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ABSTRACT 
 
We have recently implemented and tested the direct 
reconstruction of sinogram data to dense images of kinetic 
model parameters [1].  In addition, we have recently applied 
our algorithms to brain data acquired with 18F-fallypride 
imaging of a monkey [2].  As a multi-dimensional parameter 
estimation exercise, direct reconstruction to parametric 
images can be thought of as generating thousands of model-
fitted curves (the prediction of measured sinograms) 
simultaneously.  Because the resulting parametric images 
are only as good as the fits to the data, one would like to 
have a means of evaluating the “goodness of fit” of each of 
the  model-fitted curves. The size of the data set involved 
(4D PET data) presents unique problems in the visualization 
of the fits.  In this paper, we propose measures to 
objectively evaluate the “goodness of fit” of the model to 
the PET sinograms in orders to evaluate the precision of the 
parametric images and the validity kinetic model.  The 
techniques presented are, in part, extrapolations of standard 
parameter estimation techniques [3] to multi-dimensional 
estimates and are adapted to the tomography paradigm. 
 

1. INTRODUCTION 
 
Direct reconstruction of parametric images is a newly 
implemented technique for reconstructing PET sinograms 
that bypasses the creation of emission images and proceeds 
directly to a more useful end-product, images of 
physiologically relevant parameters [1].  The conventional 
(“indirect”) approach to the analysis of dynamic PET data 
involves first a reconstruction step to emission  images at 
multiple time-points,  second, region drawing and curve 
creation, and third, estimation of kinetic parameters from 
only a sparse (compared to the total number of voxels) 
selection of spatial locations in the images. The direct 
approach deals with the data in sinogram space and relies on 
the incorporation of a kinetic model into the iterative 
reconstruction framework. The direct approach eliminates 
the often labor intensive tasks of managing, processing and 
storing emission images.  On the other hand, the direct 
approach presents new challenges for visualizing the fits of 
the model to the data.  The quality of the fits of the model-

predicted sinograms vs the measured sinograms is an 
essential part of determining whether or not the model that 
is incorporated into the reconstruction algorithm is an 
appropriate one. 
 
1.1 Kinetic and Scanner Models Combined 
 
The kinetic model that we have included in our direct 
reconstruction framework is the standard four-parameter, 
two-tissue compartment model used commonly to describe 
the uptake and retention of high specific activity receptor-
ligand tracers in PET.  The model, shown in Figure 1, 
requires a measured plasma input function and can be 
solved via numerical convolution of the input function with 
the impulse response function.   In turn, the kinetic model 
solved at every voxel, yields voxel-wise estimates of the 
PET emissions for a given set of kinetic parameter values, 
i.e., parametric images.  The predicted emissions, f, at voxel 
s, over time-frame [ti, tj] is a function of kinetic parameters 
ϕs that are unique to voxel s, and are given generically as: 
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where SA(t) is the time-varying specific activity of the 
tracer, CWB is activity concentration in the blood, VB is the 
blood volume fraction of the tissue, and Cl is the lth 
compartment of the kinetic model (see Figure 1). 
 
 

Within the iterative reconstruction algorithm, the emissions 
map is projected to sinograms, Yp, via the scanner model 
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Figure 1.  Schematic diagram of two-compartment, 4-parameter
model.  Plasma radioactivity (dotted box) is measured and therefore
not a compartment in the mathematical sense. This model was
incorporated into direct reconstruction by the authors (Kamasak et
al., 2005). 
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Yp = AF(ϕ)                                                                   (2) 
 

where Yp are the predicted sinograms, F are the emission 
images and A is the projection matrix (aka., the scanner 
model).   The parametric images are reconstructed by 
minimizing the cost function given as 

 
ϕ = argminϕ   [ -LL(Y|ϕ) + S(ϕ)].                                     (3) 

 
where LL is the log likelihood, Y are the measured 
sinograms, ϕ  is the estimated parametric image, and S 
represents the  regularization kernels that are applied locally 
to each of the parametric images on each iteration of the 
minimization procedure.  At the end of each iteration, the 
parametric images are updated until convergence is 
achieved.  Details of the algorithm and its performance on 
realistic dynamic phantom data are given in [1]. Results 
from 18F-fallypride neuroimaging of monkeys are given in 
an accompanying paper [2].   

 
In this paper, we focus on evaluating the results of the 
reconstruction.  That is, how precise are the parametric 
images at each voxel and how do we know that the kinetic 
model selected was appropriate to the task?   

