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Abstract

We consider the problem of monitoring the concentration and dispersion of pollutants in the at-
mosphere using a collection of randomly scattered sensors. The sensors are capable of only indicating
that the concentration has exceeded a randomly selected threshold and providing this information
through a transponder-like mechanism to an airborne imaging radar. We use this information to-
gether with a standard atmospheric dispersion model to estimate the concentration as well as the
time and location of the pollutant source. We use the expectation–maximization algorithm to find the
maximum likelihood estimate of the quantities of interest.
© 2005 Published by Elsevier Inc.
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1. Introduction

The estimation of concentration and sources of pollutants in the atmosphere is an im-
portant problem. Currently, the techniques in use for estimating these quantities rely on
taking accurate measurements at precisely known or desired locations [2,4,9]. However, in
a situation when the pollutant is a toxic substance released by an exploding container or
shell, it becomes hazardous and time consuming to send in people or equipment to take
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such direct measurements. In such a situation, it may however be feasible to randomly
scatter inexpensive sensors on the ground by an airplane and take measurements using a
receiver or radar mounted on the airplane. In this paper, we study such a scenario in which
information is extracted by randomly scattered sensors.

The current methods in use for estimating the concentration of pollutants either involve
running atmospheric transport models with known sources and wind velocity fields [14],
or estimating the source and concentration from sparse measurements of the concentra-
tion. The second method falls in the category of inverse problems. Inverse problems in
the atmosphere have mainly focused on two techniques, the back-trajectory techniques ap-
plicable to Lagrangian models [2,4,15] and inversion based on adjoint equations applicable
to Eulerian models [7,12]. Both techniques rely on taking accurate measurements at desired
locations.

The term “randomly scattered sensors” used above means that the locations of sensors
are modeled by a spatial point process. In this paper, we will assume the sensors are scat-
tered according to a two-dimensional homogeneous Poisson process. For this technique
to be feasible, the sensors themselves must be inexpensive. Hence, it is assumed that they
are simple devices which can only detect if the pollutant concentration is above a partic-
ular threshold. The sensors thus can take only rough measurements. Furthermore, we also
assume that the sensors transmit their signal to a single receiver or radar mounted on an
airplane which we call the “hub.” The sensors are unable to communicate with each other
and hence transmit asynchronously.

Apart from the concentration of the pollutant, it is also important to know the loca-
tion of the pollutant source in space and time. This information may help us in quick
neutralization of the source perhaps reducing the damage. If wind velocity is assumed to
be constant, atmospheric dispersion of pollutants is well modeled by the Gaussian plume
model [3,16–18]. We also propose using the Gaussian plume model to estimate the source
location and strength. We take a series of measurements in time from the scattered sensors
and construct an estimator of the location as well as the strength of the source.

2. The measurement model

The measurement model consists of the description of how we obtain data from the
randomly scattered sensors. We assume that the sensors can only detect if the pollutant
concentration is above a particular threshold. The threshold is randomly selected and fixed
for each sensor. This randomization of threshold increases the information content of the
received signal. This is so because if we have the same threshold for each sensor in a
small region, we would get the same answer from each of them. However, when we select
the thresholds randomly, the answers from the sensors are not the same and hence more
information can be extracted from them.

We divide the region of interest into smaller regions called “cells.” We further assume
that the locations of the sensors are modeled by a spatial point process. In particular, we
visualize a scenario in which the sensors are simply thrown out in an area, in which case,
the spatial point process will be a two-dimensional homogeneous Poisson process.
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The sensors are assumed to send their signals to a single hub. A sensor sends its signal
if the concentration is above its threshold, otherwise it stays silent. The hub detects the
power in the vector sum of the signals coming from all the active sensors in a particular
cell. If the signal sent by each sensor is a constant amplitude sine wave, then the pdf of the
received signal power as a function of the number of scattered sensors in a cell has been
derived in Ref. [1].

We define some notation:

C the set of all cells, and let s ∈ C denote a particular cell,
ys the observed intensity of the received signal from the cell s,
Ns number of sensors in the cell s,
N the maximum number of sensors in the cell s,
ds concentration of the pollutant in the cell s,
Ti,s the threshold, i.e., a sensor will be active if Ti,s � ds . The cdf of Ti,s is FT (t).

Here, the subscript i represents an individual sensor in the cell s,
Ks number of active sensors in the cell s, Ks = ∑Ns

i=1 I{Ti,s�ds },
PN(ns) the probability mass function of i.i.d. random variables Ns ,
K̄s E[Ks |ys, ds],
N̄s E[Ns |ys, ds],
ψ(ys |Ks) the pdf of the received signal with Ks active sensors.

The symbols without the subscript will denote the corresponding vector, i.e., data over all
cells and time.

