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Abstract

Deep neural networks (DNNss) are commonly used to denoise and sharpen X-ray computed tomography (CT) images with the
goal of reducing patient X-ray dosage while maintaining reconstruction quality. However, naive application of DNN-based
methods can result in image texture that is undesirable in clinical applications. Alternatively, generative adversarial network
(GAN)-based methods can produce appropriate texture, but naive application of GANs can introduce inaccurate or even
unreal image detail. In this paper, we propose a texture matching generative adversarial network (TMGAN) that enhances
CT images while generating an image texture that can be matched to a target texture. We use parallel generators to separate
anatomical features from the generated texture, which allows the GAN to be trained to match the desired texture without
directly affecting the underlying CT image. We demonstrate that TMGAN generates enhanced image quality while also

producing image texture that is desirable for clinical application.

Keywords Low-dose CT - Texture matching - Denoising - Sharpening - Generative adversarial network

1 Introduction

X-ray computed tomography (CT) is one of the most widely
used 3D medical imaging modalities, with recent progress
on reconstruction methods resulting in reduced noise and
artifacts while improving resolution and quality [1]. In par-
ticular, noise reduction and image sharpening methods can
be used to reduce X-ray dosage while maintaining image
quality. However, the true measure of quality for a medical
CT reconstruction method is its ability to improve diagnostic
accuracy.

Radiologists regard the texture of CT images after enhance-
ment as critically important for diagnosis [2]. In fact, high-
quality texture provides important visual cues in decision
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making for radiologists [3]. Since radiologists are typically
familiar with the noise texture of filtered back-projection
(FBP) [4], this texture is often described as desirable [5, 6].
Quantitatively, [7] found that reducing noise while maintain-
ing a texture like that of FBP led to better lesion detection
than noise reduction that changed the texture.

Approaches to control CT image texture include [8, 9],
which synthesize high-quality texture by matching the statis-
tics of generated texture to a target. However, employing this
method while denoising or sharpening a CT image requires
separation of true anatomy from texture. This separation can
be done using morphological component analysis (MCA)
[10]asin [11, 12]. However, MCA requires dictionary learn-
ing for both the object and texture components, which is
computationally expensive.

From [13], adaptive methods to preserve textural informa-
tion include patch-based approaches using spatial similarity
[14-16], which employ parameters to control image smooth-
ness. Alternatively, [17] used a tuned a prior distribution in
an iterative reconstruction [18] to produce desirable texture.
However, these methods tend to be computationally expen-
sive.

Deep neural networks (DNNs) are currently among the
most popular methods for CT image enhancement [19, 20].
CNN denoisers typically require training with a loss func-
tion, and the mean squared error (MSE) loss function is
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commonly used [21] because it approximately maximizes
the peak signal-to-noise ratio (PSNR). However, it is also
known that the MSE loss function tends to produce images
that are overly smooth and lack texture [22].

Deep learning image reconstruction (DLIR) is a propri-
etary algorithm of GE HealthCare that is marketed under the
tradename TrueFidelity [23]. While the details of DLIR are
not publicly available, it is based on direct neural network
image domain denoising. DLIR produces CT images that
preserve texture similar to high dose filtered back-projection
(FBP) reconstruction and are shown to have a noise power
spectrum similar to that of the FBP reconstruction in [23].
However, this noise spectrum is measured only in uniform
regions of the reconstruction.

Other DNN approaches include [24, 25], which used
a novel loss function to preserve texture and detail while
denoising. The algorithm in [26] used a method to create
training pairs by adding appropriately scaled noise to both
input and ground truth, so that a DNN can be trained to pre-
serve texture. Liu et al. propose incorporating a loss term that
compares noise power spectra to enhance detail in recon-
structions, thereby improving texture [27]. However, none
of these approaches provide the ability to specify a target
texture distribution.

Another approach to improving texture using DNNss is to
use a generative adversarial network (GAN) [22], with the
generator output (i.e., the denoised or sharpened image) as an
input to the discriminator [28-31]. While these approaches
can produce more realistic texture, they do not allow opti-
mization to produce a particular desirable target texture.
Also, in GAN-based methods, since the underlying CT image
is not separated from the texture, the discriminator could
encourage the addition of inaccurate or even unreal image
detail known as hallucinations [32]. Xian et al. [33] used a
conditional GAN to produce a target texture in natural images
when an image sketch is provided.

Diffusion models have shown promise in enhancing CT
images by iteratively denoising or reconstructing high-
quality scans from noisy or undersampled data, demonstrat-
ing superior performance in preserving anatomical detail and
suppressing artifacts [34, 35]. However, diffusion methods
are computationally expensive to apply for inference, so they
are less desirable for application in enhancing large medical
image volumes [36]. Moreover, it is not clear how to apply
this approach to produce desired target textures.

