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Abstract. An efficient algorithm for color image quantization is pro-
posed based on a new vector quantization technique that we call
sequential scalar quantization. The scalar components of the 3-D
color vector are individually quantized in a predetermined sequence.
With this technique, the color palette is designed very efficiently,
while pixel mapping is performed with no computation. To obtain an
optimal allocation of quantization levels along each color coordinate,
we appeal to the asymptotic quantization theory, where the number
of quantization levels is assumed to be very large. We modify this
theory to suit our application, where the number of quantization 1ev-
els is typically small. To utilize the properties of the human visual
system (HVS), the quantization is performed in a luminance-
chrominance color space. A luminance-chrominance weighting is in-
troduced to account for the greater sensitivity of the HVS to lumi-
nance than to chrominance errors. A spatial activity measure is also
incorporated to reflect the increased sensitivity of the HVS to quan-
tization errors in smooth image regions. The algorithm yields high-
quality images and is significantly faster than existing quantization
algorithms.

1 Introduction
Many low-cost color output devices use 8-bit frame buffers
to display their images. This means that a maximum of
28=256 colors may be displayed simultaneously. Since most
typical images contain far more than 256 colors, they cannot
be displayed directly on such a device. However, these sys-
tems often retain a resolution of 8 bits/color at the input of
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each ofthe three digital-to-analog (D/A) converters and allow
the user to choose a palette of 256 colors from a total of
224= 1 .6 x i07 colors. The two-step process of selecting a
palette of colors and mapping each input image pixel to a
palette color is known as color image quantization. One may
design either a universal palette to be used for all images, or
a customized palette for each individual image. The former
is clearly an inferior strategy and will often require some
postprocessing such as haiftoning to enhance the visual qual-
ity of the image. However, it is attractive from a computa-
tional standpoint, since the palette is designed only once. We
focus on color quantization based on image-dependent pal-
ettes. High image quality may be achieved with this method,
since the palette for a given image is designed based on the
color distribution of that specific image. However, since the
palette needs to be redesigned for each new image, this strat-
egy is more computationally intensive. It is therefore im-
portant that while we seek to produce high-quality quantized
images, we also place considerable emphasis on reducing the
computational cost of the quantization algorithm, so that the
processing time and memory are not objectionable to the user
of any practical desktop application.

Since a color at a pixel is a triplet or 3-D vector of R, G,
and B signals, color quantization may be viewed from the
context of vector quantization (VQ). The colors in the image
form a training or test set of color vectors, and the palette is
the codebook of output color vectors. Several VQ-based color
quantization algorithms have been described. The methods
proposed by Heckbert,' Braudaway,2 and Gentile, Allebach,
and Walowit3 involve an initial selection of a palette followed
by the iterative refinement of this palette using the Linde,
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Buzo, and Gray VQ algorithm.4 Gentile, Allebach, and
Walowit3 proposed performing the VQ in a uniform color
space. These methods yield high-quality images, but are corn-
putationally very intensive. Another class of algorithms5'6
uses clustering techniques to generate a palette of colors. In
Dixit's scheme,5 the image is randomly sampled and a set
of color clusters is generated by a pairwise nearest neighbor
(PNN) merging technique. The cluster centroids are then
chosen as the palette colors. Balasubramanian and Allebach
proposed an algorithm6 based on a clustering VQ method
developed by Equitz,7 which also uses a PNN technique.
Here, k-dimensional trees are utilized to perform efficient
nearest neighbor searches. In addition, the algorithm uses
histogramming and prequantization to decrease the size of
the input data set, and a spatial activity measure is introduced
to improve the visual quality of the image.

A third class of algorithms uses splitting techniques to
divide the color space into smaller subregions and pick a
representative palette color from each subregion. These al-
gorithms include Heckbert's median cut technique,' a
variance-based method proposed by Wan, Prusinkiewicz, and
Wong,8 and a binary splitting algorithm developed by Or-
chard and Bouman.9 The differences lie in the way the split-
ting is performed. The median cut and variance-based al-
gorithms both use splitting planes that are perpendicular to
the coordinate axes. Hence, the quantization regions are rec-
tangular polytopes in 3-D space. The binary splitting algo-
rithm is a tree-structured VQ algorithm and is the closest to
optimal (in a quantitative sense) of the three splitting tech-
niques. In each region, the splitting plane is chosen to pass
through the centroid of all the colors in that region and is
oriented perpendicular to the direction of the maximum total
squared variation. The latter is derived from the principal
eigenvalue and eigenvector of the covariance matrix of the
data in that region.9 At each step, the region with the largest
associated principal eigenvalue is chosen to split. This al-
gorithm also incorporates spatial activity measures to en-
hance the subjective quality of the image. Balasubramanian,
Bouman, and Allebach proposed a modified binary splitting
algorithm,'0 where the binary splitting is preceded by a his-
togramming and prequantization step. This has the effect of
reducing the computational cost of the splitting operation
while preserving a high level of image quality.

In a related paper,' ' we propose a general method for
quantizing vectors that we call sequential scalar quantization
(SSQ). As the name implies, the basic idea behind the tech-
nique is to sequentially quantize the scalar components of a
vector, rather than to quantize the vector as a whole. Since
we are quantizing scalar rather than vector variables, SSQ
involves far less computation than VQ. At the same time,
due to its sequential nature, SSQ shares with conventional
VQ the ability to exploit the correlation and statistical de-
pendency between scalar components of a vector. As is the
case with any VQ technique, SSQ attempts to minimize a
distortion measure. We appeal to the asymptotic or high-rate
quantization theory to analyze the performance of SSQ with
respect to such a measure.1' This theory provides us with
closed form expressions for the distortion resulting from SSQ
as a function of the quantizer design parameters and allows
us to find the optimum parameter values that minimize the
distortion at each successive stage of the sequential
quantization.
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In this paper, we apply SSQ specifically to the color quan-
tization problem. The asymptotic theory proves to be a very
useful tool in designing color palettes even when the number
of output levels is small. The color vectors are transformed
to an appropriate color space prior to the sequential quanti-
zation, and the palette is designed very efficiently. Moreover,
unlike existing algorithms, where the pixel mapping places
a heavy demand on either computation or storage, our tech-
nique allows the pixel mapping to be performed with no
computation and with moderate storage. Hence, this method
is far more efficient than any of the algorithms described
earlier. In addition, the algorithm uses properties of the hu-
man visual system in a simple way to improve the visual
quality of the quantized image. The resulting image quality
is comparable with or superior to that obtained from existing
VQ algorithms.

This paper is organized as follows. In Sec. 2, we begin
by describing the basic VQ problem. We then introduce SSQ
and discuss the benefits of using SSQ over conventional VQ
and independent scalar quantization. In Sec. 3, we present
relevant results from the asymptotic quantization theory, and
in Sec. 4, we show how these results may be used to design
a color quantization algorithm. Experimental results are pre-
sented in Sec. 5 and concluding remarks are collected in
Sec. 6.