We now proceed to derive the pdf of the received signal ys . The probability that a sensor
is active is Pr (Ti,s � ds) = FT (ds). Hence it can be shown that

Pr(Ks = ks |Ns = ns, ds) =
(

ns

ks

)(
1 − FT (ds)

)ns−ks
(
FT (ds)

)ks . (1)

Using this result, the conditional distribution of Ys given ds can be derived as

f (ys |ds) =
N∑

ns=0

ns∑
ks=0

ψ(ys |ks)Pr(Ks = ks |Ns = ns, ds)PN(ns)

=
N∑

ns=0

ns∑
ks=0

ψ(ys |ks)

(
ns

ks

)(
1 − FT (ds)

)ns−ks
(
FT (ds)

)ks PN(ns). (2)

Equation (2) is then the conditional pdf of the received signal conditioned on the pollutant
concentration in the cell.

3. The dispersion model

Material released into the atmosphere is transported by the wind and mixed into the
surrounding air by turbulent eddies and molecular diffusion. This atmospheric transport of
materials, particularly pollutants, is modeled by atmospheric dispersion models. There are
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two different approaches to atmospheric dispersion modeling. The Lagrangian approach
models the dispersion by computing the trajectories of a few Lagrangian particles [8,13].
The Eulerian approach on the other hand focuses on the conservation of mass equation in a
fixed volume [2,4–6]. The general transport equation describing the conservation of mass
in a fixed differential volume is given by

∂Γ

∂t
= −V · ∇Γ + ∇ · K∇Γ + S, (3)

where Γ is the concentration of material in the atmosphere, Γ = Γ (x, y, z, t), V is the
wind velocity field, K is the parameter describing eddy diffusivity and molecular diffusion,
K = [Kx,Ky,Kz], and S is the source term.

Consider the special case when S = Dδ(x, y, z, t), V = [u,0,0], Kx = ab(ut)b/2t ,
Ky = ab(ut)b/2t , and Kz = cd(ut)d/2t . This corresponds to an instantaneous release of a
pollutant from a point source at the origin with a constant wind velocity in the x-direction.
In this case, Eq. (3) has a closed form solution given by

Γ (x, y, z, t) = D

(2π)3/2σx(t)σy(t)σz(t)

× exp

{
−1

2

[(
x − ut

σx(t)

)2

+ y2

σ 2
y (t)

+ z2

σ 2
z (t)

]}
, (4)

where

σ 2
x (t) = a(ut)b, σ 2

y (t) = a(ut)b, σ 2
z (t) = c(ut)d .

Equation (4) is also popularly known as the Gaussian dispersion model and is perhaps the
most commonly used atmospheric dispersion model. The parameters of Eq. (4) are: D is
the mass of material released into the atmosphere, u is the constant wind velocity, and a, b,
c, and d are the constants determined by atmospheric stability. The three coefficients σx(t),
σy(t), and σz(t) are sometimes called the dispersion coefficients. They represent the stan-
dard deviations of the concentration in the downwind (x), crosswind (y) and vertical (z)

planes respectively. The calculation of the dispersion coefficients and atmospheric stability
has been widely discussed in Refs. [3,16,17].

Equation (4) does not specify what happens when the gas reaches the ground. To resolve
this problem, we assume that the gas is reflected back into the atmosphere by the ground.
This can be modeled by a virtual source below the ground [3]. Further, if we now fix the
origin and assume that the gas was released at (x0, y0, z0, t0), the concentration of the gas
on the ground i.e., at z = 0 is given by the new equation

Φ(x,y, t) = Γ (x, y,0, t) = 2D

(2π)3/2σx(t)σy(t)σz(t)

× exp

{
−1

2

[(
x − x0 − u(t − t0)

σx(t)

)2

+
(

y − y0

σy(t)

)2

+ z2
0

σ 2
z (t)

]}
. (5)
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4. Estimation

We use the expectation–maximization (EM) algorithm proposed by Dempster et al. [10]
to estimate the quantities of interest. The idea of the EM algorithm is to define two groups
of data: “incomplete” data y ∈ Y which is also the measured or observed data and “com-
plete” data x ∈ X where Y ⊂ X. Let θ be a point in parameter space Θ which parameterizes
the density of the incomplete data Y. The EM algorithm is the iterative application of two
steps:

E-step: Q(θ, θk) = E
[
logfX(X|θ)|y, θk

]
,

M-step: θk+1 = arg max
θ

Q(θ, θk),

where fX(X|θ) denotes the density of X given θ . It can be shown, [10] that Q(θ, θk+1) �
Q(θ, θk) ⇒ fY (y|θk+1) � fY (y|θk). Thus, the EM algorithm converges to a local maxi-
mum of the likelihood [11].