In this paper, we propose the texture matching GAN
(TMGAN), which denoises and/or sharpens CT images while
simultaneously matching the generated texture to a distribu-
tion of target textures. The methods of TMGAN build on
our earlier research presented in [24]. A novel aspect of
TMGAN is that it separates the texture from the underlying
clean CT image by adding two independent noise samples
to the same ground truth image and processing them with
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a Siamese network [37] (generator) to produce two condi-
tionally independent estimates. We take the difference of
these two estimates to separate the texture component from
the underlying clean CT image. This allows the GAN to be
trained without the risk of generating false image detail or
hallucinations.

Our main contribution is a TMGAN architecture that:

e Denoises or sharpens a CT image while generating image
texture that matches a desired target texture;

e Separates noise texture from the underlying clean CT
image by subtracting two conditionally independent esti-
mates with the same ground truth;

e Uses a novel bias reduction method to reduce bias in the
estimated image;

We demonstrate the effectiveness of the TMGAN approach
on simulated and experimentally measured CT data and show
both quantitatively and qualitatively that TMGAN yields bet-
ter texture quality than existing approaches.

2 Problem Formulation

Let Y be an observed image (in the reconstruction or image
domain) from which we aim to recover the true image X. We
use the following forward model for training our algorithm,

Y=GX)+ W, ()

where W is noise and G(-) models other possible deforma-
tions in Y; for example, in sharpening applications, G(-) is a
blurring function. Note that W is not assumed to be indepen-
dent of X, and in some practical cases the noise amplitude
can depend on the signal strength in CT reconstruction. We
then seek to estimate X as X = h(Y).

To model texture, we define the image estimate X as a
sum of three components,

X =X + Bx +6x, 2
where we formally define

By = E[X|X] - X (3)
8x = X —E[X|X], )

where By is the bias in the estimate and dx is the estimation
noise, or texture, with E[§x|X] = 0 from (4). Note that if
X is known, then By is deterministic, whereas 8y is still a
random variable and a function of X.

We highlight that §x is not the same as W. The estima-
tion noise, dy, represents the noise texture in our estimate.
Consequently, our goal will be to match the texture of §x to
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Fig.1 Network architecture for Texture Matching GAN (TMGAN)

user-provided independent samples of the target noise tex-
ture, 7. In other words, our goal is to train a conditional
GAN with output X = h(Y) such that the resulting §x has
the desired target distribution.

However, this is difficult because during the training pro-
cess we never directly observe dx. Instead, we directly
observe X — X # &x. Consequently, it is not immediately
clear how to design a loss function for this task.

The key to training TMGAN is to add two noise instances
W1 and W5 that are conditionally independent given a single
ground truth X in (1). The resulting Y; and Y> are used to
give estimated images )Afl = h(Y}) and )A(z = h(Y>»), which
are then conditionally independent given X . This implies that
the resulting 6x, and 8y, are also conditionally independent
given X.

From this we can see that

X - X %)
= (X + Bx +6x,) — (X + Bx + 8x,)
=0x, — 8x,, (6)

where 8y, and dx, are conditionally independent and iden-
tically distributed (i.i.d.) given X.
Based on this analysis, we will design the GAN so that

Xi—Xo~Ti — T, @)

where X and X are generated using conditionally indepen-
dent noise samples and 77 and 7, are independent samples
of the target texture, and we use ~ to indicate the two differ-
ences have the same distribution.

Of course, if the texture has the desired distribution, then
dx, and Ty have the same distribution, and (7) must hold.
However, the converse is not necessarily true. So, if (7) holds,
it is not necessarily the case that §x, and T have the same

loss function
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distribution, which is our goal. In other words, (7) is a neces-
sary but not sufficient condition to ensure the desired texture
distribution.

Theorem 1 establishes the sufficiency under the strong
assumption of Gaussian differences, so that in this case, (7)
ensures the desired texture distribution, which provides some
theoretical motivation for our approach.

Theorem 1 Let §; — 8, ~ N(0,202) and 81,8, be real
valued i.i.d. random variables with a distribution that is sym-
metric about 0. Then 8 ~ N (0, o2).

We note that in real scans, the actual distribution of image
noise may not be well approximated by Gaussian, and the the-
orem assumptions do not hold. However, our experimental
results will demonstrate that even under more general condi-
tions, enforcing (7) leads to textures that match the desired
target texture distribution.