2 Vector Quantization
We begin by introducing the terminology and basic ideas
behind VQ. Throughout this paper, lowercase notation is used
to denote real variables and vectors, while random variables
and vectors are written in uppercase notation. Vectors are
represented by boldface notation. We denote the probability
density function of a random variable or vector by p( ) and
the probability of an event by P( ). The notation Rk is used
to denote the k-dimensional Euclidean space ofreal variables.

2.1 Basic Definitions

An N-point k-dimensional vector quantizer Q is a function
that maps an input X with a probability density function p(x)
to one of a finite number of output vectors , YN• The set
of output vectors C = {y, YN} is called a codebook. Such
a quantizer defines a partition S ={S1 SN} of N regions
in Rk, where S1 = {x E R':Q(x) =y1}. For the case where k = 1,
a quantizer is specified by a set of decision thresholds and
output levels. The quantization consists of two steps: the
codebook design, which involves appropriately selecting the
output points y, YN' and the mapping of each input vector
to one of the output points according to the rule Q(x) =y1 if
x E S1. In practice, the vector mapping consists of an encoder
that assigns to each input x a channel symbol and a decoder
that maps each channel symbol to a unique output vector in
the codebook. The quantizer is designed to minimize some
average distortion measure between its input X and output
Q(X). This implies that the quantizer chooses its output vec-
tors in some manner that reflects the distribution p(x) of the
input. The distortion measure that is often used is the mean-
square error (MSE),

Dk= E{lX_Q(X)I2}, (1)
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where E{ } denotes the expected value with respect to the
input distribution p, and J denotes the Euclidean distance.
The two necessary conditions for a quantizer to be optimal
with respect to MSE12 are that (1) the output vector y, in each
region S is chosen to be the centroid of all x in 5, and (2)
each input x is quantized to the closest output vector y, in
the codebook, i.e., 5,={x E Rk:Ix yII2 Ix—

y1II2 i = I
N}. This latter step, which involves an exhaustive distance
calculation between the input vector and each output vector
in the codebook, is the operation that makes VQ a compu-
tationally intensive scheme. Efficient strategies have been
devised to reduce the computation required for nearest neigh-
bor searches.12

These two conditions are the basis for the iterative code-
book design algorithm proposed by Linde, Buzo, and Gray.4
Because the iterations are computationally expensive, other
suboptimal but efficient techniques have been proposed such
as tree-structured 2 We use the term conventional VQ
to refer to all such methods that quantize a vector as a whole
entity.

2.2 Scalar Quantization of Vectors
Another simple but suboptimal method ofquantizing a vector
x= [X1 Xk]t is to quantize each of its individual scalar
components X1, 1 This may be done either indepen-
dently or in a sequential fashion.

2.2.1 Independent scalar quantization (ISQ)
This is the conventional method of scalar quantization. A
codebook C of scalar outputs is designed independently for
each scalar component X,, 1 according to its marginal
distribution p(x,). The final codebook is a k-fold Cartesian
product of the k scalar codebooks and is therefore known as
a product code. A 2-D example of this scheme is shown in
Fig. 1(a) for a 25-point quantizer. The symbols x denote the
output vectors, which are taken to be the centroids within
each region. Vector mapping may be accomplished by in-
dependently encoding each X, to a channel symbol through
a set of k lookup tables (LUTs). This is depicted in Fig. 2(a)
for k =3. The outputs of the k LUTs are independently de-
coded to scalar outputs Y1 k' which constitute the output
vector Y = [Y1 'kI Q(X). Since the codebook design
only involves quantization of scalar variables, and the en-
coding operation only entails indexing into LUTs, ISQ in-
volves far less computation than conventional VQ. However,
because ISQ uses only the marginal distribution ofeach scalar
component, it cannot take interdata correlations into account.
As a result, many output points are wasted in regions where
the input has zero probability of occurrence, as shown in
Fig. 1(a).

2.2.2 Sequential scalar quantization (SSQ)
With this approach, the first scalar X1 is quantized to some
predetermined number of levels N1 based on its marginal
distribution p(x1), as with the ISQ scheme. Each subsequent
X1, 2sik, is then quantized based on a set of conditional
distributions of X1 within regions formed from the quanti-
zation of the scalars X1 X,_ . A 2-D example of SSQ is
shown in Fig. 1(b) for the same input distribution. In this
example, first X1 is quantized to N1 =5 levels. This results
in the columns B21, 1 in R2. Next, we quantize X2 but

Fig. 1 Two-dimensional example of (a) independent scalar quanti-
zation for N= 25 and (b) sequential scalar quantization for N= 16.

confine the quantization to the columns B21 formed from the
quantization of X1 . Each B21 is quantized to n21 levels along
x2. This results in a 2-D quantizer with N2 = 16output points
in R2. The encoding of input vectors may be performed
through a sequential or multistage LUT, as shown in Fig.
2(b) for k =3. The input to the first LUT is X1 . The output
symbol b of the (i_ 1)'th LUT 2ik, is then fed to the
input of the i 'th LUT along with the i 'th scalar component
xi.Finally, the output symbol bk of the last encoder is decoded
to one of the output vectors in the codebook C.

As is the case with ISQ, the codebook design in SSQ
involves only scalar quantization, and the encoding operation
entails no computation. Hence, there is a significant com-
putational advantage to be gained by using SSQ rather than
conventional VQ. On the other hand, unlike ISQ, the SSQ
technique uses both marginal and conditional distributions
of the scalar components, and can therefore exploit interdata
correlations. This is seen in our 2-D example, because SSQ
places all its output points only within the region of support
of the joint distribution of the input, thus offering perfor-
mance that is superior to that of ISQ. We choose SSQ for
our color quantization application because it combines the
computational advantage of ISQ and the performance ad-
vantage of VQ.

Due to the relevance to our color quantization application,
we assume henceforth that the input is a 3-D random vector
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reconstruction levels along a scalar dimension according to
either the marginal or conditional distribution within some
region. In the next section, we use the asymptotic quantization
theory' ' to choose these design variables to optimize SSQ
with respect to the MSE distortion measure. Although MSE
is often not an accurate measure of the subjectively perceived
error, we use it as a starting point to design the algorithm,
because it is a mathematically tractable measure. Later, we
also discuss a simple visually weighted MSE criterion.

3 Results from the Asymptotic SSQ Theory
The fundamental assumptions in this theory are that the num-
ber of output quantization levels is large (or equivalently, the
quantization cells are small) and that the distribution p(x) of
the input vector X is a relatively smooth function' ' ofx. In
this section, we present only the results necessary for our
application; see Ref. 1 1 for a complete derivation of the the-
ory. In Sec. 4, we show how these results can be used in a
practical application, namely, color image quantization, even
when the number of quantization levels is relatively small.
For notational simplicity, we assume for now that X, is quan-
tized first, followed by X2, and finally X3. Our main objective
is to pick the SSQ design parameters described in Sec. 2.2.2
to minimize the 3-D MSE subject to the sequential structure.