4.1. Estimation of concentration of pollutant in a cell

To estimate the concentration of the pollutant ds , in cell s, we use the EM algorithm
with Y = Ys and X = {Ys,Ks}. The joint density of Ys , Ks , and Ns given ds is given by

f (ys, ks, ns |ds) = ψ(ys |ks)

(
ns

ks

)(
1 − FT (ds)

)ns−ks
(
FT (ds)

)ks PN(ns). (6)

In the particular case when Ns is a Poisson random variable with mean μ, we can simplify
Eq. (6). In this case, given ds , Ks is a Poisson random variable with mean FT (ds)μ. Hence
we get the conditional density

f (ys, ks |ds) = ψ(ys |ks)
e−FT (ds)μ(FT (ds)μ)ks

ks ! , (7)

which results in the simplified Q-function given by

Q(ds, d
k
s ) = K̄s log

(
μFT (ds)

) − μFT (ds), (8)

where the constant terms in ds have been dropped and

K̄s =
∞∑

ks=0

ks

f (ys, ks |dk
s )

f (ys |dk
s )

.

The M-step for this Poisson case is given by dk+1
s = F−1

T (K̄s/μ).

4.2. Maximum a posteriori estimation

We use the maximum a posteriori (MAP) estimator to estimate the concentration of the
pollutant over several cells. This is useful when we do not have a model for the dispersion
of the pollutant but can impose some relationship between the concentration in adjacent
cells. The MAP estimate of a parameter vector λ given the data vector y is given by

λ̃ = arg maxf (λ|y) = arg max
[
logf (y|λ) + logp(λ)

]
.

λ λ
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The term logp(λ) incorporates a priori information in the estimate, which may represent
the relationship we expect between the concentration of adjacent cells. One possible prior
model for d is the generalized Gaussian–Markov random field (GGMRF) model [21,22]
which has been shown to have the desirable properties of convexity and scalability. The
GGMRF model is given by

logp(d) = − 1

pσp

∑
{s,r}∈C

bs,r |ds − dr |p + constant. (9)

The parameters control different features of the model. They are: p is the parameter which
controls edge preservation, bs,r is the parameter controlling the magnitude of influence of
the neighbors, and σ is the normalizing constant of the GGMRF.

In particular we choose p = 2 and the parameter σ 2 is estimated by its maximum like-
lihood estimator σ̂ 2 = 1

|C|
∑

{i,j}∈C bi,j |xi − xj |2, where |C| denotes the cardinality of the
set C. The function bs,r is shift invariant so that bi,j = bi−j = bj−i . In this paper bi,j is
given by the 2-D array⎡

⎢⎢⎣
1

4(1+√
2)

1
2(2+√

2)

1
4(1+√

2)

1
2(2+√

2)
0 1

2(2+√
2)

1
4(1+√

2)

1
2(2+√

2)

1
4(1+√

2)

⎤
⎥⎥⎦ ,

where the b0 = 0 term is at the center of the array. The function bs,r has been normalized
so that

∑
j∈∂i bi,j = 1, where ∂i denotes the neighborhood of i such that if j ∈ ∂i then

bi,j 	= 0. Furthermore, if bs,r 	= 0, then it is inversely proportional to the Euclidean distance
between cells s and r .

For computing the MAP estimate we use the generalized EM (GEM) [19] and iterative
coordinate descent (ICD) [20] algorithms. The GEM algorithm is based on the following
result: Q(dk+1, dk) > Q(dk, dk) ⇒ f (dk+1|y) > f (dk|y). Thus, instead of finding the
global maximum, we just ensure that Q(dk+1, dk) > Q(dk, dk). The ICD algorithm for
optimization of any function of a vector of independent variables {x1, x2, . . . , xn} works by
sequentially optimizing the function with respect to each variable keeping the rest fixed.

Using Eq. (8) and the assumption that Ns is Poisson, the Q-function is given by

Q(d,dk) =
∑
s∈C

E
[
logf (ys,Ks |ds)|ys, d

k
s

] + logp(d)

=
∑
s∈C

(
K̄s log

(
μFT (ds)

) − μFT (ds)
) − 1

2σ 2

∑
{i,j}∈C

bi,j |di − dj |2, (10)

where again the constant terms in ds have been dropped. The expectation can be computed
as described in Section 4.1. For the M-step, we use the ICD algorithm and maximize
Q(d,dk) sequentially with respect to one cell at a time fixing the others. In this case, the
ICD algorithm satisfies all the conditions given in Ref. [23] and hence is convergent. Thus,
the update of the concentration di in the cell i is given by

di = arg max
d

(
K̄i log

(
μFT (d)

) − μFT (d) − 1

2σ 2

∑
j∈∂i

bi,j |d − dj |2
)

. (11)
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4.3. Estimation of source location and strength

Since the pollutant disperses in the atmosphere with time, we need to take a sequence of
measurements in time to estimate any temporal information about the pollutant, like find-
ing its source, rate of spread, etc. We therefore assume that M measurements are made
for each cell at times corresponding to 0, T ,2T , . . . , (M − 1)T . We use the Gaussian
Plume dispersion model given by Eq. (5) to model the spread of pollutant in the at-
mosphere. We assume that a, b, c, and d are known, so the parameters of the equation
are g = (D,x0, y0, z0, t0, u). Estimating the parameters of the equation, we can predict the
source location (x0, y0, z0), the time of release t0 and the strength D of the source.

