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The estimation of phase errors from digital-holography data is critical for applications such as imaging or wave-
front sensing. Conventional techniques require multiple i.i.d. data and perform poorly in the presence of high
noise or large phase errors. In this paper, we propose a method to estimate isoplanatic phase errors from a single
data realization. We develop a model-based iterative reconstruction algorithm that computes the maximum a
posteriori estimate of the phase and the speckle-free object reflectance. Using simulated data, we show that
the algorithm is robust against high noise and strong phase errors. © 2017 Optical Society of America
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1. INTRODUCTION

Digital holography (DH) uses coherent-laser illumination and
detection to gain significant improvements in sensitivity for re-
mote-sensing applications. Detection involves measuring the
modulation of a strong reference field by a potentially weak
signal field. This modulation allows for the detection of signals
with energies equivalent to a single photon or less [1].

In practice, DH systems are sensitive to phase errors imparted
by atmospheric perturbations or flaws in the optical system. For
imaging applications, we must estimate and remove these phase
errors to form a focused image [2–10]. Similarly, for wavefront-
sensing applications, estimation of the phase errors represents the
desired sensor output [11–14]. In either case, accurately
estimating the phase errors is a necessary and critical task.

State-of-the-art techniques for estimating phase errors from
DH data involve maximizing an image sharpness metric with
respect to the phase errors [3–5,7–10]. Typically, multiple data
realizations are obtained for which the image-to-image speckle
variation is decorrelated but the phase errors are identical. For
applications using pupil-plane detection, the data realizations
are corrected using an initial estimate of the phase errors
and then inverted using a fast Fourier transform (FFT). The
inversion produces estimates of the complex-valued reflection
coefficient, g , which are incoherently averaged to reduce
speckle variations. The sharpness of this speckle-averaged image
is then maximized to obtain the final phase-error estimate.

Image sharpening (IS) algorithms are designed to use multiple
data realizations. However, Thurman and Fienup demonstrated

that in favorable conditions, the algorithms can still be used
when only one realization is available [3]. For a high signal-
to-noise ratio (SNR), with several hundred detected photons
per detector element, their algorithm was able to estimate atmos-
pheric phase functions with residual root-mean-square (RMS)
errors as low as 1/8 wave.

While IS algorithms have been successfully demonstrated
for estimating both isoplanatic and anisoplanatic phase errors,
there remains room for improvement. First, IS algorithms use
relatively simple inversion techniques to reconstruct the mag-
nitude squared of the reflection coefficient, jgj2, rather than the
real-valued reflectance, r. The reflectance, given by r � E �jgj2�,
where E �·� indicates the expected value, is a smoother quantity
with higher spatial correlation between elements in the image.
We are accustomed to seeing the reflectance in conventional
images and it is of greater interest for many imaging applica-
tions. Conversely, reconstructing jgj2 leads to images with
high-spatial-frequency variations known as speckle. By recon-
structing r, we can leverage its higher spatial correlation to bet-
ter constrain the estimation process and potentially produce
more accurate estimates of the phase errors [15].

Another limitation of IS algorithms is that the process of
estimating the phase errors is not tightly coupled to image
reconstruction. Information about the object can be further
leveraged during the phase-estimation process. For example,
this information can help rule out contributions to the phase
caused by noise. By jointly estimating both the phase errors and
the reflectance, we can incorporate additional information into
our estimates, which helps reduce uncertainty [15].
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Lastly, in many practical applications it may not be possible
to obtain multiple data realizations. Particularly, in cases where
there is not enough relative movement between the object and
the receiver to decorrelate the speckle variations between im-
ages, the phase errors are rapidly changing, or when timing re-
quirements prohibit multiple images from being obtained.
Without multiple realizations, IS algorithms can struggle to
produce accurate phase-error estimates [3] and an alternate
method is needed.

In this paper, we propose an improved method of DH phase
recovery based on a framework of joint image reconstruction
and phase-error estimation. Our approach builds on the work
of [15] by reconstructing the spatially correlated reflectance, r,
rather than the reflection coefficient, g , which allows for better
estimates of the phase errors from less data. We focus on re-
constructing from a single data realization under isoplanatic
atmospheric conditions for the off-axis pupil-plane recording
geometry (PPRG) [13]. Our major contributions include:

1. We jointly compute the maximum a posteriori (MAP)
estimates of the image reflectance, r, and phase errors, ϕ from a
single data realization. Joint estimation reduces uncertainty in
both quantities. Additionally, estimating r rather than g helps
to further constrain the problem and produce images without
speckle.

2. We derive the forward model for a DH system using the
off-axis PPRG. The model ensures our estimates are consistent
with the physics and statistics of the remote-sensing scenario.

3. We develop a technique to compute the 2D phase errors
that occur in DH. Our approach allows for the estimation of
phase errors on a lower resolution grid to help reduce the num-
ber of unknowns.

4. We model the phase errors as a random variable using a
Gaussian Markov random field (GMRF) prior model. This ap-
proach allows us to compute the MAP estimate of the phase
errors, which constrains the estimate to overcome high noise
and strong turbulence.

5. We compare the proposed algorithm to the image
sharpening approach in [3] over a range of SNRs and atmos-
pheric turbulence strengths.

Overall, our experimental results using simulated, single-
frame, isoplanatic data demonstrate that the proposed MBIR
algorithm can reconstruct substantially higher-quality phase
and image reconstructions compared to IS algorithms.

2. ESTIMATION FRAMEWORK

Figure 1 shows an example scenario for a DH system using the
off-axis PPRG. Our goal is to compute the MAP estimates of
the reflectance, r ∈ RN , and the phase errors, ϕ ∈ RN , from
the noisy data, y ∈ CN . Note that we are using vectorized no-
tation for these 2D variables. The joint estimates are given by

�r̂; ϕ̂� � argmin
�r;ϕ�∈Ω

f− log p�r;ϕjy�g

� argmin
�r;ϕ�∈Ω

f− log p�yjr;ϕ� − log p�r� − log p�ϕ�g; (1)

where Ω represents the jointly feasible set and the quantities r
and ϕ are assumed to be independent.