We first turn to the more basic question of what quanti-
zation method we should use to locate the output levels and
decision thresholds along a scalar dimension. Let X be a
random variable with a probability distributionp(x) for which
we wish to design an N-point scalar quantizer to minimize
the resulting 1-D MSE. For large N, the quantizer may be
characterized by a function X (4known as the quantizer den-
sity function'2 (QDF), which specifies the relative spacing
of quantization levels in the neighborhood of x. That is,
NX (x) dx is the number of quantization levels within the
interval [x, x + dx]. Note that by definition X(x) integrates to
1 over its domain. It has been shown'2 that the function X
that minimizes the l-D MSE is given by

. (3)

Similarly, if we wish to design a quantizer for a scalar input
xaccording to its conditional distributionp(xB) within some
region B, then the optimal quantizer spacing is given by

. (4)

Ip(xB)"3

We assume that the scalar quantization scheme used in SSQ
is one that achieves the optimal spacing given in Eqs. (3)
and (4).

We now return to the problem of designing an N-point
3-D SSQ as described in steps 1 through 4 in Sec. 2.2.2 to
minimize the overall 3-D MSE. Since the MSE in Eq. (1) is
a separable distortion measure, we can write it as a sum of
individual MSEs along each of the three coordinates,

=
E{X_Y2}

Fig. 2 Encoder-decoder operation for (a) independent and (b) Se-
quential scalar quantization.

x = [X, , X2, X3 ]. Wecan summarize the basic steps involved
in designing the codebook for an N-point SSQ as follows:

1 . Quantize the first component X, to some predetermined
number of levels N, according to its marginal distri-
bution p(x,). This results in N, columnar regions B21,
1 , in R2. (Here B11 refers to thej 'th quantization
region in R'.)

2. Quantize X2 within each B21, 1 , to n21 levels
according to its conditional distributionp(x21B21). This
results in a total of N2 rectangular quantization regions
in R2, and therefore a set of N2 columnar regions B31,
1jN2, mR3.

3. Quantize X3 within each B31, 1 jN2, to n31 levels
according to its conditional distributionp(x3B31). This
results in the desired N3 =Nquantization regions in R3.

4. Pick the centroid of each of the N regions as the output
codeword for that region.

Note that we have the following two constraints:

N,N2N=N , (2a)

-,1 n,1=N1. (2b)

Several issues need to be addressed in this scheme. First, for
a fixed number of overall quantization levels, how do we
allocate the relative number of quantization levels along each
x? In other words, referring to the preceding algorithm, for
fixed N3, what values do we pick for N,, N2, n21,
and n31 , 1 jN2? This is analogous to the bit allocation
problem encountered in ISQ. ' Second, we need to determine
the best order in which to quantize the X1 (we have tacitly
assumed that the X, are quantized in the order X, ,X2

Xk). Finally, we must specify a scalar quantization scheme,
i.e., a method of placing a fixed number of decision and
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= [E{(X, — Y,)2} + E{(X2 — Y2)2} + E{(X3 — Y3)2}1 (5)

=d,+d2+d3

where Y = Q(X). If we make the asymptotic assumption that
the number of quantization levels along each dimension is
very large, then it can be shown" that the MSE may be
approximated by a function of the form

1 N N
D3=—a+N
where N, and N2 are the relative allocations of the quanti-
zation levels described in Sec. 2.2.3 and a, 13, and i are
constants that depend on the statistics of the input vector X:

1

a=—Ip(x,)lI,1324

5/311
MIIp(x2Ix,)lI,13p(x,) 11,/3

[fx1'/3 ]2

I IIIP(x3x,x2 )II1/3 p(x,,x2) p(x,)'IIi,3
r -12

(6b)

36[JJP(xlx2)h13 p(x1)219 dx, dx2]

Here we have used the notation

1/rn

IIP(Xi)IIrn Jp(xr th

For our application, we do not concern ourselves too much
with the expressions for a, 13, and i. In fact, as is shown
later, the algorithm does not even compute these quantities,
but rather estimates them from the image data. Our main
interest is in the functional form of Eq. (6a), which allows
us to minimize the MSE with respect to N, and N2, yielding
the optimal values

1/6
/ a2

N, =N"3)
1a13\

1/6

N2=N21'3—j-)

where

rj=P(Bjj)1l3Jp(xjB )1/3 dxii

N1 and N2 are as given in Eq. (7), and N3 =N. Here, P(B,3)
is the probability that an input vector x falls in the region B1.
In general, Eq. (8) will yield real-valued n1. In Sec. 4, we
address the problem of picking integer-valued n11 that satisfy
the constraint (2b).

Finally, we turn to the issue of the order in which to
quantize the scalar components of the vector X. There is no

(6a) simple way to predict the optimal ordering except to evaluate
Eq. (6) with the optimal allocations given in Eqs. (7) and (8)
for every possible ordering and pick the ordering for which
D3 5 minimum. In the next section, we show how an ap-
propriate choice of the color space for quantization can be
used to restrict the number of possible orderings.

4 Application to Color Image Quantization
In the preceding sections, we have described an algorithm
for the sequential scalar quantization of a 3-D vector. In this
section, we focus specifically on how SSQ may be used for
color image quantization. For this application, the input to
the quantizer is the set of image colors and the codebook of
output vectors is the color palette. First, we need to specify
the color coordinate system that we are going to use to define
a 3-D color vector.

4.1 Choice of Color Space for Quantization

A color vector is normally represented by a triplet
x= LR,G, B]t of red, green, and blue primary signals, with
each signal represented by 8 bits of precision (i.e., an integer
in the range [0, 2551). Suppose RL, GL, and BL are values of
three color primaries that are equal to (or linearly related to)
the measured luminance of the primaries. We call these pri-
manes linear color primaries. These primaries cannot be dis-
played directly because most monitors exhibit a nonlinear
relationship between the input value of the color signal and
the corresponding output luminance. The nonlinearity for a
particular primary may be approximated by a power law
relationship:

CL C , C=R, G, B , (9)

where C is the input value of the primary, CL is the luminance
of the primary, and y is a value that usually falls between 2
and 3, depending on the monitor. (More sophisticated models
may be used to characterize the nonlinearity.3 ) To account
for this nonlinearity, users typically perform a transformation
on the linear color primaries of the form R =
G= and B = The signals R, G, and B are called
gamma-corrected signals and are ready to be displayed on
the given monitor. Many device-independent color spaces
are also characterized by gamma-corrected coordinates. One
such color space is the SMPTE RGB color space, which was
proposed as a television standard.'4 The value of y for this
color space is 2.2. All the color images used in this work are
assumed to be in SMPTE gamma-correctedRGB coordinates.