3 Texture Matching GAN
3.1 TMGAN Architecture

Figure 1 shows the network architecture for TMGAN, where
lower-case letters denote samples of the aforementioned ran-
dom variables. The central component is the TM generator,
hg(-), aneural network parameterized by the vector ¢, which
uses noisy and distorted input, y, to estimate the original
image as ¥ = hg(y). As described below, we optimize A4
not only to minimize mean squared error (MSE) but also
to produce a texture that statistically matches the provided
training or target texture samples. Since the training texture
samples may have a different amplitude than the estimation
texture, we use a parameter, y, to account for the potential
difference in scaling. This y parameter can be learned or set
manually.

@ Springer
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For the k" ground truth image, we first apply the deforma-
tion G(-) (Gaussian blur for sharpening and the identity for
denoising) and then generate two conditionally independent
inputs yx,1 and yx > by adding independent noise samples
wk,1 and wy 2. From these two inputs, the TM generator pro-
duces two estimates, X1 = hg(yk,1) and Xk 2 = hg(r,2).
Following (5), we take the scaled difference y (Xx 1 — X 2) to
get a sample of the fake texture difference, y (8,1 — §x2). We
also generate samples of the real texture difference ;1 — # 2
using sample images of the target texture by taking pixel-wise
difference.

3.2 TMGAN Training

To train the TM generator, we need to promote accurate
image estimation and match generated texture differences to
target texture differences. To match texture differences, we
use a GAN framework [38] in which the discriminator net-
work is trained to differentiate scaled fake texture differences
from real texture differences. We model the discriminator as
a function fg,(-) € (0, 1), with parameters 6,4, and we inter-
pret fy, as the probability that a texture difference sample is
real.

Using this notation, the discriminator is trained by min-
imizing the binary cross-entropy (BiCE) [38] loss function
with respect to 6;:

1 K
d(0g. 00) = == > [1og (fo, (te1 — 14.2))
k:l
+1log (1 = fo, (v (heie,1) — hei2))] . ()

where 0, = [¢, y] and K is the number of training samples.

Unlike previous GAN-based methods for CT image
enhancement, the TMGAN discriminator works only on the
texture part, which avoids the risk of possible addition of fake
detail, known as hallucinations, in the enhanced images.
Since our goal is to match ground truth while maximizing
texture quality, we need two loss terms for the generator, one
to promote desirable textures and a second to minimize MSE.
The MSE term incorporates the bias-reducing loss function of
[24], which demonstrated that the bias-reducing loss function
yields better structural detail in denoised images than was
obtained with the standard MSE loss.

Using this strategy, the TMGAN generator loss function
is

K

1
8(0g. 0a) = 4 > [ — Alog fo, (v (he(vk.1) — hy(yr.2)))
k=1

1

2 (”Zk 1= xl? 4 122 — xll )} 9)

q
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Algorithm 1: Training Pseudocode for TMGAN
Input: N : total number of generator updates,
T, : threshold for the discriminator loss,
Ng : maximum discriminator updates per generator update

0Og, 04 < Initialize network parameters.
forn < 0t N do
Xk, Wk, 1, Wk.2, I, 1, tk,2 < randomly select clean, noise,
target texture images
Vi1 < G(xg) + wi 1
Yi2 < G(xg) + w1
ng <0
while d(6;,64) > Ty AND ng < Ny do
04 < Update 6, with one iteration of Adam optimizer to
minimize d (g, 64) in (8)
ng < ng+1
end
0, < Update 0, = [¢, y] with one iteration of Adam
optimizer to minimize g(fg, 64) in (9)
end

where

Ze1 =aXp + (1 —a)xe o
k2 = — )Xk 1 +aki

form the basis of the bias-reducing loss, A weights texture loss
versus fit to data, and o is roughly the standard deviation in
estimating x;. We set « = 0.5 for maximum bias reduction
for denoising [24] and « = 1.0 to reduce aliasing in the
sharpening case. Note that each of the two branches of the
TM Generator network share the same parameters, so this
can be treated as a Siamese network [37] for training.

Algorithm 1 shows the pseudocode to train the TM gener-
ator. To avoid common instability and nonconvergence issues
encountered in training GANs [39], we use a training pro-
cedure to reduce mode collapse and vanishing gradients. An
optimal discriminator can help avoid mode collapse [40],
so we use multiple discriminator updates between generator
updates. However, an optimal discriminator might not pro-
vide enough gradient to the generator to make progress, so to
avoid vanishing gradients, we update discriminator weights
only if the loss is greater than a threshold 7. For inference,
we employ the trained i (-) only.