To evaluate the cost function for Eq. (1), we must derive the
model for p�yjr;ϕ�. The reader is referred to Appendix A for a
more detailed derivation. In short, we can represent the data
using an additive noise model given by

y � Af � w; (2)

where w ∈ CN is the measurement noise, A ∈ CN×N is the
linear forward model operator, and f ∈ CN is the complex
field in the object plane. For an object with reflectance function
g ∈ CN , f is defined as

f � Γg; (3)

where Γ ∈ CN×N is a diagonal matrix that applies the object-
plane, quadratic phase factor from the Fresnel propagation in-
tegral [16]. Note that jf ij � jgij, and therefore ri �
E �jgij2� � E �jf ij2� for all i. By representing the data as a func-
tion of f , rather than g , we avoid having to explicitly define Γ
in our model.

In Eq. (2), the matrix A accounts for the propagation and
measurement geometry. If we ignore the blurring effects caused
by sampling the signal with finite-sized pixels, A can be decom-
posed as

A � D�a�D�expfjϕg�F : (4)

Here D�·� denotes an operator that produces a diagonal ma-
trix from its vector argument, a ∈ RN is the entrance-pupil
transmission function, and ϕ is the phase-error function pre-
viously defined. For our purposes, a is a binary circular function
defining the entrance pupil of the imaging system, as shown in
Fig. 1. Finally, we choose the reconstruction parameters such
that F ∈ CN×N is a two-dimensional discrete Fourier transform
(DFT) matrix scaled so that FHF � I .

For surfaces that are rough relative to the illumination wave-
length, the vector g can be modeled as a conditionally complex
Gaussian random variable. Given the underlying reflectance, r,
of the scene, the conditional distribution is given by

p�gjr� ∼ CN �0;D�r��; (5)

Fig. 1. Example DH system using an off-axis pupil-plane recording
geometry. A coherent source is used to flood illuminate an object,
which has a reflectance function, r, and corresponding reflection co-
efficient, g . The return signal is corrupted by atmospheric phase errors,
ϕ, and passes through the entrance pupil to the imaging system, a.
Both a and ϕ are considered to be located in the same plane. The
entrance-pupil plane is then imaged onto a focal-plane array where
it is mixed with a reference field. For simplicity, only the entrance
and exit pupils of the optical system are shown. Finally, the noisy data,
y (with noise power σ2w), is processed to form an image and/or an es-
timate of ϕ.
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where for any random vector z ∈ CM , CN �μ; C� is the multi-
variate complex normal distribution with mean, μ, and covari-
ance matrix, Σ, such that

CN �μ; C� � 1

πM jΣj expf−�z − μ�HΣ−1�z − μ�g: (6)

Here, superscript H indicates the Hermitian transpose. The
vector, f , then has an identical distribution given by

p�f jr� ∼ CN �0;ΓD�r�ΓH �
� CN �0;D�r��: (7)

The equality in Eq. (7) results from the commutative prop-
erty of diagonal matrices and from the fact that ΓΓH � I .

It is common for coherent detection systems to use a refer-
ence beam that is much stronger than the return signal. For
such cases, shot noise, driven by the power of the reference
beam, is the dominate source of measurement noise and can
be modeled as additive, zero-mean, complex Gaussian white
noise [17,18]. The distribution of w is therefore given by

p�w� ∼ CN �0; σ2wI�; (8)

where σ2w is the noise variance.
From Eqs. (2)–(8), the likelihood function of the data,

given the reflectance and the phase errors, is distributed accord-
ing to [19]

p�yjr;ϕ� ∼ CN �0; AD�r�AH � σ2wI�: (9)

Therefore, the MAP cost function is given by

c�r;ϕ� � − log p�yjr;ϕ� − log p�r� − log p�ϕ�
� log jAD�r�AH � σ2wI j � yH �AD�r�AH � σ2wI�−1y
− log p�r� − log p�ϕ�: (10)

Unfortunately, the determinate and inverse make direct
optimization of Eq. (10) an extremely computationally expen-
sive task.

Equation (10) is similar to the MAP cost function in [15],
except that the forward model has changed and we include the
distribution of ϕ in the cost function. Despite these differences,
we use a similar optimization approach, which leverages the
expectation maximization (EM) algorithm and allows us to re-
place Eq. (10) with a more tractable surrogate function.

In order to use the EM algorithm, we need to first introduce
the concept of surrogate functions. For any function c�x�, we
define a surrogate function, Q�x; x 0�, to be an upper-bounding
function, such that c�x� ≤ Q�x; x 0� � κ, where x 0 is the cur-
rent value of x that determines the functional form of Q
and κ is a constant that ensures the two functions are equal
at x 0. Surrogate functions have the property that minimization
of Q implies minimization of f . That is,

fQ�x; x 0� < Q�x 0; x 0�g ⇒ fc�x� < c�x 0�g: (11)

Surrogate functions are useful because in some cases it is
possible to find a simple surrogate function, Q , that we can
iteratively minimize in place of a more difficult to compute
function, c. In fact, the EM algorithm provides a formal frame-
work for constructing such a surrogate function. More specifi-
cally, for our problem, the surrogate function of the EM
algorithm takes the following form:

Q�r;ϕ; r 0;ϕ 0� � −E�log p�y; f jr;ϕ�jY � y; r 0;ϕ 0�
− log p�r� − log p�ϕ�; (12)

where r 0 and ϕ 0 are the current estimates of r and ϕ, respec-
tively. A core idea of the EM algorithm is that there is missing
or unobserved data that we can only indirectly observe through
the measured data, y [20]. Since knowledge of this unobserved
data would simplify the problem, we conjecture what that data
must be, given our knowledge of the observed data [21]. Here
we choose f to be the unobserved data.

Evaluation of the expectation in Eq. (12), with respect to f ,
constitutes the E-step of the EM algorithm. After the surrogate
function is specified, we conduct the M-step to jointly mini-
mize the Q function according to

�r̂ ; ϕ̂� � argmin
�r;ϕ�

fQ�r;ϕ; r 0;ϕ 0�g: (13)

Figure 2 shows the alternating minimization approach used
for implementing Eq. (13). Note that we jointly minimize Q
with respect to both variables before we update its functional
form by updating r 0 and ϕ 0. Updating r 0 prior to computing ϕ̂
leads to a slightly different algorithm; however, both approaches
monotonically reduce the MAP cost function and we observed
that both approaches produce very similar results.

