩ�x, y� � jũR�x, y� � ũS�x, y�j2

� jũR�x, y�j2 � jũS�x, y�j2 � ũR�x, y�ũ�S �x, y�
� ũ�R�x, y�ũS�x, y�, (B2)

where � indicates the complex conjugate. Substituting Eq. (B1)
into Eq. (B2) gives

ĩ�x, y� � R̃2
0 � jũS�x, y�j2 � R̃0ũ�S �x, y�e j2π�f rx x�f ry y�

� R̃0ũS�x, y�e−j2π�f rx x�f ry y�: (B3)

We model the discrete and noisy digital hologram, measured
from the intensity in Eq. (B3), as

i�m, n� � ĩ�x, y�
��� x � mδx y � nδy

� wR�m, n�, (B4)

where δx and δy are the sample spacing on the FPA andm and n
are the sample indices in x and y dimensions. Here, we have
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simplified the model by ignoring the blurring effects of the
finite-sized pixels. Furthermore, we assume that the DH system
is shot-noise limited with noise wR�m, n�, driven by the power
of the reference field [14]. Thus, we model wR�m, n� as addi-
tive, zero-mean, white Gaussian noise. Substituting Eq. (B3)
into Eq. (B4) gives

i�m, n� � R2
0 � juS�m, n�j2 � R0u�S �m, n�ej�ωmm�ωnn�

� R0uS�m, n�e−j�ωmm�ωnn� � wR�m, n�, (B5)

where R0 is the digitized reference amplitude, and ωm �
2πf x,rδx and ωn � 2πf y,rδy are the modulation frequencies
associated with the digitized reference field.

Following the example shown in Fig. 2, we extract the signal
by first taking a DFT of the digital hologram, i�m, n�. The
resulting hologram spectrum is given by

I�p,q��DFT�i�m,n��
�R2

0δ�p,q� �US�p,q�⋆US�p,q��R0U �
S �p� pr ,q�qr�

�R0US�p− pr ,q −qr��W h�p,q�: (B6)

Here, DFT�·� is the 2D DFT operator, δ�p,q� is a discrete 2D
delta function, ⋆ denotes a discrete convolution, pr and qr
are the spatial-frequency shifts corresponding to the modula-
tion from the off-axis reference, W h�p, q� � DFT�wh�m, n��,
and US�p, q� is the DFT of the complex-signal image,
uS�m, n�. Due to the Fourier-transform relationship between
the image and pupil planes,US�p, q� is a discrete representation
of the signal field in the pupil plane [4].

From Eq. (B6), we see that the modulation from the off-axis
reference shifts the spectrum of the two cross terms away from
the spectrum of the first two terms, which are centered at D.C.
in I�p, q�. Thus, we can spatially extract a grid around the term
of interest (fourth term) and divide by R0 to get our signal data,
such that

y�p, q� � US�p, q� � w�p, q�, (B7)

where w�p, q� is the extracted and scaled noise. Finally, we can
represent Eq. (B7) using vector notation as

y � u� w, (B8)
where y, u, and w are in the set CM and are obtained by vecto-
rizing y�p, q�, Us�p, q�, and w�p, q�, respectively. To obtain
our final measurement model, given by Eq. (2), we substitute
the discrete version of the propagated field, obtained using
Eq. (A8), into Eq. (B8) for U .

APPENDIX C: SURROGATE FUNCTION

In this section, we derive the EM surrogate for the MAP cost
function. We start by writing Eq. (12) as

Q�r, ϕ̄; r 0, ϕ̄ 0� � −Eg �log p� y, gjr, ϕ̄�jy, r 0, ϕ̄ 0�
− log p�r� − log p�ϕ̄�,

� −Eg �log p� yjg , ϕ̄� � log p�gjr�jy, r 0, ϕ̄ 0�
− log p�r� − log p�ϕ̄�, (C1)

where we have used Bayes’ theorem inside the expectation and
the fact that p� yjg , r, ϕ̄� � p� yjg , ϕ̄�. Next, we substitute in
the likelihood and prior models from Eqs. (5)–(10). This gives