 
To answer these questions, we modify some standard 
practices from ‘scalar’ parameter estimation.  First, as a 
demonstration of principles, we present variance images for 
each parameter based on Monte Carlo simulations. The 
images of the variance –or a related error index- provide an 
estimate of the precision of the voxel-wise parameter 
estimates.   Without such estimates, it is impossible to say 
definitively that one image is different from another if the 
images cannot be acquired multiple times.  Second, we 
introduce and evaluate back-projected images of residuals in 
sinogram space as a means of visualizing the fits of the 
model to the data over many times and spatial locations, 
simultaneously.  With the images of the back-projected 
residuals, an adequate kinetic model can be distinguished 
from an inadequate model, that is, the residual images are a 
tool for proper model selection. 
 
 

2. METHOD 
 
2.1. Image Reconstruction 
 
Parametric images were reconstructed according to the 
algorithm described in detail in Kamasak et al., [1,2].  The 
final images (shown in Figure 2 for parameters K1, k2, k3, k4, 
were then treated as the ‘truth’ for the purpose of estimating 
images of the error. 

 
2.2. Creation of Variance Images 
 
Images of K1, k2, k3, k4 (shown in Figure 2) were input into 
the forward projection model of our scanner (see Equation 
2) and combined with a Poisson noise model that was 
consistent with the activity in our experimental data.  Ten 
independent realizations of noisy sinogram data were 
produced and then treated as real data.  That is, the 
simulations were reconstructed to parametric images 
according to Equation 3.  The variance of each parametric 
image was then calculated voxel-by-voxel from the 10 sets 
of reconstructed images according to: 
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where θis is the estimate of the ith parameter at voxel, s; n is 
the number of independent realizations.  We present the 
variance images below, as coefficient of variation images 
[CV(K1) CV(k2) CV(k3) CV(k4)]. The coefficient of 
variation is standard deviation of the value normalized by 
the value, times 100.  Displaying coefficient of variation 
images, which are all scaled to 100%, ameliorates scaling 
problems in the display and visually conveys the percent 
error in each respective parameter.   
 
2.3. Back-projection of residuals 
 
In sinogram space, we can visualize the agreement between 
the model prediction and the acquired data for every time-
frame and angle as a single fitted curve of events vs. 
distance.  An example fit in sinogram space is presented in 
Figure 3.  In order to visualize all the fits in sinogram space 
(for a single time-frame) simultaneously, we back-project 
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Figure 2.  
Parametric 
images for K1, 
k2, k3, k4 in 
coronal 
perspective 
created by 
minimizing 
Equation 3 with 
18F-fallypride 
data acquired in 
a monkey on an 
HR+ scanner.  
White rectangles 
around brain 
indicate the area 
shown in 
Coefficient of 
Variation 
images (Fig. 5).
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the residuals between the fitted (predicted) and measured 
projections for all angles using filtered-backprojection. Let 
R(ϕ)  denote the residual sinograms, which are the 
difference between the fitted and measured sinograms, 

 
R(ϕ) = Yp(ϕ)-Y(ϕ)                                                             (5) 

 
and let e(ϕ) be the filtered backprojection of the residual 
sinograms. 
 
 
An example fit to the recorded counts in the sinogram 
domain (at a fixed projection angle and fixed time) vs. radial 
distances is shown in Figure 3. The selected projection angle 
is indicated in Figure 3a by a white horizontal line across 
the sinogram. The measured and fitted curves at this 
particular time and projection angle is shown in Figure 3b. 
The residuals are given in Figure 3c as the normalized error 
between the measured and fitted curves. The error shown in 
Figure 3c appears uncorrelated in radial distance which 
suggests that the kinetic model (in this case a two-
compartment model) was adequate to fit the data. Had the 
residuals been non-random, we would have taken that to 
indicate a deficiency of the kinetic model [3]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to evaluate the utility of the back-projected 
residuals as a means of model selection, we reconstructed 
the data (used for Figure 1) in two ways. First, we 
performed a direct reconstruction that incorporated the 4-
parameter, two-compartment model alluded to earlier, and 
second, we preformed direct reconstruction with a 2-
parameter, one-compartment kinetic model.  The one-
compartment, or blood flow, model is diagrammed in Figure 
4.  This model is clearly deficient for describing the uptake 

of a tracer that binds to a receptor site (requiring a binding 
compartment), therefore we expect some indication of 
model deficiency in the back-projected residual images, 
e(ϕ). 
 