3.3 Blending

To provide fine-grained control over the amount of texture,
we use a blending or averaging scheme between TMGAN
and standard image estimation. When A = 0 in (9), TMGAN
reduces to the bias-reducing network of [24], which we call
BR-«. This gives an accurate image estimate but without the
target texture. The blended estimate is then

F(TMGANbBlended) — o, (3) + (1 — ) pr—o(¥), (10)
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Fig. 2 Discriminator architecture for TMGAN. The network is fully
convolutional with a total of 6 layers

where y is the noisy input, n is the blending ratio, and
hpRr—«(y) has no texture matching term.

When n = 1.0, the blended result is pure TMGAN, and
when n = 0.0 it is pure image estimation. However, for
intermediate values of 7, it blends these two results, with
larger values of i resulting in more texture, and smaller values
resulting in reduced noise and more image detail.

4 Methods
4.1 TMGAN Implementation

We train TMGAN separately for the two applications of
denoising and sharpening of noisy CT images. While the
network architecture remains the same for both applications,
the training data and test data are different.

For the generator architecture, we used a CNN adopted
from [41] with a single input channel and 17 convolution
layers. We modified the discriminator architecture in [42] to
approximately match its capacity (the number of trainable
parameters) to the generator. Figure 2 shows the discrimi-
nator architecture consisting of a series of 2D convolutional
layers.

Table 1 lists the hyperparameters used in the TMGAN
algorithm along with their significance, ranges and settings
used in the experiments. The settings for A and o varied by
experiment and are listed with the corresponding results. The
values for all the parameters were selected empirically.

4.2 Datasets

All the scans used in training and evaluating TMGAN were
acquired using a GE Revolution CT scanner (GE HealthCare,
WI, USA).! The scans are reconstructed to a slice thickness
of 0.625 mm and dimension 512 x 512. The standard (stnd)
reconstruction kernel option available on the scanner and
40cm DFOV (Display-Field-of-View) are used unless spec-
ified otherwise. The scans are reconstructed in HU units, and

! We thank GE HealthCare for collecting the datasets.

we added an offset of 1000 to all the images while training
and testing so that air is 0.

4.2.1 Training and Validation Data

Ground truth images for denoiser training were generated
by reconstructing 10 clinical scans with X-ray tube voltage
and current varying from scan to scan in the range of 100-
120 kVp and 445-1080 mA, respectively. The scans were
reconstructed using the GE’s TrueFidelity DLIR option [23].

Four ground truth images for sharpener training were
obtained by averaging repeated scans of two distinct head
phantoms in order to reduce noise. Each scan was acquired
with a small focal spot size at 120 kVp/ 320 mA and recon-
structed with a bone+ kernel [26] to a DFOV of 15cm.

Noise and texture samples for training were generated by
removing the mean from scans of 6 water phantoms, obtained
with a tube voltage of 120 kVp, current of 350 to 380 mA.

For denoising, the deformation operator, G(-), was sim-
ply the identity operator. This was followed by the addition
of two independent noise samples from the water phantoms
to generate the two conditionally independent noisy input
image samples, yx 1 and yi 2. For sharpening, the deforma-
tion operator, G (-), was the application of a Gaussian filter
of standard deviation 0.244 mm, 0.244 mm, 0.344 mm in
x,y, and z directions, respectively. This was again followed
by the same process to form yi 1 and y 2.

In both tasks, the GAN training and validation data was
produced by breaking slices into 128 x 128 x 1 patches, with
the patches randomly partitioned as 97% for training and
3% for validation. All DNN trainings were performed using
the Adam optimizer [43] with a learning rate of 3 x 107>
for the generator and 3 x 107° for the discriminator and a
mini-batch size of 32. The network was implemented in Ten-
sorFlow [44] and trained with an NVIDIA Tesla V100 GPU.

4.2.2 Test Data and Evaluation Metrics

For quantitative evaluation, we generated realistic synthe-
sized clean images by reconstructing nine clinical scans with
the GE’s TrueFidelity DLIR option [23]. The X-ray tube volt-
age and current varied from scan to scan in the range of
80-120 kVp and 55-375 mA, respectively. We also scanned
a water phantom with a tube voltage of 120 kVp and cur-
rent 350 mA. The clean volumes were used as ground truth,
and noise from the water phantom was added to simulate
the scanner noise. None of these scans were used in training.
Using the ground truth, we computed the peak signal-to-noise
ratio (PSNR) and SSIM (structural similarity) [45] metrics.
We also show NPS (noise power spectrum) results computed
using the methods of [46].