Q�r, ϕ̄; r 0, ϕ̄ 0� � Eg



1

σ2w
∥y −Aϕ̄g∥2jy, r 0, ϕ̄ 0� � log jD�r�j

�
XM
i�1

1

ri
Eg �jgij2jy, r 0, ϕ̄ 0

�
�

X
fi, jg∈P

bi,jρr

�
Δr

σr

�

�
YK
k�1


 X
fi, jg∈P

bi,jρϕ̄k

�
Δϕ̄k

σϕ̄k

��
� κ, (C2)

where κ is a constant with respect to r and ϕ̄.
In Ref. [5], we showed that the conditional posterior

distribution of g is complex Gaussian with mean

μ � C
1

σ2w
AH
ϕ̄ 0y (C3)

and covariance

C �


1

σ2w
AH
ϕ̄ 0Aϕ̄ 0 �D�r 0�−1

�
−1

: (C4)

Using Eqs. (C3) and (C4), we evaluate the expectations in
Eq. (C2) to get the final form of our EM surrogate function.
This gives us

Q�r, ϕ̄; r 0, ϕ̄ 0� � −
1

σ2w
2RefyHAϕ̄μg � log jD�r�j

�
XN
i�1

1

ri
�Ci,i � jμij2� �

X
fi, jg∈P

bi,jρr

�
Δr

σr

�

�
YK
k�1

" X
fi, jg∈P

bi,jρϕ̄k

�
Δϕ̄k

σϕ̄k

�#
, (C5)

where μi is the ith element of the posterior mean and Ci,i is the
ith diagonal element of the posterior covariance.

APPENDIX D: MIR ALGORITHM

In this section, we present details for executing each step of the
MIR algorithm. The discussion describes how we evaluate
the surrogate function in the E-step and how we optimize it
in the M-step. We also present initialization and stopping
procedures.

1. E-Step: Surrogate Function Formation

The E-step forms Eq. (C5) so that it can be minimized during
the M-step. Specifically, this consists of computing the pos-
terior mean and covariance according to Eqs. (C3) and
(C4). We simplify this process by approximating the posterior
covariance as

C ≈D
�

σ2w

1� σ2w
r 0

�
, (D1)

which requires that AH
ϕ̄ 0Aϕ̄ 0 ≈ I . The matrix Aϕ̄ can be decom-

posed into several matrices that are all unitary, with the excep-
tion of the D�a�, which applies the pupil-aperture function.
Therefore, when D�a� � I and/or D�a�HD�a� � I, the
approximation of Eq. (D1) is exact. Typically, this is not
the case, since a is circular, but we approximate it as such
to dramatically simplify computations. In practice, we have
found this to work well. Alternatively, a square subset of the
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DH data can be used for which D�a� � I and Eq. (D1) is
exact [6].

2. M-Step: Surrogate Function Optimization

During the M-step, we minimize the surrogate function ac-
cording to Eq. (13). Specifically, we employ iterative coordinate
descent (ICD) to sequentially minimize Eq. (C5) with respect
to each element, rs and ϕ̄k,s. Here, the joint subscripts k, s
indicate the sth sample of the kth phase screen [15].

To update each reflectance element, rs, we ignore all terms
in Eq. (C5) that do not contain rs. The resulting 1D cost func-
tion can be minimized with a line search over R�; however, a
closed-form solution can be obtained using the symmetric
bound method of majorization described in Ref. [15]. Using
this technique, we replace the QGGMRF potential function
from Eq. (7) with a quadratic surrogate function. The resulting
cost function is given by

qs�rs; r 0, ϕ̄ 0� � log rs �
Cs,s � jμsj2

rs
�

X
j∈∂s

b̃s,j�rs − rj�2, (D2)

where b̃s,j are the modified weights between neighboring pixel
pairs given by [15]

b̃s,j � bs,j
jrs 0 − rj 0 jp−2

2σpr

��� rs 0−rj 0T σr

���q−p�q
p �

��� rs 0−rj 0T σr

���q−p
�
1�

��� rs 0−rj 0T σr

���q−p
2
: (D3)