The proposed algorithm of Fig. 2 shares the same conver-
gence and stability properties as the algorithm in [15]. More
specifically, the EM algorithm converges in a stable manner
to a local minima. Since both the MAP cost function and
its surrogate are nonconvex, the algorithm is likely to converge
to a local minimum that is not a global minimum. We cannot
directly evaluate the MAP cost function to compare different
local minima. Therefore, to ensure we find a good local min-
ima, in the sense that it produces a focused and useful image,
we pay close attention to our initial conditions. In Section 4.C,
we present a multistart algorithm that we empirically found to
robustly compute good local minima.

3. PRIOR MODELS

In this section, we present the distributions used to model both
the reflectance, r, and the phase errors, ϕ. In both cases, we
choose to use Markov random fields (MRFs) with the form

p�r� � 1

z
exp

(
−
X

fi;jg∈P
bi;jρ�Δ�

)
; (14)

where z is the partition function, bi;j is the weight between
neighboring pixel pairs (ri and rj, or ϕi and ϕj), Δ is the

Fig. 2. EM algorithm for joint optimization of the MAP cost sur-
rogate function.
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difference between those pixel values, P is the set of all pairwise
cliques falling within the same neighborhood, and ρ�·� is the
potential function [21]. We obtain different models for the re-
flectance and phase errors by choosing different potential
functions.

A. Reflectance

For the reflectance function, r, we used a Q-generalized
Gaussian Markov random field (QGGMRF) potential function
with the form

ρr

�
Δr

σr

�
� jΔr jp

pσpr

 �� Δr
T σr

��q−p
1�

�� Δr
T σr

��q−p
!
; (15)

where T is a unitless threshold value that controls the transition
of the potential function from having the exponent q to having
the exponent p [22]. The variable, σr , controls the variation in
r̂. The parameters of the QGGMRF potential function affect
its shape and therefore the influence neighboring pixels have on
one another.

While more sophisticated priors exist for coherent imaging,
the use of a QGGMRF prior is relatively simple and computa-
tionally inexpensive yet effective [15,23]. The low computa-
tional burden is important for DH applications where we
desire near-real-time, phase-error estimations, such as with
wavefront sensing. In this work, we focus on reconstructing
relatively simple objects. The reader is directed to [23] for in-
formation about how these models affect reconstruction of
more complicated objects.

B. Phase Errors

In practice, the phase-error function may not change much
from sample to sample or we may wish to correct the phase
at a defined real-time frame rate using a deformable mirror with
fewer actuators than sensor measurements. Therefore, to re-
duce the number of unknowns, we allow the phase-error func-
tion, ϕ, to be modeled on a grid that has lower resolution than
the measured data. We denote the subsampled function as ϕ̄.

Using ϕ̄ allows us to estimate only a single phase value for
multiple data samples. This technique reduces the number of
unknowns when estimating r and ϕ from 2N toN �1� 1∕n2b�,
where nb is the factor of subsampling used in both dimensions.
To scale ϕ̄ to the resolution of ϕ for use in the forward model,
we use a nearest-neighbor-interpolation scheme given by

ϕ � Pϕ̄: (16)

Here, P is an N × N∕n2b interpolation matrix with elements
in the set [0,1]. While a more sophisticated interpolation method
could be used, nearest neighbor requires no additional compu-
tation since we simply copy each sample, ϕ̄s, to the correspond-
ing samples in ϕ. This low computational cost is attractive for
applications like wavefront sensing where speed is important.

To model the distribution of unwrapped phase-error values
in ϕ̄, we use a Gaussian potential function given by

ρϕ̄

�
Δϕ̄

σϕ̄

�
� jΔϕ̄j2

2σ2
ϕ̄

; (17)

where σϕ̄ controls the variation in ˆ̄ϕ. The Gaussian potential
function enforces a strong influence between neighboring

samples, which generates a more smoothly varying output
when compared to QGGMRF. Since the unwrapped phase
function will not have edges or other sharp discontinuities,
the GMRF is more appropriate than QGGMRF in this case.
An added benefit is that it is less computationally expensive
than the QGGMRF model, which allows for fast evaluation.

4. ALGORITHM

In this section, we present the details for how we execute the
proposed EM algorithm shown in Fig. 2. The discussion de-
scribes how we evaluate the surrogate function in the E-step
and how we optimize it in the M-step.

A. E-Step—Surrogate Function Evaluation

Using the models given by Eqs. (7)–(9) and (14)–(17), along
with the conditional posterior distribution of f given y and r,
we can evaluate the surrogate function of Eq. (12). Its final
form is given by

Q�r;ϕ; r 0;ϕ 0� � −
1

σ2w
2RefyHAϕμg � log jD�r�j

�
XN
i�1

1

ri
�Ci;i � jμij2� �

X
fi;jg∈P

bi;jρr

�
Δr

σr

�

�
X

fi;jg∈P
bi;jρϕ̄

�
Δϕ̄

σϕ̄

�
: (18)

Here, Aϕ indicates that the matrix A is dependent on ϕ, μi is
the ith element of the posterior mean given by

μ � C
1

σ2w
AH
ϕ 0y; (19)

and Ci;i is the ith diagonal element of the posterior covariance
matrix given by

C �
�
1

σ2w
AH
ϕ 0Aϕ 0 �D�r�−1

�
−1

: (20)

We simplify the evaluation of Eq. (18) by approximating the
posterior covariance as

C ≈D
�

σ2w

1� σ2w
r

�
; (21)

which requires that

AH
ϕ Aϕ � FHΦHΛHΛΦF ≈ I : (22)

For a square entrance-pupil function filling the detector’s
field of view, Λ � I and the approximations of Eqs. (21)
and (22) become exact as both F and Φ are unitary matrices.
When Λ represents a circular aperture, the relationship of
Eq. (22) is approximate. However, since it dramatically simpli-
fies computations, we will use this approximation and the re-
sulting approximation of Eq. (21) in all our simulations when
computing the Q function for the EM update. In practice, we
have found this to work well.

B. M-Step—Optimization of the Surrogate Function

The goal of the M-step is to minimize the surrogate function
according to Eq. (13), using the alternating optimization shown
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in Fig. 2. Specifically, we use iterative coordinate descent (ICD)
to update both r and ϕ [21]. ICD works by sequentially min-
imizing the entire cost function with respect to a single sample,
rs or ϕs.