(8) It is well known that the human visual system (HVS)
perceives a color stimulus in terms of luminance and chrom-
inance attributes, rather than in terms of R, G, and B values.
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(7)

In deriving Eq. (6), it may also be shown" that the optimal
allocation of the number of quantization levels n, among the
B,, 1j N_ 1' is given by

n,l=Ni(N i=2,3;j=1 N_,
\ rrn)rn=1
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Hence, we propose transforming the image to a luminance-
chrominance space prior to performing the quantization. To
this end, we pick the YCrCb opponent color space,'4 which
is related to the SMPTE RGB space by a simple linear trans-
formation. Assuming that R, G, and B occupy the range 0 to
255, the transformation is given by

Y=0.299 R+0.587 G+0.114 B

Cr0.713 (RY)+ 128

Cb=O.S64 (B—Y)+ 128

(10)

where the Y, Cr, and Cb values have also been scaled to
occupy the range 0 to 255. From now on, 3-D color vectors
are assumed to be in YCrCb coordinates. Since YCrCb 5 a
linear transformation of a gamma-corrected RGB space, it is
also a gamma-corrected space. As can be seen from Eq. (10),
Y is the gamma-corrected luminance component representing
achromatic colors, the Cr coordinate describes the red-green
variation of the color, and the Cb coordinate describes the
yellow-blue variation of the color. The conversion to YCrCb
is one of the key factors that enables us to achieve high image
quality. After the palette is generated, the palette colors are
converted back to SMPTE RGB through the inverse of
Eq. (10) and then transformed to the RGB space of the output
device. The latter transformation involves a conversion from
SMPTE RGB to linear coordinates, a linear transformation
from the SMPTE phosphor primaries to those of the monitor,
and gamma correction to account for the monitor's nonlin-
earity. See Ref. 3 for details of this procedure. The entire
calibration process is summarized in Fig. 3.

An advantage to performing quantization in a device-
independent space is that the transformation Tj ' and all sub-
sequent color correction transformations are performed only
on the palette colors, rather than on the entire image. This
feature would be desirable in a network environment where
the same image may be sent to several output devices. A
potential problem with this scheme, however, is that mini-
mizing an error metric in SMPTE RGB coordinates is not
necessarily equivalent to minimizing the same metric in the
native RGB space of the device on which the image is finally
displayed. Hence, it is possible that certain visual artifacts
may result from this discrepancy in error metrics. However,
we suspect that this is unlikely, since many display devices
subscribe to the SMPTE standard and, hence, their native
spaces are on average very similar to SMPTE RGB.

4.2 Preprocessing
The SSQ design requires information about the distribution
of the image color vectors. Since we are designing a custom-
ized palette for a given image, the 3-D color histogram of
the image contains all the necessary information about the
input distribution. To this end, the image is scanned and a
3-D histogram is generated that keeps track of each distinct
color and its frequency of occurrence.

4.2.1 Prequantization
Since the HVS is far more sensitive to the luminance coor-
dinate than to chrominance, we maintain the full 8-bit res-
olution along luminance and drop the least significant bit of
each of the chrominance coordinates while generating the
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Fig. 3 Steps involved in quantization and display of a color image.

histogram. This prequantization has the effect of significantly
reducing the number of image colors without noticeably de-
grading the perceived quality of the image. Note that we are
effectively scaling or dividing each chrominance coordinate
by a factor of 2. The quantization is performed on the scaled
coordinate system, and the inverse scaling is performed at
the end on the palette colors. We emphasize here that the
chrominance scaling factor is introduced only to reduce the
number of image colors. For the purpose of SSQ analysis
and design, we implicitly account for this factor so that all
three components are equally weighted in the distortion mea-
sure [Eq. (5)].

4.2.2 Efficient histogramming

Storing a color histogram at a resolution of 22 bits (8 bits
for luminance and 7 bits for each of the chrominance com-
ponents) would require a prohibitive amount of memory
(2224 million histogram elements). We use a technique
developed previously'0 that employs a 2-D array to store 8
bits of the luminance component and 7 bits of the Cr chrom-
inance component by direct access, while using a linear
search strategy to store 7 bits of the Cb coordinate. Since the
searches are performed on small linear lists, histogram access
and updates are performed efficiently. Finally, the linear lists
are reformatted as a single linked list that keeps each distinct
color and its count. The memory requirements are 2'532K
elements for the 2-D array and N elements for the linked
list, where N is the number of distinct image colors.'0 See
Ref. 10 for a detailed description of the histogram data struc-
tures.

Input Image
SMPTE RGB

Device RGB

To Display Device
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4.2.3 Subsampling of the image

Often, pixels within a small neighborhood have similar or
identical color values. Hence, rather than considering every
pixel during histogram generation, we can look at a subset
ofthe image pixels and obtain a histogram that still represents
the color distribution reasonably well. To this end, we sub-
sample the image by a factor of 2 in each direction when
building the histogram. This subsampling greatly reduces the
overall computational and memory requirement of the al-
gorithm.

4.3 Palette Design Using SSQ
Afterthe histogram is generated, we have a list of N distinct
colors x1 and their frequencies of occurrence f, j = 1 N.
In contrast to our earlier discussion of SSQ, where we had
a continuous input random vector X with distribution p(x),
we now have a discrete random color vector with discrete
probabilities p(x1) =f1 /N , which we assume to be corn-
pletely specified by the image histogram. Although we speak
of integrals and statistical expectation, these are in fact im-
plemented as summations and sample averages, respectively.
This discretization does not in any way alter the basic SSQ
algorithm. The color palette may be designed using the steps
outlined in Sec. 2.2.2 and formulas (7) and (8). However, we
need to exercise caution in using the asymptotic results for
our application, because the assumption that the number of
output vectors is very large no longer holds true when we
are designing palettes that are of sizes of the order of 256.
We discuss next how the theory may be used in a meaningful
way to implement the algorithm for small palettes.

4.3.1 Design of a scalar quantizer according to X(x)

Although the concept of a quantizer density function X(x) is
meaningful only in an asymptotic sense, it can still be used
as a guiding rule to design a scalar quantizer for a small
number of output levels. Consider a scalar input X whose
distribution p(x) has support in the finite interval [A, B]. The
problem at hand is to design an M-point quantizer Q whose
output points are spaced according to the optimal function
x (x) given in Eq. (3). Recall that a scalar quantizer is defined
by a set of decision boundaries {z, OiM}, with
A = z0<z1 <...<ZM B, and a set of output points {y,
1 iM}. An input x is quantized according to the rule
Q(x) = y if z_ x<z,. By definition of X , the number of
quantization levels Mab in an interval [a,b) C A, B] is given
by

Mab=MJX(X)
dx . (11)

Using Eq. (11) and the fact that the number of quantization
levels in the interval [A,z,] must be equal to i, we have

(12)

Equation (12) gives us a simple rule to position the z1. Namely,
the z must be placed such that the areas under the function

(b)

Fig. 4 Example to show quantization of a scalar X according to X
(x): (a) prior to corrective splitting and (b) after corrective splitting.