To obtain a closed-form solution for r̂ s, we differentiate the
right-hand side of Eq. (D2) with respect to rs, set it equal
to zero, and multiply both sides by r2s . The solution, r̂ s, can
then be found by rooting the polynomial α1r3s � α2r2s �
α3rs � α4, where

α1 � 2
X
j∈∂s

b̃s,j, α2 � −2
X
j∈∂s

b̃s,jrj,

α3 � 1, α4 � −�Cs,s � jμsj2�: (D4)

Thus, we update each sample using the closed-form solution for
the roots of a third-order polynomial. If multiple real roots exist,
we chose the one with the lowest cost according to Eq. (D2).

While the reflectance can be updated using a closed-form
solution, the phase-error update requires a line search. To com-
pactly express the cost function for the update of the phase-
error element, ϕ̄k,s, it is helpful to write the forward-model
operator as

Aϕ̄ � ΨkD�e−jPϕ̄k �Σk, (D5)

where Ψk represents all the matrices on the left-hand side of
D�e−jPϕ̄k � in Eq. (A9), and Σk represents all the matrices on
the right-hand side of D�e−jPϕ̄k�. Using this notation, we
can write the cost function for the kth phase screen as

q�ϕ̄k; r 0, ϕ̄ 0� � −
2

σ2w
Ref�ΨH

k y�D�e−jPϕ̄k��Σkμ�g

� 1

2σ2
ϕ̄k

X
fi, jg∈P

bi,jjΔϕ̄k
j2: (D6)

If we consider just the terms in Eq. (D6), which depend on the
element ϕ̄k,s, we obtain the 1D cost function for that element
given by

q�ϕ̄k,s; r 0, ϕ̄ 0� � −jχj cos�∠χ − ϕ̄k,s�

� 1

2σ2
ϕ̄k

X
j∈∂s

bi,jjϕ̄k,s − ϕ̄k,jj2, (D7)

where

χ � 2

σ2w

Xn2b
i�1

�ΨH
k y��B�i��Σkμ�B�i�: (D8)

In Eq. (D7), j ∈ ∂s is an index over neighboring low-resolution
phase samples, B is the n2b set of vector indices of the high-
resolution phase, ϕk, corresponding to the low-resolution
element ϕ̄k,s, and ∠χ indicates the phase of the complex-valued
scalar, χ. Intuitively, χ is the difference between the fields on
either side of the screen D�e−jPϕ̄k �, summed over all high-
resolution points that correspond to the single low-resolution
point being updated.

The cost function of Eq. (D7) is the superposition of a co-
sine term, which has an infinite number of minima with equal
cost, and a quadratic term. The global minima for the surrogate
will be near the minimum of the quadratic term, bracketed on
either side by the period of the cosine. Thus, we minimize
Eq. (D7) using a 1D line search over ϕ̄k,s ∈ �ϕ̄��

k,s − π,
ϕ̄��
k,s � π�, where ϕ̄��

k,s minimizes the quadratic term in
Eq. (D7). After repeating this for all s ∈ S̄, where S̄ is the
set of samples in the lower-resolution phase-error grid, we ob-
tain the full-resolution estimate of the unwrapped phase screen,
ϕ̂k, according to Eq. (10).

3. Initialization and Stopping Criteria

Figure 12 summarizes the steps of the basic MIR algorithm.
The parameters σr and σw are set automatically, although
the regularization of r can be adjusted using a unitless param-
eter, γ. Note that while we initialize r using a simple back-
projection of the noisy data, we use an iterative process to
initialize ϕ, based on the heuristic developed in Refs. [5,13].