 
 
 
 
 
 
 
 

 
 

3. RESULTS 
 
The coefficient of variation images based on our Monte 
Carlo simulations are shown in Figure 5. Close examination 
of the images reveals low coefficient of variation in the 
striatal and cortical regions of the brain. Some bright areas 
(high percentage variation) in the k3 image correspond to the 
ventricles consisting only of cerebrospinal fluid and not 
brain tissue.  Surrounding skull and muscle are cross-
hatched for ease of viewing the brain. The coefficient of 
variation in k2 parameter is not zero but it is very small.  In 
practical usage, the images could be masked to retain only 
gray and white matter areas. 
 

 
The error images, e(ϕ), reconstructed via filtered 
backprojection from the residual sinograms are shown in 
Figure 6. The left hand column of Figure 6 shows the 
emission image at various time frames. The middle and 
right-hand column show the e(ϕ) images for the models 
shown in Figures 1 (two-compartment) and 4 (one-
compartment), respectively. On each row, the e(ϕ) image 

Figure 3 a. Sinogram data; time-frame 30, angle 80 is identified by
horizontal line through all distances.  b. measured sinogram
projection vs distance (red) are overlaid on predicted sinogram
projection (green).  c. Normalized residuals of fit in b. 
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Figure 4.  Schematic diagram of one-compartment, 2-parameter
model.  Plasma radioactivity (dotted box) is a measured function.
This model was incorporated into direct reconstruction in order to
test the use of back-projected residuals for kinetic mode selection.  

Figure 5. Coefficient of variation (CV=StdDev(θ)/θ∗100%)
images of K1, k2, k3, and k4.  Variances were estimated based on
direct reconstruction of 10 independent noisy realizations of
sinogram data projected from the fit in Fig 2.  Regularization as
described in [2].   Note: Fractional error in parameters within
gray matter of brain is small. CV is very high where parameters
are 0 or do not exist.  CV(k2) is non-zero but very small. 
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corresponds to the time-frame indicated at the left.  All error 
images are displayed using the same color scale. The images 
in the middle column are generally noisy images without 
structure.  On the other hand, the images in the right hand 
column show a fair degree of structure that is reminiscent of 
the corresponding emission images shown at the left.  This 
structure arises from non-random residuals in sinogram 
space and confirms that the one-compartment model is 
inadequate to describe the uptake and retention of 18F-
fallypride tracer in the brain.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    

4. DISCUSSION and CONCLUSIONS 
 
The residuals, R, that were used for back-projection to error 
images, were not normalized.  Therefore, the residual 
sinograms are in units of counts and the backprojected error 
images (if properly calibrated) are in units of radioactivity.  
Thus, one can think of the e(ϕ) images as the remaining 
activity distribution that cannot be explained by the chosen 
kinetic model.  If such a distribution is highly non-random, 
then the kinetic model that has been incorporated into direct 
reconstruction must be deemed inadequate. 
 
In this paper we have introduced two means of verifying the 
precision and validity of the parametric images created by a 
recently introduced algorithm for direct reconstruction from 
sinograms [1]. The variance images are an essential element 
for assessing the accuracy of any parametric image.  As in 
any experiment, an ‘acceptable’ variance can only be 
determined in the context of the expected effect size, 
number of subjects in a study, etc.  Monte Carlo simulations 
are probably too cumbersome for use as a routine means of 
calculating the variance images, but they will serve as a 
check of other methods for estimating variance from the 
Fisher Information matrix, which we intend to implement.   
 
But even precision is only one aspect of a good result.  We 
also want to know that the kinetic model was capable of 
describing the data.  This cannot be discerned by merely 
looking at the parametric images and there are far too many 
projections and time frames to allow for visual inspection of 
the fits in the sinogram domain.  Thus, we sought a means 
of visualizing all the residuals simultaneously and the 
natural way to view projection data is to back-project them.  
The clear difference in the appearance between the error 
images from the one- and two-compartmental models 
suggest that such images can be used to help select the 
appropriate kinetic model for use in direct reconstruction. 
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Figure  6.  Emission images and back-projected residuals. Left
Column:   emission images of 18F-fallypride uptake in monkey
head;  time frames indicated at left.  Middle Column: Back-
projections of residuals in sinogram space from corresponding
time frame. Kinetic model used: 4-parameter, two-
compartment, with moderate regularization in all parameters
(see [2]).  Right Column:  Back-projections of residuals in
sinogram space from corresponding time frame. Kinetic model
used: 2-parameter, one-compartment; moderate regularization
in all parameters.  All back-projected residuals displayed on 
same color scale.  Note lack of form in Middle column.
Apparent object in Right Column suggests non-random 
residuals in sinogram space and inadequacy of kinetic model. 
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