X(x) within the intervals [z , z), 1 are all equal to
1/M. An example illustrating this idea is shown in Fig. 4(a),
where a scalar X is to be quantized to five levels. The five
intervals have been chosen so that the area under the function
x (x) within each interval is 1/5. Having fixed the decision
boundaries, an obvious choice for the output points y are the
centroids within each interval [z, z ). We may also de-
sign a quantizer according to its conditional distribution
p(xB) within some region B by simply replacing
X(x) by XB(x) in Eq. (12), where X B(x) is given by Eq. (4).

Note that with the aforementioned scheme, we are only
attempting to equalize the area under X (x), and there is no
control over the variation of the data within an interval. Fig-
ure 4(a) illustrates a potential problem with such a scheme.
We have a wide interval [z0, z1 ), and all input values in this
interval are mapped onto the centroid Yi . The distance be-
tween input values in the small peak on the far left and the
output value is thus very large. In an image, such an effect
manifests itself as isolated spots with visually objectionable
color errors. We correct for this in the following manner.
After quantizing along a coordinate according to X (x), we
identify each region where there is a large variation between
input and output value and perform a split through the mid-
point of the data in that region, as shown in Fig. 4(b). This
corrective operation effectively removes the spotlike arti-
facts. Note that each splitting operation will increase the total
number of quantization regions by one. If the quantization
is along the last component Y, the splitting may result in the
desired palette size N being exceeded. To avoid this situation,
we design a palette of size N' <N, and then perform N —N'
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splits in the most ''problematic'
'

regions. In our implemen-
tation we have chosen N' =O.95N.

4.3.2 Optimal allocation of quantization levels
Theoptimum choices for N1 and N2 given in Eq. (7) are based
on the assumption that the MSE is well modeled by Eqs. (6a)
and (6b). This approximation, which is indeed valid in the
asymptotic case, need not hold true when N1 ,N2, and N3 =N
are relatively small. However, interestingly enough, we have
observed that in practice, the basic functional form in Eq. (6a)
is a good model for many natural images. It is only the con-
stants a, 13, and ii that are not always well predicted by the
input statistics in Eq. (6b) when N becomes small. In other
words, if we were to plot the experimental MSE incurred by
SSQ as a function of N1 and N2 for a given color image, this
curve is reasonably well modeled by Eq. (6a) for some values
of a, 3, and 'r that may be very different from those obtained
using the formulas in Eq. (6b). Therefore, we need to some-
how estimate these constants to obtain a reliable prediction
for the MSE curve. We do this by performing a preliminary
quantization on the image for some initial choice of N1 and
N2. We follow steps 1 through 4 outlined in Sec. 2.2.2 using
the scalar quantization procedure described in the preceding
subsection and Eq. (8) to obtain the n,3. We then compute the
experimental MSEs d1 , d2, and d3 along the three coordinates:

d = !
[x,1

—I2 ; i = 1 , 2, 3
3 i=i

x1nS1

where x1= [x11, x2, x31] is thej'th input color, and S1 is the
l'th quantization region with output color Yi =[Yii, Y21' y311t•
The i 'th experimental MSE term in Eq. (13) is equated with
the corresponding i 'th theoretical MSE term in Eq. (6a) to
yield the empirical values ae, 13e' le

1eM d1

N2e13
2

Using these empirically derived constants in Eq. (6a), we
obtain a reliable prediction of the MSE as a function of N1
and N2. It follows that the optimal N1 and N2 are given by
Eq. (7) with a, 3, and i being replaced by ae, Pe' and
We now perform the final N-point quantization on the image
by repeating steps 1 through 4 with these optimum alloca-
tions.

The aforementioned discussion is depicted graphically in
Fig. 5 for a 2-D example with chrominance data. In this case,
N2 = 16 is fixed, and we desire the optimum N1 that minimizes
the 2-D MSE D2. The experimental MSE incurred for each
N1 is shown as the solid curve in Fig. 5. The process described
earlier is equivalent to finding a curve of the form of Eq. (6a)
(with 'ri =0) that exactly fits the experimental data at some
fixed value of N1, chosen to be five in our example. This
fitted curve is shown as a dashed plot in Fig. 5. The value of
N1 that minimizes the fitted curve is then chosen as the pre-
dicted optimum allocation. In this case, the predicted mini-

Fig. 5 Experimental, fitted, and theoretical plots of MSE versus N1
for the image "Balloon."

mum is at N1 =5. (The true minimum occurs at N1 = 4). Also
(13) shown in Fig. 5 is the theoretical MSE curve given by

Eq. (6a), using the asymptotic expressions in Eq. (6b) for a
and ft While this curve would yield an accurate prediction
of MSE under asymptotic conditions, we see that it deviates
noticeably from the true MSE when N1 and N2 are small.
Hence, our success in applying asymptotic theory to solve a
nonasymptotic problem relies on the idea of fitting the model
to experimental data, rather than using the model directly.

4.3.3 Order of quantization

Asymptotic theory tells us that for some useful cases such
(14) as a Gaussian input distribution, the performance of SSQ

does not depend on the order in which the scalar components
are However, for our practical application, we
do find that the order can have an effect on image quality.
As was mentioned previously, the only means of finding the
optimal order would be to perform the preliminary quanti-
zation described earlier for each of the 3 ! = 6 possible or-
derings and pick that which results in the minimum 3-D MSE.
However, the purpose of deriving a computationally efficient
quantization algorithm would be defeated if we have to ex-
ecute it six times on one image! For our application, we
observe that only four out of the six choices make intuitive
sense: either we quantize the two chrominance components,
followed by luminance, or vice versa. We pick the former
option, because this roughly conforms to the intuitively ap-
pealing idea of assigning hues to the various objects in an
image through chrominance quantization, and then providing
the necessary shading to each hue patch or object through
luminance quantization. This limits us to two possible orders:
CrCbY or CbCr4'. For each order, we do the following:
(1) perform the preliminary quantization described in the pre-
ceding subsection using some initial N1 and N2, (2) estimate
ae, e'and 'lieaccording to Eq. (14), (3) determine the optimal
N1 and N2 from Eq. (7), and (4) use these optimal allocations
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in Eq. (6a) to predict the minimum MSE for that order. We
pick the order ofquantization that yields the smaller predicted
minimum MSE and perform sequential quantization as de-
scribed by steps 1 through 4 in Sec. 2.2.2.