By considering just the terms in Eq. (B6), which depend on
a pixel rs, the cost function for the reflectance update is given by

qs�rs; r 0;ϕ 0� � log rs �
Cs;s � jμsj2

rs
�
X
j∈∂s

bs;jρr

�
rs − rj
σr

�
;

(23)

where the sum over j ∈ ∂s indicates a sum over all neighbors of
the pixel rs. We carry out the minimization of Eq. (23) with a
1D line search over R�.

To minimize Eq. (18) with respect to the phase errors, we
consider just the terms that depend on ϕ̄. The phase-error cost
function becomes

q�ϕ; r 0;ϕ 0� � −
1

σ2w
2RefyHAϕμg �

1

2σ2
ϕ̄

X
fi;jg∈P

bi;jjΔϕ̄j2:

(24)

We use ICD to sequentially minimize the cost with respect
to each element of the subsampled phase-error function, ϕ̄. For
element ϕ̄p, corresponding to a nb × nb group of data samples
with indices in the set B, the cost function becomes

qp�ϕ̄p; r 0;ϕ 0� � −jχj cos�ϕχ − ϕ̄p� �
1

2σ2
ϕ̄

X
j∈∂p

bi;jjϕ̄p − ϕ̄jj2;

(25)

where

χ � 2

σ2w

Xn2b
i�1

y�B�i��Fμ�B�i� (26)

and j ∈ ∂p is an index over neighboring phase samples on the
lower resolution grid. We minimize Eq. (25) using a 1D line
search over ϕ̄p ∈ �ϕ̄�� − π; ϕ̄�� � π�, where ϕ̄�� minimizes the
prior term. By minimizing Eq. (25), we obtain an estimate
of the unwrapped phase errors. Finally, we obtain the full-
resolution estimate of the unwrapped phase errors, ϕ, according
to Eq. (16).

C. Initialization and Stopping Criteria

Figure 3 summarizes the steps of the EM algorithm. To deter-
mine when to stop the algorithm, we can use either a set num-
ber of iterations, NK , or a metric such as

ϵ � krk − rk−1k
krk−1k ; (27)

where k is the iteration index, and we stop the algorithm when
ϵ falls below a threshold value of ϵT .

The EM algorithm in Fig. 3 is initialized according to

r ← jAHyj°2; σr ←
1

γ

ffiffiffiffiffiffiffiffiffi
s2�r�

p
; (28)

where j · j°2 indicates the elementwise magnitude square of a
vector, γ is a unitless parameter introduced to tune the amount
of regularization in r, and s2�·� computes the sample variance of
a vector’s elements [24].

We use a heuristic similar to that used in [15] to iteratively
initialize the phase-error estimate. Figure 4 details the steps of
this iterative process. The initial estimate of the phase-error vec-
tor is simply ϕ ← 0. Next, for a set number of outer-loop iter-
ations, NL, we allow the EM algorithm to run for NK
iterations. At the beginning of each outer-loop iteration, we
reinitialize according to Eq. (28).

After the outer loop runs NL times, we again reinitialize ac-
cording to Eq. (28) and run the EM algorithm until it reaches
the stopping threshold ϵT . A Gaussian prior model for r works
best in the outer loop for the initialization of ϕ. Specifically, we
use q � 2, p � 2, T � 1, γ � 2, and b � G�0.8�, where
G�σ� indicates a 3 × 3Gaussian kernel with standard deviation,
σ. Once the initialization process is complete, we can use differ-
ent prior-model parameters for the actual reconstruction.

5. METHODS

To compare the proposed algorithm to an IS algorithm from
[3], we generated simulated data using an approach similar to
that of [3]. Figure 5(a) shows the binary 256 × 256 reflectance
function that we multiplied by an incident power, I0, to get the

Fig. 3. EM algorithm for the MAP estimates of r and ϕ. Here, S is
the set of all pixels and P is the set of all phase-error elements.

Fig. 4. Algorithm that initializes and runs the EM algorithm.
An iterative process is used to initialize the phase-error vector ϕ.
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object intensity, I�p; q�. Figure 5(b) shows the magnitude
squared of the corresponding reflection coefficient generated
according to f ∼ CN �0;D�I 0r��.

In accordance with the geometry shown in Fig. 1, we used
an FFT to propagate the field, f , from the object plane to the
entrance-pupil plane of the DH system. The field was padded
to 1024 × 1024 prior to propagation. Next, we applied a phase
error, ϕ�m; n�, and the entrance-pupil transmission function,
a�m; n�, shown in Fig. 5(c). Figure 5(d) is an example of
the intensity of the field passing through the entrance pupil,
which has a diameter, Dap, equal to the grid length.

To generate the atmospheric phase errors, we used an FFT-
based technique described in [25]. Using a Kolmogorov model
for the refractive-index power spectral density (PSD), we gen-
erated random coefficients for the spatial-frequency compo-
nents of the atmospheric phase, and then we used an
inverse FFT to transform to the spatial domain. To set the tur-
bulence strength, we parameterized the Kolmogorov PSD by
the coherence length, r0, also known as the Fried parameter
[25,26]. The value of r0 specifies the degree to which the phase
of a plane wave passing through the turbulent medium is cor-
related. Two points in the phase function, which are separated
by a distance greater than r0, will typically be uncorrelated. In
this paper, we report turbulence strength using the ratio
Dap∕r0, which is related to the degrees of freedom in the atmos-
pheric phase. We simulated data for Dap∕r0 values of
10; 20; 30, and 40. Figure 6 shows examples of the wrapped
phase errors for each case.

After we added phase errors to the propagated field and ap-
plied the aperture function shown in Fig. 5, we mixed the signal
with a modulated reference beam and detected the resultant
power. Following [3], the reference-beam power was set at ap-
proximately 80% of the well depth per detector element, i.e.,
80% of 5 × 104 photoelectron (pe). We modeled the Gaussian
read noise with a standard deviation of 40 pe and digitized the
output to 12 bits. After detection, we demodulated the signal to

remove the spatial-frequency offset from the reference beam,
low-pass filtered to isolate the signal of interest, and decimated
to obtain a 256 × 256 data array. (It is typical for this process to
be carried out by taking an FFT, windowing a small region
around the desired signal spectrum, and taking an inverse
FFT.) The resulting data were represented by Eq. (2) after
vectorization.