Figure 13 details the steps of this iterative initialization pro-
cess, referred to as the MIR initialization. The initial estimate of
the phase-error vector is simply ϕ0 � 0. Then, for a set number
of outer-loop iterations, NL, we allow the basic MIR algorithm
to run for NK iterations. Each time the MIR algorithm is
called, r is reinitialized, but the previous value of ϕ is used.
After the outer loop runs NL times, we again run the basic
MIR algorithm. For this final reconstruction run, we stop
the algorithm when ϵ < ϵT , in accordance with Eq. (14). It
is important to note that while the MIR algorithm has many
parameters, we set most of them automatically. In the methods
section, we provide settings that we have found to robustly pro-
vide good results over a wide range of anisoplanatic conditions.

APPENDIX E: MULTIPLANE IS ALGORITHM

To investigate the performance gain of the MIR algorithm over
conventional techniques, we considered two different MIS al-
gorithms that differ in their representation of the phase errors,
ϕ. A 15th-order polynomial is used for each phase screen in
Ref. [11], while a point-by-point representation is used in
Ref. [12]. Unfortunately, neither of these algorithms was de-
signed for single-shot data, and only the polynomial-based
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algorithm produced usable results. Even with the bootstrapping
initialization approach, we found that the point-by-point MIS
algorithm produces poor results by over-sharpening single-shot
images to a few points. Conversely, the polynomial-based MIS
algorithm has fewer unknowns and is naturally constrained by
the 15th-order representation. We found it to produce more
useful results for single-shot data. Therefore, we chose the
polynomial-based algorithm in Ref. [11] as our reference for
comparisons.

The polynomial-based MIS algorithm computes the phase
estimate according to

ϕ̂ � �Z ⊕ Z ⊕ … ⊕ Z �ĉ, (E1)

where Z ∈ RM×Nz is a matrix with columns corresponding to
the first Nz Zernike polynomials and ⊕ indicates a matrix
direct sum. The number of Z matrices direct-summed is equal
to the number of phase-error planes modeled. In Eq. (E1), the
value ĉ ∈ R3Nz is an estimate of the polynomial coefficients for
all three phase screens found according to

ĉ � argmax
c

f∥�jAH
c yj∘2�∘β∥1 − α∥D�W �jFAH

c yj∘2∥1g: (E2)

Here, ∥ · ∥1 indicates the L1 norm, β � 1.01 is an image-
sharpness parameter, α is a scalar that balances the two
optimization terms, Ac indicates a dependence of A on c, and
W ∈ RM is a vector of weights that applies a high-pass filter to
the magnitude squared of the back-projected image spectrum,
jFAH

c yj∘2. The second term in Eq. (E2) is a regularization term
that prevents object demagnification [11,12,20].

Following the algorithm in Ref. [11], we use conjugate
gradient (CG) to optimize Eq. (E2) in an iterative manner
by first estimating only the coefficients corresponding to a
third-order polynomial for all the screens, thenfourth, and
so on, continuing up to the 15th order. We generated W by
first creating an inverse rectangular function with width 0.8N
(i.e., �1 − rect�p∕0.8N ���1 − rect�q∕0.8N ��, where p and q are
the spectral indices in the set �−N∕2,N∕2 − 1�; then we
applied a raised-cosine transition from the inner section of zeros
to the outer section of ones. Through trial and error, we found
α � 1 × 10−6 to be optimal.

APPENDIX F: METHODS

In this section, we provide details about the methods used
to produce data. We begin with a full description of the
wave-optics simulation used to produce synthetic data and then
describe our laboratory setup used to produce experimen-
tal data.

1. Simulation Details

Figure 1 of the paper shows the 256 × 256 reflectance function,
r, used as the simulation input. We generated a reflection
coefficient according to g ∼ CN �0,D�r��. Next, we propa-
gated g a distance, Δz � 80 m, through three phase screens,
located at z � �26.4, 52.8, 80� m [8]. We generated the three
phase screens using a Kolmogorov model for the refractive-
index power spectral density (PSD) [8].