4.3.4 Other implementation issues

Integer representation ofn1. Theformula (8) yields real-
valued n), that satisfy the constraint (2b). In practice, of
course, these quantities must be integers since they represent
numbers of quantization levels. For each j= 1 N we
replace n in Eq. (8) by its nearest integer. In doing so, how-
ever, the constraint (2b) may be violated. Suppose the sum
of the fl,1 is greater than N1. We must decrease the value of
one or more of the n, until (2b) is satisfied. Since a reduction
in the number of quantization levels n1 in region B, will
increase the MSE along x1 in that region, we must alter the
n in a manner such that the overall error increases minimally.
We use the asymptotic theory" to predict the MSE e, in
B.

ii
e,1

= (15)

We must multiply e13 by P(B) to obtain the contribution of
the error in B to the overall MSE along x1. The increase in
MSE or the cost resulting from decrementing by 1 is
then given by

1 ii
(n, — 1)2

—
IIp(xB,1)II,,3p(B11) (16)

Starting with the region with the smallest and proceeding
through the regions B1 in order of increasing cost, we dec-
rement n until (2b) is satisfied. (Regions with n,3 = 1 are left
unaffected). Table 1 illustrates this procedure with a numer-
ical example. Here, a 2-D Guassian distribution is to be quan-
tized to N2 = 20 levels. Using Eq. (7), we obtain N, = 5. Now,
we use Eq. (8) to obtain n2, 1 as shown in the second
row of Table 1 . Rounding these real values to the nearest
integers, we obtain the third row, and find that the n,1 sum
to 21 . Next, we compute the costs 2j' 1 according to
Eq. (16), which yields the fourth row of the table. The mm-
imum of these values is 23' and hence n23 is decremented
to a value of 4, yielding the correct total of N2 =20.

Conversely, suppose the sum of the integers n11 is smaller
than N,. Using an analogous argument, we obtain the decrease
in MSE or the gain resulting from incrementing n1 by 1
as

11 1 1lj= I — — 2 IIIp(xB,1)II,,3p(B,1)
Ln11 (n,+1) j

We now proceed through the regions in order of decreasingi and increment each n by 1 until (2b) is satisfied.

Initial choices of N1 and N2 for preliminary quantiza-
tion. These were based purely on empirical observation.
For several test images, we noted the values of N, and N2
that minimized the experimental MSE. The averages of these
values were taken to be initial choices for the preliminary

Table 1 Numerical example showing integer allocation of n,1 for a
2-D Gaussian distribution.

j —i- —-- —f-- JL
real

2i
2.951 4.527 4.979 4.554

5

2.898

3

20

21rounded

fl21

3

0.085

5

0.066

5

0.063ij 0.066 0.084

finaln2j 3 5 4 5 3 20

quantization. For N= 256, these initial values were N1 =18
and N2 = 30.

Preliminary quantization in chrominance. Instead of
performing preliminary quantization along all three coordi-
nates, as was described in Sec. 4.3.2, in our implementation
we initially quantize only the two chrominance coordinates
to obtain d1 and d2. We then use asymptotic theory to predict
the MSE d3 along V without actually performing the quan-
tization along this coordinate. The rationale for doing this is
that from our observations, the theory tends to predict the
error along luminance far better than it does the error along
chrominance. This is largely because the number of quan-
tization levels along Y tends to be relatively large, thus more
closely satisfying the asymptotic assumption. The overall
MSE along Y can be estimated by

d3
1=1

e31 P(B31) (18)

where e3 is as given in Eq. (15). The advantage with this
strategy is that Eq. (18) involves less computation than it
would to actually quantize along luminance and empirically
determine d3.

4.4 Incorporation of the Human Visual System

So far, we have described an algorithm that attempts to mm-
imize an objective error metric. Although such a metric pro-
vides us with a basis for palette design that is mathematically
tractable, it often does not accurately reflect the perceived
error in an image. In this section, we describe two ways to
incorporate the HVS into the palette design.

4.4.1 Visually weighted MSE
In general, the HVS is more sensitive to errors in luminance
than in chrominance. This is particularly true in color quan-
tization, where the most visible artifact is usually contouring

(17) in luminance. Since we are performing the quantization in a
luminance-chrominance space, we may weight the MSE in
a simple way to account for this property. Having elected to
quantize the luminance component last, let us assume for this
discussion that X = [X,,X2, X3]= [Cr, Cb, fl Consider the
weighted squared error metric

D=d1+d2+Kd3 (19)

where, as before, d, is the MSE along the i'th coordinate;
i= 1, 2, and 3; and K1. We are effectively making the
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squared error along x3 (luminance) K times more significant
than the squared error along x1 and x2 (chrominance). The
optimal quantization allocations N1 and N2 for the weighted
MSE may easily be shown to be

1/6
N"3 I a2

N1 =—(—-
K"6 \ftTl

I /6
N213 faf3

N2=--
Note that the greater the value of the luminance weight K,
the smaller the allocations N1 and N2 of quantization levels
to the chrominance components. In our experiments, a value
of K= 4 has been seen to reduce objectionable luminance
contouring artifacts in several images. This improvement is
usually at the expense of slightly increased chrominance er-
rors, which are generally less objectionable.

4.4.2 Spatial activity measure
It is well known that the HVS is more sensitive to quantization
errors in smooth rather than in busy regions of the image.
This phenomenon, sometimes known as spatial masking, has
been incorporated into palette design.6'9'1° We employ a spa-
tial activity measure similar to one used earlier.10 We have
found that such a measure often improves the subjective qual-
ity when the palette size is very small (N 128). Define a
gradient measure V, = m,n 1'm,n — i m n ,n — i ,
thatreflects the variation ofluminance Y at each pixel location
(m,n). To reduce the effect of noise on the gradient measure,
we divide the image into 8 X 8 blocks, and for each block 1,
we compute the average a1 of gradients Vmnover all pixels
in 1. We then assign a block weighting function w that reflects
the subjective visibility of quantization errors in that block.
From our discussion earlier, we would like this function to
be inversely proportional to the activity a1 in the block.
Hence, we choose 'i = 1/a1. (In the actual implementation,
we limit the dynamic range of the denominator. 10) Each im-
age color x is then assigned a subjective weight w, to be the
average of block weights over all blocks in which that color

10 Note that if this color appears mainly in smooth
spatial regions of the image, it will have a large subjective
weight associated with it.

Since the weighting is based purely on luminance varia-
tion, we incorporate it into the SSQ palette design at the
luminance quantization step. When allocating the number of
quantization levels n3 along luminance within each region
B31 according to Eq. (8), we simply replace r by rj =w r,
where (i) is the average of the subjective weights €o, of all
colors x in B31. If a particular region B33 contains colors from
mainly smooth spatial areas in the image, it will have a larger
weight w) and therefore a larger quantization allocation n31
associated with it. Hence, we achieve the desired effect of
assigning more quantization levels to colors from smoothly
varying image regions.