Table 2 lists the clinical exams used to test the algorithms.
None of these exams were used in training. For each exam, the

@ Springer
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Table 1 Summary of

parameters for TMGAN i’rzal.(rjarrzztgcz Description Benoice Values used Sharp
o « | increases 0.5 1.0
€ [0.5,1.0] detail. See (9)
A>0 A 1 improves texture match See results
See (9)
o>0 o | reduces squared error See results
See (9)
n Frac. of TMGAN in blended 0.3 1.0
€ [0.0, 1.0] image (10)
Ty >0 Threshold for Discr. update 0.2 0.2
See Alg. 1
Ny (=1) Num. of Discr. updates per Gen 1 5
update; See Alg. 1
N> 1 Total Gen. updates. See Alg. 1 ~ 58K ~ 228K
Table 2 Clinical test exams Input texture Target texture
Exam Scanned Focal Dosage DFOV : ary
name object spot size (kVp/mA) (cm)
Exam 1 Body XL 80/375 31.1
Exam 2 Body Small 100/220 49.2
Exam 3 Body Small 120/110 35.0
Exam 4 Body Small 120/350 39.4
Exam 5 Head XL 120/530 15
TMGAN
A=0.04

table lists the scan content along with various scan param-
eters. Exams 1-4 were used for the denoising experiment.
Exam 5 was captured with an extra large (XL) focal spot
size, which produced blurred features in the captured image;
this exam was used for the sharpening experiment. Since
these are clinical exams, no ground truth is available, so we
provide qualitative evaluation only.

For denoising, TMGAN was compared to the following
alternatives:

e MSE denoiser: Denoiser trained only with MSE loss

e BR-0.5: Denoiser using bias-reducing loss function with
a =0.5[24]

o WGAN-VGG: Method in [28] as used in [47]

For sharpening, TMGAN was compared to the following
alternatives:

e MSE sharpener: Sharpener trained with MSE loss
e NPSF;: NPSF sharpener [26] tuned to maintain the same
level of noise as input

@ Springer

(c) o =6.14 (d) o =8.32

(e) o = 20.55

Fig.3 Comparison of TMGAN generated textures with standard devi-
ations, o, in HU with varying A, the generator loss weight for texture
matching (9). a Input to TMGAN (water phantom with bone+ filter
recon), b target texture (water phantom with standard filter recon), result
of TMGAN withe A =0,d A = 0.01, and e A = 0.04. Notice that tex-
ture in results becomes more similar to the target texture as A increases

e NPSF,: NPSF sharpener [26] tuned to achieve the same
level of noise as TMGAN.

For a fair comparison, all denoisers and sharpeners, except
WGAN-VGG, used the TM generator architecture.
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Fig.4 NPS plots for texture images in Fig. 3. Notice that as A increases,
the shape of the NPS plots becomes more similar to the NPS of the target
texture

5 Results and Discussion
5.1 Quantitative Evaluation

Figure 3 illustrates the textures generated by TMGAN with
an input image of the test water phantom using the bone+
kernel and a target texture of a water phantom using the stan-
dard kernel. Both phantoms are reconstructed with a DFOV
of 15cm. Figure 3c—e shows the output of TMGAN with A
values of 0.0, 0.01, and 0.04, respectively, while o was set to
50 HU. All images use a [-175, 175] HU window and a 5.86
cm FOV.

Figure 4 shows the corresponding NPS plots for all five
images.

Consistent with the role of A in controlling the impor-
tance of texture mapping in the generator loss function, as A
increases, TMGAN generates an output texture that matches
more closely to the target texture both qualitatively and in
terms of NPS plots. Moreover, for A = 0, the NPS is skewed
toward the lower frequencies, which is known to cause an
overly smooth or “cartoony” texture in CT images [48].

Figure 3 also shows the standard deviation of the noise
for each texture shown in Fig. 3. Again consistent with the
role of A, we see that the noise standard deviation increases
as A increases. This is expected since A = 0 corresponds
to minimizing the bias-reduced MSE only, while increasing
A promotes additional texture, which appears as increased
noise energy. However, even with A = 0.04 the TMGAN
noise standard deviation is much less than the input noise
standard deviation, indicating that TMGAN is able to simul-
taneously reduce noise and match texture.