The strength of each individual screen was parameterized
using the plane-wave coherence length, r0,pw, also known as
the Fried parameter [9]. Each of the three screens had equal
values of r0,pw. We quantified the overall strength of the
distributed-volume phase errors with the parameter D∕r0,sw.
Note that the spherical-wave coherence length is more appro-
priate than the plane-wave coherence length for distributed-
volume phase errors. The value of D∕r0,sw specifies the degrees
of freedom in the phase-error function at the pupil plane and
allows us to quantify the cumulative effects of the distributive-
volume phase errors. High values of D∕r0,sw correspond to
strong phase errors and low values correspond to weak phase
errors. For our experiment, we controlled D∕r0,sw by varying
the value of r0,pw ∈ �3 × 10−4, 10� m for the three screens.

We quantified the anisoplanatic conditions with the param-
eter θ̃0 � θ0∕�λ∕D�. For our simulations, we controlled θ̃0 by

Fig. 12. MIR algorithm for the MAP estimates of r and ϕ. Here,
j · j°2 indicates the element-wise magnitude square of a vector, and
s2�·� computes the sample variance of a vector’s elements [19].
Additionally, z � �Δz1,Δz2,…,ΔzK � is a vector of the partial-
propagation distances, δ � �δ0, δK � is a vector of the object and
pupil-plane sample spacing, γ is a unitless parameter introduced to
tune the amount of regularization in r, S is the set of all samples
in r, K is the number of partial-propagation planes, S̄ is the set of
all samples in the low-resolution phase screens, and i is the iteration
index.

Fig. 13. Iterative process used to initialize ϕ.
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adjusting �λ∕D�. Specifically, we adjusted the grid spacing
in the object plane, δ0 ∈ �1 × 10−4, 1.2 × 10−2� m, and set
the corresponding pupil-plane sample grid spacing according
to δ3 � λΔzδ0∕256 m. The intermediate grid spacings, δ1
and δ2, were set according to the split-step BPM MATLAB
code from [8].

To simulate detection by a DH system using an off-axis
IPRG, we padded the propagated field to obtain an array size
of 512 × 512. Next, we applied a 512 × 512 binary circular
pupil-aperture function, a, which had a circle of ones,
256 pixels wide, centered in an array of zeros. After, we first
applied a thin-lens phase function that collimated the propa-
gated light, then applied an FFT to form an image in the focal
plane. Next, we mixed the image with a reference field given by
Eq. (B1) and detected the resultant power. Figure 2(a) shows an
example of the resulting digital hologram. The reference-beam
power was set at approximately 80% of the well depth per
detector element [i.e., 80% of 5 × 104 photoelectrons�pe� ].
We also modeled Gaussian read noise with a standard deviation
of 40 pe and digitized the output to 12 bits.

After detection, we took an FFT of the digital hologram data
and isolated the signal of interest, which was a 256 × 256 com-
plex image of the signal in the pupil plane. Figure 2(b) shows
the magnitude squared of the digital hologram spectrum.
The 256 × 256 signal of interest, y, is highlighted by a white
dotted line and is also shown in Fig. 2(c) after it is removed
from the spectrum. The SNR was set to 100 for all data sets,
where

SNR � s2�Aϕg�
s2�w� , (F1)

and s2�·� is the sample-variance operator.
For simulated reconstructions using the MIR algorithm, we

allowed the outer initialization loop to run NL � 50 times,
with NK � 20 EM iterations each time. Once the iterative
initialization process was complete, we set a stopping criterion
of εT � 1 × 10−4 and let the EM algorithm run to completion.
During initialization, we used q � 2, p � 2, T � 1, γ � 2,
and b � G�0.8�, where G�σ� indicates a 3 × 3 Gaussian kernel
with standard deviation, σ. For the final MIR reconstruction,
we set p � 1.1, T � 0.1, and b � G�0.1�. Additionally, for
the phase-error prior model parameters, we used b � G�0.1�,
σϕ̄ � �0.05, 0.10, 0.15�, and set nb � 4.