4.5 Pixel Mapping

Having designed a palette, the remaining step is to map each
input pixel in the image to a color in the palette. For a given.
palette, the optimal mapping is the palette color that is closest
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to the input color in the color space. In general, finding the
closest palette color is a computationally intensive operation,
because it involves an exhaustive search through the palette
for each input color. Techniques such as binary splitting pro-
vide a structure to the palette that enables a fast, albeit sub-
optimal, mapping between input and palette colors. Since any
splitting technique breaks up the color space into N quanti-

(20) zation regions, it is sufficient to locate the quantization re-
gion to which a given input color belongs and map the input
color to the centroid of that region. Note that this is not
necessarily the optimal mapping, as shown by the example
in Fig. 1(b). The vector C would be mapped onto the output
vector Q1, although the output vector that is closest to it is
actually Q2. However, this suboptimal strategy is satisfactory
for most applications. The binary splitting algorithm is im-
plemented with a binary tree structure, so that a search for a
quantization cell can be performed in logarithmic time. (An
average of log2 N searches are needed to locate a quantization
cell in an N color palette.9)

In the SSQ technique, each input color is mapped to a
palette color very efficiently through the use of the three
stages of LUTs shown in Fig. 2(b). This offers a significant
advantage over any of the other quantization algorithms that
have been reported, with the exception of independent prod-
uct codes that result in inferior image quality. The LUTs are
actually built during the palette design. The i'th stage of
LUTs, i = 1, 2, and 3, is generated immediately after quan-
tization along the i'th coordinate x1. Pixel mapping proceeds
as follows. Referring to Fig. 2(b), at the first stage, the X1
value ofthe input color is passed to the X1 LUT, which locates
the quantization region to which the color belongs from the
first N1 point quantization along X1 . Each of the N1 regions
contains an X2 LUT that uses the X2 value of the input pixel
to locate the quantization region to which the color belongs
from the second set of quantizations along X2. Finally, each
of the N2 quantization cells in the X1-X2 plane contains an

x3 LUT that uses the X3 value of the input pixel to locate an
index for the quantization region formed from the final set
of quantizations along X3. Hence, the entire mapping oper-
ation consists only of indexing into LUTs and involves no
computation. Once we have obtained an index m for the input
pixel, it is a simple matter to decode it to the m'th palette
color using a color map. In practice, the LUTs may easily
be implemented with low-cost hardware, thus allowing the
pixel mapping operation to be performed in real time. Fig-
ure 6 summarizes the entire SSQ algorithm in a block
diagram.

4.6 Complexity Considerations

4.6.1 Time complexity
Let N be the number of pixels in the image, NSNP be the
number of pixels from the subsampled image, N be the num-
ber of distinct colors in the image, and N be the palette size.
We are assuming that the images have already been trans-
formed to the YCrCb color space and do not include that
computation here. The preprocessing (i.e. , histogram gen-
eration) involves O(N) operations, each entailing a few ad-
ditions and comparisons.6 If the spatial activity measure is
included, the computation of w1 is of order O(N). The se-
quential quantization involves two passes through the his-
togram for each coordinate: one pass during the preliminary
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Operation Computational
Complexity

ExecutionTimet

3-D Histogram O(Ns)tt 0.4 sec

Sequential Palette
Design O(6Nc)* 1.2

Pixel Mapping
via Multistage
LUT

0(N0) 0.3

pixels and were subsampled by a factor of 2 in each direction
for the palette design. We incorporated the spatial activity
measure only for palettes whose size was 128 or less.

5.1 Qualitative Performance

In this section, unless otherwise mentioned, a luminance-
chrominance weighting of K= 4 was used for palette design.
Figures 7(a) through 7(d) compare four original images with
images quantized to 256 colors using the SSQ algorithm. The
image ' 'Lena' ' consists of many smooth variations of colors
from a small region of the color space, while the ' 'Pepper"
image contains smooth variations of highly saturated colors
from very different parts of the color gamut. The third image' 'Picnic' ' consists of a mixture of busy regions, texture from
the grass, and smooth variations in the sky. The final image' 'Balloon' ' is a difficult image to quantize transparently, be-
cause it contains many different hues, and for each hue there
are many fine gradations in luminance.

Figure 8 compares results of the median cut algorithm'
and the fast binary splitting algorithm,'0 refened to as binary
splitting with prequantization (PQBS). We choose these two
algorithms for comparison with our technique because the
former is a widely used standard algorithm, and to our knowl-
edge, the latter offers the best performance in terms of image
quality and computational complexity among algorithms that
have been previously reported in the literature. Looking at
Fig. 7(d) and Fig. 8, we see that the median cut algorithm
performs poorly, while SSQ and PQBS perform comparably.
Upon close inspection, it can be seen that SSQ with the
luminance weighting (K= 4) has reduced much of the con-
touring artifacts in the balloons that remain visible even with
the PQBS technique.

Figure 9 shows the effect of the corrective splitting op-
eration described at the end of Sec. 4.3. 1. For the purpose of
illustration, a 2-D CrCb histogram of an image, shown in
grayscale, is displayed along with the quantization regions
formed by SSQ and the region centroids (shown by white
dots). With the histogram on the left, we see that in the
lowermost region, there is a large distance between the colors
in the two clusters and the output centroid. The corrective
scheme described in Sec. 4.3. 1 detects this problem and splits
this region into two regions along the horizontal (Cr) axis,
as shown in the histogram on the right. The splitting plane
passes through the midpoint of the input values in that region.
We then represent each of the two new regions with their
respective centroids, and the error between input and output
colors is greatly reduced.
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YCrCb Image

Subsample image

Generate color histogram

Table 2 Breakdown of computational complexity and execution
times for various steps in the SSQ algorithm applied to the image
"Lena."

Perform preliminary
quantization along

chrominance

Perform final quantization
along all 3 coordinates

Pick cell centroids as
palette colors

} Preprocessing

Palette—
Design

Perform pixelF: _1— Mapping

. Color Palette
Quantized

Image

Fig. 6 Block diagram summarizing the SSQ algorithm.

quantization to obtain the optimum allocations N, and N2
and one pass during the final quantization. This amounts to
six passes through the histogram, which is of size N. Hence,
the sequential quantization involves O(6N)operations. The
dominant computation here is in the raising of each marginal
and conditional distribution to the 1/3rd power to obtain the
QDF 1. . Finally, the pixel mapping is of order O(N), where
the operations only entail indexing through LUTs. Table 2
summarizes the computational requirements of the various
steps of the algorithm.

4.6.2 Space complexity
The 2-D histogram array requires just over 32 kbytes of
memory, while the size of the linked list that keeps all the
distinct colors is image dependent and is typically ofthe order
of 600 kbytes (in comparison with 16 Mbytes required for a
full 3-D array). The memory requirement for the LUTs de-
pends on the relative quantization allocations N, and N2. We
need 1 LUT for the first stage of Fig. 2(b), and N, and N2
LUTs for the second and third stages, respectively. Each
individual LUT has 256 entries and therefore requires 256
bytes. The overall memory needed for the multistage LUT
is 256(1 + N, + N2) bytes. Taking a fairly typical example,
if N, =5 and N2 = 20, the LUTs require approximately
6.6 kbytes of storage. Clearly the histogram data structure
demands by far the greatest storage.