We generated data over a range of SNRs, which we define as

SNR � s2�Af �
s2�w� ; (29)

where s2�·� is the sample-variance operator used in Eq. (28).
For optically coherent systems, SNR is well approximated
by the average number of detected signal photons per pixel
[17,27]. At each turbulence strength, and at each SNR, we gen-
erated 18 i.i.d. realizations of the data. We then processed each
i.i.d. realization independently and computed the average per-
formance over the 18 independent cases.

To measure the distortion between the reconstructed im-
ages, r̂, and the simulation input, r, we used the normalized
root mean square error (NRMSE) given by

NRMSE �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kα� r̂ − rk2

krk2

s
; (30)

where

α� � argmin
α

fkαr̂ − rk2g (31)

is the least-squares fit for any multiplicative offset between r and r̂.
To measure distortion between the reconstructed phase

error, ϕ̂, and the actual phase error, ϕ, we calculated the
Strehl ratio according to

S � �jFFTfa�m; n�ej�ϕ̂�m;n�−ϕ�m;n��gj2�max

�jFFTfa�m; n�gj2�max

; (32)

where FFTf·g is the FFT operator and �·�max indicates that we
take the maximum value of the argument. The function,
a�m; n�, is a binary function that represents the aperture in
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Fig. 5. (a) 256 × 256 reflectance function used for generating simu-
lated data. (b) Intensity of the reflected field in the object plane, jf j°2.
(c) Entrance-pupil transmission function, a�m; n�. (d) Intensity of the
field passing through the entrance pupil.

Fig. 6. Atmospheric phase errors for Dap∕r0 values of (a) 10, (b) 20,
(c) 30, and (d) 40. Values shown are wrapped to �−π; π�.
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the observation plane. It takes on the value of 1 inside the white
dotted circle shown in Fig. 5 and 0 outside.

The digital phase correction of DH data is analogous to us-
ing a piston-only, segmented deformable mirror (DM) in adap-
tive optics. Therefore, using the DM fitting error from [28] and
Maréchal’s approximation, we can compute the theoretical
limit of the Strehl ratio as

Smax � e−1.26� d
r0
�53 ; (33)

where d is the spacing between correction points in ϕ̂.
Using the NRMSE and the Strehl ratio, we compared perfor-

mance of the proposed algorithm to the IS approach presented in
[3] using a point-by-point estimate ofϕ and theM 2 sharpness met-
ric. The algorithm computes the phase-error estimate according to

Fig. 7. Example images and residual phase errors for Dap∕r0 of (a) 10, (b) 20, (c) 30, and (d) 40. The top row of each image is the original blurry
image. These examples represent the reconstructions with the median Strehl ratio at the chosen SNRs. Note that we only show five of the 20 SNR
values. The images are shown using a log-based dB scale and the residual phase errors are wrapped to �−π; π�.
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ϕ̂ � argmax
ϕ

�
−
X
p;q

�jFHD�expfjϕg�Hyj°2�°0.5
	
; (34)

where ° indicates the application of an exponent to each element.
Following the process described in [3], we used 20 iterations of
conjugate gradient to optimize Eq. (34) and the algorithm was
initialized using a 15th-order Zernike polynomial estimate of the
phase errors. Following [3], we obtained the polynomial estimate
using an iterative method to estimate only up to the 3rd-order
terms, then up to the 4th, and so on, continuing up to
15th order.

For the proposed MBIR algorithm, we allowed the outer
initialization loop to run NL � 2 × 102 times, with NK �
10 EM iterations each time. We kept NL constant for all re-
constructions. Once the iterative initialization process was
complete, we set a stopping criteria of ϵT � 1 × 10−4 and
let the EM algorithm run to completion. We used q � 2,
p � 1.1, T � 0.1, γ � 2, and b � G�0.1� as the
QGGMRF prior parameters for image reconstruction.
Additionally, we used nb � 2, σϕ̄ � 0.1, and b � G�0.1�
for the phase error prior parameters. Using nb � 2 gives a total
number of unknowns of 5∕4N . Ideally, we would adjust σϕ̄ in
Eq. (17) to fit the turbulence strength. However, in an attempt
to reduce the number of parameters that must be adjusted in
the MBIR algorithm, and since we may not know the turbu-
lence strength in practical applications, we fix σϕ̄ to a value that
robustly produces good results. We found our parameters to
work well over a wide range of conditions.

6. EXPERIMENTAL RESULTS

Figure 7 shows example reconstructions for a subset of the results.
Each block of images shows the reconstructions corresponding to

the median Strehl ratio of the 18 i.i.d. data sets. Note that we only
show five of the 20 SNR levels for each turbulence strength. The
top row of each image block shows the original blurry images,
the middle shows the IS reconstructions, and the bottom shows
the MBIR reconstruction. To compress the large dynamic range
that occurs in coherent imagery, we present the results using a log-
based decibel (dB) scale given by rdB � 10 log10�r̃�, where r̃ ∈
�0; 1� is the normalized reflectance function. The residual phase
errors, wrapped to �−π; π�, are shown below each image block. To
aid in viewing the higher-order residual phase errors in Fig. 7, we
removed the constant and linear phase components, piston, tip,
and tilt. The values were estimated according to

�p̂; t̂x ; t̂ y� � argmin
�p;tx ;ty�

X
m;n

jWfϕr�m; n� − �p� txm� tyn�gj2;

(35)

whereWf·g is an operator that wraps its argument to �−π; π�, ϕr
is the residual phase error, p is a constant, and tx and ty are the
linear components in the x and y dimensions, respectively.

The examples in Fig. 7 show that the IS algorithm is able
to correct most of the phase errors for Dap∕r0 � 10 and some
of the errors at Dap∕r0 � 20. For Dap∕r0 � 30 and
Dap∕r0 � 40, the IS images are blurred beyond recognition.
In contrast, the proposed MBIR algorithm produced focused
images for all but the lowest SNR reconstructions. In addition,
we see how the MBIR reconstruction has significantly less
speckle variation. The MBIR results also show that in many
cases, the residual phase errors contain large-scale patches sep-
arated by wrapping cuts. However, as Fig. 7 shows, the patches
are approximately modulo-2π equivalent and still produce
focused images.
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Fig. 8. Strehl ratio (top row) and reconstruction error (bottom row) versus SNR for Dap∕r0 of (a), (b) 10, (c), (d) 20, (e), (f ) 30, and (g), (h) 40.
The dashed curves shows the IS results and the solid curves show the MBIR results. The horizontal lines in the top row show the corresponding
Strehl ratio limit given by Eq. (33).
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Figure 8 shows the resulting Strehl ratio and NRMSE for
each algorithm as a function of SNR and Dap∕r0. The curves
in Fig. 8 show the average results for all 18 i.i.d. realizations
along with error bars that span the standard deviation. We also
plot the Strehl ratio limits given by Eq. (33) where we used d �
Dap∕256 for the IS algorithm and d � Dap∕128 for the MBIR
algorithm.