Figure 5 shows plots of the PSNR of axial slices for each
of the denoising algorithms using one of the synthetic noisy
exams as an input. The MSE denoiser generates the highest
PSNR since it minimizes the MSE loss function. The BR-0.5

Axial slice #

Fig. 5 Comparison of PSNR for axial slices of a synthetic exam.
TMGAN trained with A = 0.4,0 = 7.8 HU. TMGAN-blended pre-
serves texture with a small reduction in PSNR

Table 3 PSNR and SSIM for nine synthetic test exams (mean % 95 %
Confidence Interval)

Method PSNR SSIM

Input 23.74 £ 0.0065 0.70 £ 0.0457
MSE denoiser 37.20 £ 0.503 0.81 £ 0.0588
BR-0.5 36.85 +0.529 0.82 £ 0.0523
WGAN-VGG 30.75 £ 0.366 0.77 £ 0.0588
TMGAN 28.98 £0.118 0.74 £ 0.0523
TMGAN-blended 34.87 £0.379 0.79 £ 0.0588

algorithm recovers more detail at the cost of a slight decrease
in the PSNR. Since the GAN architectures of WGAN-VGG
and TMGAN have a loss function that encourages texture
recovery, they all have lower PSNR than the MSE denoiser
and BR-0.5 methods. Finally, PSNR for TMGAN-blended
is still lower than BR-0.5 but is higher than that of WGAN-
VGG.

Table 3 lists the PSNR and SSIM values averaged over
nine results obtained by inputting synthetic noisy exams
to each algorithm. Notice that BR-0.5 has the best SSIM
value. However, as we demonstrate next, the TMGAN-
blended results produce much better texture with only a small
decrease in the PSNR and SSIM.

Figure 6 compares the NPS of input and target textures
along with the NPS of denoised results using various algo-
rithms (whereas Fig. 4 varied A). Both input and target
textures were obtained by reconstructing the test water phan-
tom with the standard kernel and a DFOV of 40 cm. The
NPS for TMGAN most closely matches the target texture,
while the NPS for TMGAN-blended has slightly increased
low frequencies relative to TMGAN. More importantly, the
NPS for TMGAN-blended matches the NPS of target texture
at higher frequencies more closely than all other algorithms
except TMGAN.

@ Springer
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14
—— Target texture (water phantom: stnd, DFOV 40 cm)
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Fig.6 NPS plots of water phantom reconstructions for denoising algo-
rithms. TMGAN (trained with A = 0.4, 0 = 7.8 HU) produces closest
match with the NPS of target texture. TMGAN-blended is second best
with NPS slightly skewed toward the origin while preserving higher
frequencies too

Noisy input MSE-denoiser BR-0.5

Fig. 7 Comparison of slice 1 of denoised results for Exam 1, a low-
dose clinical scan. The second row shows zoomed ROI from the slice
in the first row. TMGAN trained with A = 0.4,0 = 7.8 HU. Dis-
play window is [—125, 225] HU. BR—0.5 results maintain good detail,

5.2 Qualitative evaluation with measured data

All exams in this section are measured low-dose scans,
not simulated by adding noise to normal-dose scans.

Figures 7 and 8 show the results for two separate slices
of Exam 1, a high-contrast clinical scan. Visually, results
for the MSE denoiser have smooth texture and lack detail. In
contrast, BR-0.5 has more detail than MSE denoiser, but with
very nonuniform texture. The WGAN-VGG method recovers
some texture and detail; however, the texture is not uniform.

From Figs. 7e and 8e, TMGAN produces uniform tex-
ture, but with increased noise variance and with some
details obscured by the texture. Alternatively, TMGAN-
blended achieves the desired uniform texture, along with
reduced noise and more visible detail. More specifically, the
arrows in Fig. 7f indicate the detail recovered by TMGAN-
blended even while maintaining the uniform target texture of
TMGAN.

To evaluate the computational load of TMGAN, Table 4
lists training and inference times for the networks compared
in Fig. 7. TMGAN requires more training time per epoch
compared to simple MSE denoiser or BR—0.5 networks

WGAN-VGG TMGAN  TMGAN-blended

(k) 0

while TMGAN produces target texture which is more uniform and
pleasing compared to other methods. With blending, we preserve detail
(red arrows) from BR—0.5 and target texture in TMGAN (Color figure
online)

Table 4 Training and inference

Epochs

times Model
MSE denoiser 79
BR-0.5 76
WGAN-VGG 35
TMGAN 15

Training time (Hrs.) Inference time (Sec)
32.20 30
29.71 30
336 23
19.62 30

@ Springer
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Noisy input MSE-denoiser BR-0.5 WGAN-VGG TMGAN  TMGAN-blended
9
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Fig. 8 Comparison of slice 2 of denoised results for Exam 1, a low- window is [—125, 225] HU. TMGAN:-blended produces target texture
dose clinical scan. The first row shows full slice. The second row shows for a challenging input with very nonuniform texture
zoomed ROI. TMGAN trained with A = 0.4, 0 = 7.8 HU. Display