5 Experimental Results
All algorithms were run on a SUN SPARCstation 2, and the
images were displayed on a RasterOps Sony Trinitron video
monitor. The calibration procedure described in Sec. 4. 1 was
used to transform original and quantized RGB images to the
RGB space of the monitor. All images contain 512 X512

Downloaded from SPIE Digital Library on 21 Jun 2010 to 128.46.156.80. Terms of Use:  http://spiedl.org/terms



Balasubramanian, Bouman, and Allebach

Fig. 7 Original image (left) and image quantized to 256 colors using SSQ (right): (a) "Lena,"
(b) "Pepper," (c) "Picnic," and (d) "Balloon."
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Fig. 9 Example of a 2-D histogram of an image before (left) and
after (right) corrective splitting.

Fig. 11 Image quantized to 128 colors using SSQ without (left) and
with (right) a spatial activity weighting.

Journal of Electronic Imaging/January 1994 / Vol. 3(1)157

Fig. 8 Image quantized to 256 colors using median cut (left) and Fig. 10 Effect of luminance-chrominance weighting. Top row:
PQBS (right). K=O.5, 1; bottom row: K=4, 8.
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Figure 10 shows the effect of the luminance-chrominance
weight K. Four images are shown with increasing values of
K. We see that for K =0.5, there are not enough quantization
levels allocated to luminance, and the resulting contouring
is objectionable. On the other hand, for K =8, there is an
excessive allocation to luminance and an insufficient number
of quantization levels along chrominance, which results in
visible hue shifts in the face. Intermediate values of K =1

and K= 4 yield better results. A close inspection ofthese two
cases indicates that weighting luminance more than chrom-
inance (i.e., K= 4) yields a visually more pleasing image
with less contouring on the face and balloons. We have ob-
served that K= 4 yields satisfactory results for a variety of
images in our database. Figure 1 1 shows the effect of the
spatial activity weighting on an image quantized to 128
colors. As is seen in the image on the right, the weighting
allocates more colors to the smooth regions in the sky, hence
reducing the contouring seen in this area in the image on the
left. This increased allocation ofcolors in the sky region must
be made at the expense of a reduced allocation of other colors.
For example, the activity weighting introduces a slight deg-
radation on the two faces in Fig. 1 1, probably because these
regions had lower activity weights oi than the sky region.
This shows a limitation of the activity measure, namely, that
it uses only local statistics to determine a weighting function.
More sophisticated methods would involve possibly incor-
porating context or a priori information about perceptually
important colors such as flesh tones, along with local statis-
tics, to derive a spatial weighting function. Finally, we have
observed that this weighting can produce a noticeable im-
provement in overall quality only when the palette is very
small (of size l28).

5.2 Quantitative Performance

We have designed an algorithm that strives to minimize the
MSE. As noted earlier, however, this error metric is often a
poor measure of visual quality. Hence, rather than presenting
elaborate numerical error results that are visually irrelevant,
we discuss briefly the general MSE performance of SSQ,
PQBS, and the median cut algorithm. We compared the MSE
in both RGB and YCrCb color spaces for several images, and
found that (1) the PQBS algorithm consistently yields a
slightly lower MSE than SSQ, and (2) the median cut al-
gorithm yields a much larger MSE than either PQBS or SSQ.
It is not surprising that PQBS outperforms SSQ with respect
to MSE, because from a VQ point of view, the former allows
arbitrary shapes ofquantizationregions in 3-D space, whereas
the latter is constrained to rectangular quantization regions.
In contradiction to this, however, SSQ often yields better
visual quality than PQBS because ofthe greater weight given
to luminance variations. It is of no surprise that the median
cut algorithm performs poorly under the MSE criterion, be-
cause it is not explicitly designed to minimize this error
measure.

5.3 Computational Performance
Table 2 shows a breakdown of the computation times in-
volved in the various steps of SSQ. The palette design takes
the most time, because it involves six passes through the
histogram for the preliminary and final quantization, and
these passes involve raising histogram values to fractional
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Table 3 Comparison of execution times for 256 color quantization
using SSQ, POBS, and the median cut algorithm.

Image
ExecutionTime (see)

SSQ PQBS Median Cut

Lenna

Peppers

Balloon

Picnic

1.9

2.4

1.9

2.0

9.3

12.6

9.1

10.0

7.0

9.8

7.3

11.8

Average 2.05 10.25 8.98

powers. Although the preprocessing and pixel mapping entail
passes through the entire image, these steps involve simple
operations such as additions and indexing, and as such, take
up only a minor portion ofthe overall execution time. Table 3
compares the execution times of SSQ, PQBS, and the median
cut algorithm for the four test images. As is seen here, SSQ
is by far the fastest algorithm of the three. Subsampling of
the image plays a crucial role in enhancing the speed of SSQ.
Furthermore, both PQBS and the median cut algorithms re-
quire a recursive binary tree implementation, which is in-
herently more computationally intense than the sequential
method. We caution the reader that execution times are
clearly implementation dependent and that Table 3 is in-
tended only to give an approximate idea of relative algorithm
speed.

6 Conclusions
We have proposed an efficient algorithm for color image
quantization, wherein each scalar component of the color
vector is quantized sequentially. Since quantization is per-
formed on scalar variables, the palette is designed very ef-
ficiently. In addition, due to the sequential structure of the
palette, pixel mapping is performed using LUTs and thus
involves no computation. We use the asymptotic quantization
theory to optimize the performance of SSQ with respect to
MSE. A luminance-chrominance weighting and spatial ac-
tivity measure are incorporated into the palette design to
account for some basic properties of the HVS. SSQ achieves
high visual quality, while incurring significantly fewer com-
putations than existing image-dependent quantization
algorithms.

Although we did not address the issue of haiftoning in
this paper, such techniques may be readily used in conjunc-
tion with SSQ to increase the perceived number of colors
and to reduce the visibility of contouring artifacts. However,
one must be careful in employing such techniques, since
spatial resolution is sacrificed for tonal resolution, and other
visible texture artifacts may result.

SSQ may also be easily used to generate image-
independent or universal palettes. In such cases, the quality
is usually unacceptable unless halftoning is incorporated in
the pixel mapping. Recently, Kolpatzik and Bouman'5 used
SSQ to design a universal palette in L*a*b* color space.
Pixel mapping was performed with the sequential LUTs, in
conjunction with error diffusion. In general, it is difficult to
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compare the performance of image-dependent SSQ and that
of image-independent SSQ that incorporates haiftoning.
Image-dependent SSQ usually yields high quality, but is
sometimes prone to noticeable contouring artifacts, espe-
cially when the palette size is very small. Image-independent
quantization usually does not suffer from contouring, but is
prone to systematic texture artifacts introduced by the half-
toning. With image-dependent SSQ, most of the computa-
tional burden lies in the palette design, whereas in the image-
independent case, the complexity is dictated by the haiftoning
technique used during pixel mapping. In summary, whether
or not one strategy outweighs the other depends largely on
the application, the requirements, and the resources.
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