The results show that the IS algorithm works in a limited
range of conditions for single-shot data. For Dap∕r0 � 10, IS
peaks at a Strehl ratio of 0.8 when the SNR exceeds 10. For
lower SNRs or stronger turbulence, the IS algorithm’s perfor-
mance tapers off quickly. Conversely, the proposed MBIR
algorithm is able to obtain Strehl ratios much higher than
IS, even for low SNRs and strong turbulence. In the Dap∕r0 �
10 case, MBIR reaches the IS Strehl limit of 0.8 with about
92% less SNR.

While Figs. 7 and 8 show that the MBIR algorithm produ-
ces reconstructions with higher Strehl ratios and lower
NRMSEs compared to the IS algorithm, we must also consider
how long they take to run. To compare the algorithm runtimes,
we generated 20 i.i.d. data realizations at Dap∕r0 � 10 and
SNR � 100. We then computed the IS and MBIR reconstruc-
tions for each of the 20 data sets. Figure 9 shows the average
Strehl ratio as a function of computer runtime. We used a com-
puter with a 4 GHz Intel Core i7 processor and executed the
reconstructions in MATLAB using mex files to run the opti-
mization functions for both algorithms.

The runtime results in Fig. 9 show that the MBIR algorithm
can reach high Strehl ratios much faster than the IS algorithm.
The average Strehl ratio of the IS algorithm reached its peak of
0.81 after approximately 153 s, while the MBIR algorithm
achieved an average Strehl ratio of 0.81 after approximately
6 s. MBIR reached average Strehl ratios of 0.93 after approx-
imately 13 s and its peak of 0.95 after approximately 28 s.
When IS transitions from the polynomial estimate to the

point-by-point estimate at ≈148 s, there is a sharp increase
in the average Strehl ratio. Note that running the point-by-
point IS algorithm longer does not continue this trend.

7. CONCLUSION

In this paper, we presented an inverse, model-based approach to
estimating phase errors and reconstructing images from digital
holography (DH) data. We designed the algorithm for cases
where only a single data realization is available and the phase
errors are isoplanatic. Rather than estimating the spatially un-
correlated reflection coefficient, g , we estimate the highly cor-
related reflectance function, r. This allows us to better constrain
the underdetermined system and produce speckle-reduced im-
ages and accurate phase-error estimates with less data. Using
first principals, we derived a discrete forward model for use
in the MAP cost function. To obtain a more tractable surrogate
function, we used the EM algorithm. Additionally, we intro-
duced a GMRF prior model for the phase-error function mod-
eled on a lower resolution grid and presented optimization
schemes for the joint estimates.

We compared the proposed algorithm to a leading image
sharpness approach over a range of conditions. The results
showed that the MBIR algorithm produced phase estimates
with higher Strehl ratios and lower image distortions than
the IS technique. For cases of high noise and large phase errors,
IS was not effective, while MBIR was still able to produce
accurate estimates. Furthermore, we showed that the MBIR
algorithm is much faster than IS at reaching high Strehl ratios.
In conclusion, we showed that the proposed algorithm is an
effective alternative to IS algorithms for estimating phase errors
from single-shot DH data and reconstructing images.

APPENDIX A: FORWARD MODEL DERIVATION

In this section, we derive the linear forward model expressed by
Eq. (2). Following the scenario depicted in Fig. 1, we derive a
continuous model for the data and then a discrete representation.

Assume that we use a monochromatic plane wave to illumi-
nate an object that has a complex-valued reflection coefficient,
g̃�ξ; η�. We denote continuous functions using tildes. The re-
turn field passing through the entrance pupil can be repre-
sented using the Fresnel diffraction integral [16] given by

Ũ s�x; y� � αã�x; y�ejψ̃�x;y�ej k2z�x2�y2�

×
ZZ

∞

−∞



g̃�ξ; η�ej k2z�ξ2�η2��e−jkz�xξ�yη�dξdη; (A1)

where α is a complex constant, ã�x; y� represents the circular
transmission function for the system’s entrance pupil, ψ̃�x; y�
is the atmospheric phase-error function assumed to be concen-
trated in a single layer in the entrance-pupil plane (i.e., an iso-
planatic phase error), k � 2π∕λ is the wave number, and λ is
the wavelength.

To simplify notation, we define the function

f̃ �ξ; η� � g̃�ξ; η�ej k2z�ξ2�η2� (A2)

and its corresponding continuous space Fourier transform
given by
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Fig. 9. Average Strehl ratio as a function of algorithm runtime for
20 i.i.d. realizations at Dap∕r0 � 10 and SNR � 100. The jump in
Strehl ratio for the IS algorithm occurs at approximately 148s when we
switch from the 15th-order polynomial estimate to the point-by-point
estimate. Here we limited the number of outer-loop iterations for the
MBIR algorithm to NK � 50 since the Strehl ratio did not change
significantly after ≈30 s.
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F̃ �u; v� �
ZZ

∞

−∞
f̃ �ξ; η�e−j2π�uξ�vη�dξdη: (A3)

We can also combine the pupil-plane quadratic phase func-
tion of Eq. (A1) with the atmospheric phase errors to get a sin-
gle unknown phase term given by

ϕ̃�x; y� � ψ̃�x; y� � k
2z

�x2 � y2�: (A4)

Given the definitions in Eqs. (A2) through (A4), the return
signal of Eq. (A1) can be written as

Ũ s�x; y� � αã�x; y�ejϕ̃�x;y�
ZZ

∞

−∞
f̃ �ξ; η�e−j2π� x

λzξ�
y
λzη�dξdη

� αã�x; y�ejϕ̃�x;y�F̃
�
x
λz

;
y
λz

�
; (A5)

where F̃� xλz ;
y
λz� implies F̃�u � x

λz ; v �
y
λz�.