Noisy input MSE-denoiser BR-0.5 WGAN-VGG TMGAN  TMGAN-blended

8
Fig.9 Comparison of slice 1 of denoised results for Exam 2, alow-dose detail, while TMGAN produces target texture which is more uniform
low-contrast clinical scan. The first row shows full slice. The second and pleasing compared to other methods. With blending, we preserve

row shows zoomed ROI. TMGAN trained with A = 0.4, 0 = 7.8 HU. detail (red arrows) from BR—0.5 and target texture in TMGAN (Color
Display window is [—125, 225] HU. BR—0.5 results maintain good figure online)
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Noisy input MSE-denoiser BR-0.5

Fig. 10 Comparison of slice 2 of denoised results for Exam 2, a low-
dose low-contrast clinical scan. The first row shows full slice. The
second row shows zoomed ROI. TMGAN trained with A = 04,0 =
7.8 HU. Display window is [—125, 225] HU. BR—0.5 results main-

since TMGAN uses a more complex generator—discriminator
architecture. However, we found that TMGAN gives good
quality texture with fewer epochs for lower total wall time for
training. More importantly, the inference time for TMGAN
is still comparable to other networks and can be applied in
real time, which is crucial for implementation in commercial
CT scanners.

Figures 9 and 10 show results for Exam 2, a low-contrast
clinical exam. Both the full slice and zoomed views show that
TMGAN produces a uniform texture for this low-contrast
exam, while WGAN-VGG produces a uniform but coarser
texture. More importantly, the arrows in Figs. 91 and 101
show that low-contrast features are best detected using the
TMGAN-blended results.

Figure 11 shows results for Exam 3 in the lungs. Note
that the small air pockets in the lungs, shown by the yellow
arrows in Fig. 11f, have diagnostic value but are not clearly
visible in the MSE denoiser results. On the other hand, as seen
from zoom-ins in the second row, WGAN-VGG, BR-0.5,
TMGAN and TMGAN-blended recover them in the denoised
images.

Figure 12 shows the results of Exam 4, which is a chal-
lenging exam due to the very low contrast. As seen in Fig. 12f,
1, TMGAN-blended produces the target texture and recovers
most of the detail seen in WGAN-VGG, which produces a
less desirable texture.

Figure 13 shows TMGAN results for sharpening an image
consisting of noise and aliasing artifacts. From Fig. 13, it

@ Springer

WGAN-VGG TMGAN  TMGAN-blended

(k)

tain good detail, while TMGAN produces target texture which is more
uniform and pleasing compared to other methods. With blending, we
preserve detail (red arrow) from BR—0.5 and target texture in TMGAN

is evident that the MSE sharpener results are over-smooth
and contain artifacts. While the NPSF; has more detail and
texture, it retains some aliasing artifacts. If we tune NPSF
to have noise power the same as the TMGAN results to get
NPSF,, then there is partial noise reduction and sharpening,
but the aliasing artifacts then look worse. In comparison,
the TMGAN results are sharper than the input (green arrow)
and have more uniform texture with a lower noise level than
NPSF;. The TMGAN results have reduced aliasing artifacts
while remaining sharp, as indicated by the yellow arrow.

Figure 14 compares the NPS for a sharpened phantom scan
with uniform areas using the algorithms discussed here. The
NPS for the MSE sharpener is skewed toward low frequen-
cies producing the over-smooth texture observed in Fig. 13.
The NPS for NPSF and TMGAN results is very similar and
matches with the target texture.

It is evident from the above results that even though
TMGAN is a generative network, unreal details are not
visible in resultant images. This is because the generative
component in TMGAN is limited to the texture or noise
part, and unreal details would get embedded in the noise
and remain unnoticeable to human eyes.

Figure 15 demonstrates TMGAN’s ability to generalize
when targeted anatomy scans are not available during train-
ing. In this example, the inputis a brain CT scan reconstructed
with a bone+ kernel. TMGAN-Brain, trained on well-curated
data matching the test distribution, yields the best results. In
contrast, TMGAN-LiverLung, trained on reconstructed lung
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MSE-denoiser BR-0.5

Noisy input

(8) (h)

Fig. 11 Comparison of denoised results for Exam 3, a low-dose clin-
ical lung scan. The first row shows full slice. The second row shows
zoomed ROI. TMGAN trained with A = 0.4, 0 = 7.8 HU. Display win-
dow is [—1200, —200] HU. BR—0.5 results maintain good detail, while

Noisy input MSE-denoiser BR-0.5

Fig. 12 Comparison of denoised results for Exam 4, a low-dose clini-
cal scan. The first row shows full slice. The second row shows zoomed
ROIL. TMGAN trained with & = 0.4, 0 = 7.8 HU. Display window is