2. Laboratory Experiment Details

Figures 14 and 15 describe our experimental setup. For our
master oscillator (MO) laser, we used a LightWave nonplanar
ring oscillator with 700 mW of continuous-wave power and
approximately 1 km of coherence length, with a wavelength
of 1064 nm. Past a Faraday isolator and two alignment mirrors,
we used a half-wave plate and polarized beam-splitting cube to
create two optical legs. In the first optical leg, we coupled the
beam from the MO laser into a single-mode, polarization-
maintaining fiber to create an off-axis LO. This off-axis LO
created a quasi-uniform reference beam with the appropriate
tilt for digital-holographic detection in the off-axis IPRG.
The mean strength of this reference beam was set to
approximately 75% of the camera’s pixel-well depth. In the

second optical leg, we focused the beam from the MO laser
through a pinhole and then used an adjustable collimating lens
to flood-illuminate the object after reflection from a steering
mirror.

After setting up the imaging system with an object distance
of approximately 2.5 m and an image distance of approximately
10 cm, we simulated the effects of anisoplanatic aberrations by
placing six different phase screens in front of the imaging lens
with a spacing of 10 cm in between. Each experimental phase
screen contained two crisscrossed plastic plates (from CD jewel
cases) placed back-to-back. For digital-holographic detection,
we used a single lens to image the scattered light from the object
onto a Guppy PRO f-125 FireWire camera. We then saved
the recorded digital hologram in a 512 × 512, 16-bit TIFF
file. Note that our recorded digital hologram had an SNR of
approximately 10 according to Eq. (F1). Also note that we
positioned the object, a chrome-on-glass Air Force resolution

Fig. 14. Diagram of our experimental setup. The output from a
1064 nm laser was split into two paths. One path was sent through
a beam expander to illuminate the object. The other path created an
ideal reference that interfered with the scattered signal using digital-
holographic detection in the off-axis IPRG. Phase screens were placed
in front of the imaging lens to simulate the effects of anisoplanatic
aberrations.

Fig. 15. Images of the object (left) and the transmitter and receiver
optics (right) used in our experiment.
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chart backed by Labsphere Spectralon, at an angle to minimize
specular reflections and ensured that it was uniformly
illuminated.

For all experimental reconstructions, MIS, MIR, and
MBIR, we chose to digitally estimate four phase screens located
at z � �1.9, 2.1, 2.3, 2.5� m. Note that we observed better re-
sults when we included a phase screen at the aperture plane
located at z � 2.5 m. We allowed the outer initialization loop
to run NL � 100 times, with NK � 50 EM iterations each
time. Once the iterative initialization process was complete,
we set a stopping criterion of εT � 1 × 10−4 and let the EM
algorithm run to completion. During initialization, we used
q � 2, p � 2, T � 1, γ � 2, and b � G�0.8�. For the final
MIR reconstructions, we set p � 1.1, T � 0.05, γ � 2.5, and
b � G�0.1�. Additionally, for the phase-error prior model
parameters, we used σϕ̄ � �0.15, 0.30, 0.45, 0.60�, and set
nb � �10, 10, 5, 5�. For the MBIR reconstructions, we set
the parameters equal to the MIR parameters, except that only
the z � 2.5 m phase screen was reconstructed.

Acknowledgment. The authors would like to thank
B. T. Plimmer and D. E. Thornton for their assistance in con-
ducting the laboratory experiments and in reviewing this paper.

REFERENCES

1. T.-C. Poon and J.-P. Liu, Introduction to Modern Digital Holography:
With MATLAB (Cambridge University, 2014).

2. S. T. Thurman and J. R. Fienup, “Phase-error correction in digital
holography,” J. Opt. Soc. Am. A 25, 983–994 (2008).

3. J. C. Marron, R. L. Kendrick, N. Seldomridge, T. D. Grow, and T. A.
Höft, “Atmospheric turbulence correction using digital holographic
detection: experimental results,” Opt. Express 17, 11638–11651
(2009).

4. M. F. Spencer, R. A. Raynor, M. T. Banet, and D. K. Marker, “Deep-
turbulence wavefront sensing using digital-holographic detection in
the off-axis image plane recording geometry,” Opt. Eng. 56,
031213 (2017).