Optical heterodyne detection is performed by mixing the
returned signal with a local reference beam given by

Ũ r�x; y� � R0ej2π�νx x�νy y�; (A6)

where R0 is the amplitude and νx and νy are factors that control
the spatial-frequency modulation. We combine the signal
and reference onto the detector, which measures the intensity
given by

Ĩ�x; y� � jŨ r�x; y� � Ũ s�x; y�j2
� jŨ r�x; y�j2 � jŨ s�x; y�j2
� Ũ r�x; y�Ũ �

s �x; y� � Ũ �
r �x; y�Ũ s�x; y�

� R2
0 � α2ã�x; y�2

����F̃
�
x
λz

;
y
λz

�����2

� αã�x; y�R0e−jϕ̃�x;y�F̃�
�
x
λz

;
y
λz

�
ej�νx x�νy y�

� αã�x; y�R0ejϕ̃�x;y�F̃
�
x
λz

;
y
λz

�
e−j�νx x�νy y�; (A7)

where � indicates the complex conjugate.
After detection, we demodulate the detector output to re-

move the spatial-frequency offset of the reference and low-pass
filter to remove the unwanted terms. Modulation by the refer-
ence requires that we sample the data at a higher rate than
would otherwise be necessary for the nonmodulated signal.
After demodulation, and low-pass filtering, the signal band-
width is only a fraction of the sampling bandwidth. We there-
fore decimate the signal to reduce the computational
requirements. Note that this is mathematically equivalent to
taking an FFT of the intensity data, extracting a smaller region
around the offset signal and then taking an inverse FFT. In
either case, we isolate the last term of Eq. (A7), which gives
us our signal of interest,

ỹ�x; y� � ã�x; y�ejϕ̃�x;y�F̃
�
x
λz

;
y
λz

�
: (A8)

(In practice, the output of the detection process is only pro-
portional to the right-hand side of Eq. (A8) by some unknown
constant.) Equation (A8) is continuous in both the x − y and
ξ − η coordinate systems and does not include noise. However,
we wish to represent the signal as discrete noisy measurements,

y�m; n�, generated from a discrete-space signal, f �p; q�. We
start by representing the discrete field in the object plane as

f �p; q� � f̃ �ξ; η�jξ�pT ξ
η�qT η

; (A9)

where T ξ and T η are the spatial-sampling periods in the object
plane. Furthermore, if we sample the signal with a focal-plane
array and ignore the blurring effects of finite-sized pixels, then
the discrete measurements can be represented as

y�m; n� � ỹ�x; y�jy�mTy
x�nT x

� w�m; n�; (A10)

where T x and T y are the spatial-sampling periods in the mea-
surement plane. We assume the system is shot-noise limited
with noise w�m; n�, driven by the power of the reference beam
[18], and modeled as additive, zero-mean, white Gaussian
noise [17].

Combining Eqs. (A8)–(A10), we get

y�m; n� � a�m; n�ejϕ�m;n�
X
p;q

f �p; q�Fm;n;p;q � w�m; n�;

(A11)

where a and ϕ are discrete versions of ã and ϕ̃, respectively, and

Fm;n;p;q �
1ffiffiffiffiffi
N

p exp

�
−j2π

�
T ξT x

λz
mp� T ηT y

λz
nq
�	

:

(A12)

Equation (A11) can be represented more compactly using
matrix-vector notation as

y � Af � w; (A13)

where w ∈ CM is the vectorized measurement noise and f ∈
CM is the vectorized field in the object plane. The matrix A can
be decomposed as

A � D�a�D�expfjϕg�F : (A14)

Here D�·� denotes an operator that produces a diagonal ma-
trix from its vector argument, a ∈ RN is the vectorized en-
trance-pupil transmission function, and ϕ ∈ CN is the
vectorized phase-error function. The matrix F is defined
in Eq. (A12).

Since the sum in Eq. (A11) represents the forward propa-
gation of the field f , we have scaled F by 1∕

ffiffiffiffiffi
N

p
so that

FHF � I . This ensures we conserve energy when propagating
between the object and entrance-pupil planes. Furthermore, we
choose our reconstruction parameters such that T ξT x∕λz �
Nx and T ηT y∕λz � Ny, where Nx and Ny are the grid sizes
in the x and y dimensions, respectively. Thus, F is exactly a
DFT kernel and can be efficiently implemented using a FFT.

APPENDIX B: DERIVATION OF THE EM
SURROGATE FUNCTION

In this section, we derive the EM surrogate for the MAP cost
function. We start by writing Eq. (12) as

Q�r;ϕ; r 0;ϕ 0� � −E�log p�y; f jr;ϕ�jY � y; r 0;ϕ 0�
− log p�r� − log p�ϕ�

� −E�log p�yjf ;ϕ� � log p�f jr�jY � y; r 0;ϕ 0�
− log p�r� − log p�ϕ�; (B1)
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where we have used Bayes’ theorem inside the expectation and
the fact that p�yjf ; r;ϕ� � p�yjf ;ϕ�. Next, we substitute in
the forward and prior models specified in Sections 2 and 3.
This gives

Q�r;ϕ;r 0;ϕ 0��E

�
1

σ2w
ky−Aϕf k2jY � y;r 0;ϕ 0�� log jD�r�j

�
XN
i�1

1

ri
E�jf ij2jY � y;r 0;ϕ 0

�
�
X

fi;jg∈P
bi;jρr

�
Δr

σr

�

�
X

fi;jg∈P
bi;jρϕ̄

�
Δϕ̄

σϕ̄

�
�κ; (B2)

where Aϕ indicates the matrix A is dependent on ϕ and the
variable κ is a constant with respect to r and ϕ.

To evaluate the expectations in Eq. (B2), we must specify
the conditional posterior distribution of f . Using Bayes’
theorem,

p�f jy; r;ϕ� � p�yjf ; r;ϕ�p�f jr�
p�yjr;ϕ�

� 1

z
exp

�
−
1

σ2w
ky − Aϕf k2 − f HD�r�−1f

	
; (B3)

where z is the partition function which absorbs any exponential
terms that are constant with respect to f . By completing the
square, we can show that the posterior distribution is a complex
Gaussian with mean

μ � C
1

σ2w
AH
ϕ 0y (B4)

and covariance

C �
�
1

σ2w
AH
ϕ 0Aϕ 0 �D�r�−1

�
−1

: (B5)

Using the posterior distribution specified by Eq. (B3), we
can evaluate the expectations in Eq. (B2) to get the final form
of our EM surrogate function given by

Q�r;ϕ; r 0;ϕ 0� � −
1

σ2w
2RefyHAϕμg � log jD�r�j

�
XN
i�1

1

ri
�Ci;i � jμij2� �

X
fi;jg∈P

bi;jρr

�
Δr

σr

�

�
X

fi;jg∈P
bi;jρϕ̄

�
Δϕ̄

σϕ̄

�
� κ; (B6)

where μi is the ith element of the posterior mean and Ci;i is the
ith diagonal element of the posterior covariance.