WGAN-VGG

TMGAN  TMGAN-blended

Q)

TMGAN produces target texture which is more uniform and pleasing
compared to other methods. With blending, we preserve detail (small
air pockets indicated by yellow arrows) from BR—0.5 and nice texture
in TMGAN

WGAN-VGG TMGAN  TMGAN-blended

()

[—125,225] HU. TMGAN-blended recovers good detail and a uniform
target texture given a challenging input
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MSE-
sharpener

Blurred noisy

Fig. 13 Comparison of sharpening results for Exam 5, a low-dose and
XL focal spot scan. The first row shows full slice. The second row shows
zoomed ROI. TMGAN trained with A = 0.04, 0 = 50 HU. Display

20.0 —— Target texture (water phantom: stnd, DFOV 40 cm)
Noisy input: Clean GT (bone+, DFOV15 cm)
17.51 +Noise (water phantom: stnd, DFOV40 cm)
—— MSE-sharpener
fg 15.01 —— NPSF;
E 125 —— NPSF,
e —— TMGAN
5 10.0
Q
N
© 7.5
g 5
15
o
Z 5.01
2.5
0.0 1
0.0 02 04 0.6 08

Spatial Frequency (mm™!)

Fig. 14 Comparison of NPS for sharpening results. TMGAN and NPSF
(B > 0) match the NPS of results to the target texture

and liver scans with a stnd kernel, still produces comparable
results. The difference in sharpness arises because TMGAN-
LiverLung was trained to denoise, while TMGAN-Brain was
trained to deblur too. However, for clinical applications, we
recommend training on data that matches the target distribu-
tion to ensure optimal accuracy.

@ Springer

window is [—650, 1350] HU. TMGAN sharpens temporal bones (green
arrow), while reducing aliasing artifacts (yellow arrow) (Color figure
online)

6 Conclusion

We proposed a novel neural network, TMGAN, that denoises
and/or sharpens CT images while simultaneously match-
ing the texture of the resulting output to a target texture.
We achieve this using a branched network with identical
weights in each branch. Each branch processes the ground
truth corrupted by noise, with the noise realization inde-
pendent in the two branches. By taking the difference of
the resulting outputs, our network separates texture from
image with anatomical detail. By embedding this network
in an adversarial training framework, we train to produce a
desired texture layered on top of a clean image. The result-
ing output is an enhanced CT image that contains important
physiological details and maintains a texture that is viewed
as desirable by practicing radiologists. Our method reduces
the risk of hallucination by separating the clean CT image
containing anatomical features from texture and restricting
generation to the texture part of the image. Furthermore,
the bias—variance trade-off can be modulated as desired by
using a simple blending method. Our experiments show that
TMGAN removes streaking or aliasing artifacts and produces
uniform texture while maintaining important detail.
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Blurred noisy input

(b)

Fig.15 Generalization capability of TMGAN when trained on one data
set and applied on another. a Shows the input brain exam [bone+ kernel]
and b shows the enlarged blue ROI, which has a noise std dev of 68.52
HU. ¢ Shows the output of TMGAN trained with brain scans [bone+
kernel] and d shows the ROI, with a std dev of 37.92 HU. e shows the

A Proof of Theorem 1

Theorem2 Let §; — 8, ~ N(0,202) and 81,8, be real
valued i.i.d. random variables with a distribution that is sym-
metric about 0. Then §; ~ N (0, 2).

Proof Let Z = 61 —6>. Since Z, 81, and 6, are real valued, all
of their characteristic functions exist. Since Z ~ N (0, 202),
its characteristic function is given by

2.2

¢z(1) =E[e/"] = e
Since §; and §, are independent, we have that

¢z(t) = E[e/' 7))
= E[e/"01¢771%2]

= E[e/"*|E[e™/"2]

Since &1 and 8, are symmetric about 0, we can remove the
negative sign in the final expected value. Since §; and &, are
i.i.d., the two expected values are the same, hence

¢z(1) = E[e/1]> .

Taking square roots yields

1.2.2

E[e/"1] = 4e72°"

Since the characteristic function is always continuous, the
choice of =+ is independent of 7. Since the left-hand side is
1 whelznztzz 0, we see that the characteristic function of §;
is e~ 27", By uniqueness of the characteristic function, this
means that §; ~ N (0, o2), hence likewise for 8,. ]

TMGAN-Brain

TMGAN-LiverLung

(d)

output of TMGAN trained with lung and liver scans [stnd kernel] and f
shows the ROI with std dev of 36.57 HU. The display window is [—650,
1350] HU for all. TMGAN-LiverLung shows comparable performance
to TMGAN-Brain despite mismatched training data
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