5. C. Pellizzari, M. F. Spencer, and C. A. Bouman, “Phase-error
estimation and image reconstruction from digital-holography data
using a Bayesian framework,” J. Opt. Soc. Am. A 34, 1659–1669
(2017).

6. C. Pellizzari, M. T. Banet, M. F. Spencer, and C. A. Bouman,
“Demonstration of single-shot digital holography using a Bayesian
framework,” J. Opt. Soc. Am. A 35, 103–107 (2018).

7. J. W. Goodman, Speckle Phenomena in Optics: Theory and
Applications (Roberts and Company, 2006).

8. J. D. Schmidt, Numerical Simulation of Optical Wave Propagation with
Examples in MATLAB (SPIE, 2010).

9. L. Andrews and R. Phillips, Laser Beam Propagation through Random
Media, 2nd ed. (SPIE, 2005).

10. S. T. Thurman and J. R. Fienup, “Correction of anisoplanatic
phase errors in digital holography,” J. Opt. Soc. Am. A 25,
995–999 (2008).

11. A. E. Tippie and J. R. Fienup, “Phase-error correction for
multiple planes using a sharpness metric,” Opt. Lett. 34, 701–703
(2009).

12. A. E. Tippie and J. R. Fienup, “Multiple-plane anisoplanatic phase
correction in a laboratory digital holography experiment,” Opt. Lett.
35, 3291–3293 (2010).

13. C. J. Pellizzari, R. Trahan, H. Zhou, S. Williams, S. E. Williams, B.
Nemati, M. Shao, and C. A. Bouman, “Synthetic aperature ladar: a
model-based approach,” IEEE Trans. Comput. Imaging 3, 901–916
(2017).

14. V. V. Protopopov, Laser Heterodyning, Vol. 149 of Springer Series in
Optical Sciences (Springer, 2009).

15. C. A. Bouman, Model Based Image Processing, 2013, https://
engineering.purdue.edu/~bouman/publications/pdf/MBIP-book.pdf.

16. J. B. Thibault, K. Sauer, C. Bouman, and J. Hsieh, “A three-
dimensional statistical approach to improved image quality for
multi-slice helical CT,” Med. Phys. 34, 4526–4544 (2007).

17. A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” J. R. Stat. Soc. Ser. B
39, 1–38 (1977).

18. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and
Company, 2005).

19. C. Forbes, M. Evans, N. Hastings, and B. Peacock, Statistical
Distributions (Wiley, 2011).

20. A. E. Tippie, “Aberration correction in digital holography,” Ph.D.
dissertation (University of Rochester, 2012).

Research Article Vol. 36, No. 2 / February 2019 / Journal of the Optical Society of America A A33

https://doi.org/10.1364/JOSAA.25.000983
https://doi.org/10.1364/OE.17.011638
https://doi.org/10.1364/OE.17.011638
https://doi.org/10.1117/1.OE.56.3.031213
https://doi.org/10.1117/1.OE.56.3.031213
https://doi.org/10.1364/JOSAA.34.001659
https://doi.org/10.1364/JOSAA.34.001659
https://doi.org/10.1364/JOSAA.35.000103
https://doi.org/10.1364/JOSAA.25.000995
https://doi.org/10.1364/JOSAA.25.000995
https://doi.org/10.1364/OL.34.000701
https://doi.org/10.1364/OL.34.000701
https://doi.org/10.1364/OL.35.003291
https://doi.org/10.1364/OL.35.003291
https://doi.org/10.1109/TCI.2017.2663320
https://doi.org/10.1109/TCI.2017.2663320
https://engineering.purdue.edu/~bouman/publications/pdf/MBIP-book.pdf
https://engineering.purdue.edu/~bouman/publications/pdf/MBIP-book.pdf
https://engineering.purdue.edu/~bouman/publications/pdf/MBIP-book.pdf
https://engineering.purdue.edu/~bouman/publications/pdf/MBIP-book.pdf
https://engineering.purdue.edu/~bouman/publications/pdf/MBIP-book.pdf
https://doi.org/10.1118/1.2789499