Acknowledgment. We would like to thank Dr. Samuel
T. Thurman for his helpful discussions and support of this
work. In addition, we would also like to thank the Maui
High Performance Computing Center (MHPCC) for their
assistance and resources, which allowed us to test the proposed
algorithm over a wide range of conditions.

REFERENCES

1. P. J. Winzer and W. R. Leeb, “Coherent LIDAR at low signal powers:
basic considerations on optical heterodyning,” J. Modern Opt. 45,
1549–1555 (1998).

2. J. C. Marron and K. S. Schroeder, “Holographic laser radar,”Opt. Lett.
18, 385–387 (1993).

3. S. T. Thurman and J. R. Fienup, “Phase-error correction in digital
holography,” J. Opt. Soc. Am. A 25, 983–994 (2008).

4. S. T. Thurman and J. R. Fienup, “Correction of anisoplanatic phase
errors in digital holography,” J. Opt. Soc. Am. A 25, 995–999 (2008).

5. J. C. Marron, R. L. Kendrick, N. Seldomridge, T. D. Grow, and T. A.
Höft, “Atmospheric turbulence correction using digital holographic de-
tection: experimental results,” Opt. Express 17, 11638–11651 (2009).

6. J. Marron, R. Kendrick, S. Thurman, N. Seldomridge, T. Grow, C.
Embry, and A. Bratcher, “Extended-range digital holographic imag-
ing,” Proc. SPIE 7684, 76841J (2010).

7. A. E. Tippie and J. R. Fienup, “Phase-error correction for multiple
planes using a sharpness metric,” Opt. Lett. 34, 701–703 (2009).

8. A. E. Tippie and J. R. Fienup, “Multiple-plane anisoplanatic phase cor-
rection in a laboratory digital holography experiment,” Opt. Lett. 35,
3291–3293 (2010).

9. A. E. Tippie, “Aberration correction in digital holography,” Ph.D. thesis
(University of Rochester, 2012).

10. J. R. Fienup, “Phase error correction in digital holographic imaging,” in
Digital Holography and Three-Dimensional Imaging (Optical Society
of America, 2014), p. DM1B-1.

11. R. A. Muller and A. Buffington, “Real-time correction of atmospheri-
cally degraded telescope images through image sharpening,” J.
Opt. Soc. Am. 64, 1200–1210 (1974).

12. M. F. Spencer, I. V. Dragulin, D. S. Cargill, and M. J. Steinbock, “Digital
holography wave-front sensing in the presence of strong atmospheric
turbulence and thermal blooming,” Proc. SPIE 9617, 961705 (2015).

13. M. T. Banet, M. F. Spencer, R. A. Raynor, andD. K.Marker, “Digital holog-
raphy wavefront sensing in the pupil-plane recording geometry for distrib-
uted-volume atmospheric aberrations,” Proc. SPIE 9982, 998208 (2016).

14. M. F. Spencer, R. A. Raynor, M. T. Banet, and D. K. Marker, “Deep-
turbulence wavefront sensing using digital-holographic detection in the
off-axis image plane recording geometry,”Opt. Eng. 56, 031213 (2017).

15. C. Pellizzari, R. Trahan III, H. Zhou, S. Williams, S. Williams, B. Nemati,
M. Shao, and C. A. Bouman, “Synthetic aperture LADAR: amodel based
approach,” IEEE Trans. Comput. Imaging PP, 1 (2017).

16. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company,
2005).

17. R. L. Lucke and L. J. Rickard, “Photon-limited synthetic aperture im-
aging for planet surface studies,” Appl. Opt. 41, 5084–5095 (2002).

18. V. V. Protopopov, Laser Heterodyning (Springer, 2009), Vol. 149.
19. S. M. Kay, Fundamentals of Statistical Signal Processing, Detection

Theory, PrenticeHall Signal ProcessingSeries (Prentice-Hall, 1993), Vol. II.
20. A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood

from incomplete data via the EM algorithm,” J. R. Stat. Soc. Ser. B
39, 1–38 (1977).

21. C. A. Bouman, “Model based image processing,” (2015) https://
engineering.purdue.edu/~bouman/publications/pdf/MBIP‑book.pdf.

22. J. B. Thibault, K. Sauer, C. Bouman, and J. Hsieh, “A three-
dimensional statistical approach to improved image quality for
multi-slice helical CT,” Med. Phys. 34, 4526–4544 (2007).

23. C. Pellizzari, R. Trahan III, H. Zhou, S. Williams, S. Williams, B.
Nemati, M. Shao, and C. A. Bouman, “Optically coherent image for-
mation and denoising using plug and play inversion framework,” Appl.
Opt. 56, 4735–4744 (2017).

24. C. Forbes, M. Evans, N. Hastings, and B. Peacock, Statistical
Distributions (Wiley, 2011).

25. J. D. Schmidt, Numerical Simulation of Optical Wave Propagation
with Examples in MATLAB (SPIE, 2010).

26. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through
Random Media (SPIE, 2005), Vol. 52.

27. H. A. Haus, Electromagnetic Noise and Quantum Optical
Measurements (Springer, 2012).

28. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford
University, 1998).

Research Article Vol. 34, No. 9 / September 2017 / Journal of the Optical Society of America A 1669

https://engineering.purdue.edu/~bouman/publications/pdf/MBIP-book.pdf
https://engineering.purdue.edu/~bouman/publications/pdf/MBIP-book.pdf
https://engineering.purdue.edu/~bouman/publications/pdf/MBIP-book.pdf
https://engineering.purdue.edu/~bouman/publications/pdf/MBIP-book.pdf
https://engineering.purdue.edu/~bouman/publications/pdf/MBIP-book.pdf