We define some more notation. If s indicates a particular cell, then let ys,i =
ys(iT ). Let the concentration of the gas be ds,i , which is given by Eq. (5), thus
ds,i = Φ(xs, ys, iT |g). We also define the time sequence of measurements in a cell by
ỹs = {ys,0, ys,1, ys,2, . . . , ys,(M−1)} and the time sequence of active sensors in a cell by
k̃s = {ks,0, ks,1, ks,2, . . . , ks,(M−1)}, where ks,i = ks(iT ).

We note that if g is known, the time series measurements for different cells ỹs are
independent of each other. We assume that the hub, which we visualize to be mounted on
an airplane, moves a distance greater than the wavelength of the signal independently for
each look. The measurements then become conditionally independent given K̃s . Thus, we
have the relationships

f (y|g) =
∏
s∈C

f
(
ỹs |g

)
, f

(
ỹs |K̃s = k̃s

) =
M−1∏
i=0

ψ(ys,i |ks,i).

In Appendix A we show how to derive the EM algorithm when Ns does not change with
time. However, this strategy is computationally expensive and has poor convergence prop-
erties. A simplification can be made if Ns,i is assumed to be an independent Poisson
random variable with mean μ for each look. This assumption is equivalent to perturb-
ing the cell structure such that at each look the number of sensors in each cell become
independent of each other. In this case, given g, K̃s is independent for each look, i.e.,
f (k̃s |g) = ∏M−1

i=0 f (ks,i |g). Using the assumptions above and Eq. (7) we get the condi-
tional density

f (y, k|g) =
∏
s∈C

M−1∏
i=0

ψ(ys,i |ks,i)
e−FT (ds,i )μ(FT (ds,i)μ)ks,i

ks,i ! (12)

and the simplified Q-function

Q(g,gk) =
∑
s∈C

M−1∑
i=0

(
K̄s,i log

(
FT (ds,i)μ

) − FT (ds,i)μ
)

=
∑
s∈C

M−1∑
i=0

(
K̄s,i log

(
FT (Φ(xs, ys, iT |g)

)
μ

)
− FT

(
Φ(xs, ys, iT |g)

)
μ

)
, (13)
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where terms constant in g have been dropped. The expectation can be computed as de-
scribed in Section 4.1.

For the M-step, we need to maximize Q(g,gk) with respect to g. This can be done
using an iterative strategy like steepest-descent or conjugate-gradient. In this paper, we
used the conjugate-gradient algorithm for the maximization. We constrained the parameter
D to be nonnegative. The starting point for the maximization algorithm was selected to be
D = 1000, x0 = 0, y0 = 10, z0 = 10, t0 = −5, and u = 5, but could be based on the rough
estimates given by the MAP estimate described in Section 4.2.

5. Simulation results

We simulated the algorithms derived above to estimate the concentration and the source
parameters. We considered the case when the signal sent by the sensor is a constant am-
plitude sine wave and we use a power law detector in the hub. Thus, the hub detects the
power in the vector sum of the signal sent by the sensors in a particular cell. The pdf of the
received signal ψ(ys |Ks), in this case, has been derived in Ref. [1]. We also assumed that
the number and locations of the sensors are modeled by a two-dimensional homogeneous
Poisson (μ) process. The cdf of the randomized thresholds FT (t), was assumed to be linear
in the range [0,1], i.e. FT (t) = t, t ∈ [0,1].

We found that the expected value of the received signal could be closely approximated
as a linear function of ds as illustrated in Fig. 1. This also motivated the use of an adaptive
starting point for the algorithm dstart

s = ys/μ. This adaptive starting point helped increase
the convergence speed of the EM algorithm as illustrated in Fig. 2.

The mean value of μ = E[Ns], was found to be of critical importance in the perfor-
mance of the algorithm. For the high-rate case, i.e. for a large number of sensors in a cell,
the MLE was found to be well-behaved compared to the low-rate case where the MLE
behaved very peculiarly. Figures 2 and 3 show the behavior of the MLE at a high-rate case

Fig. 1. The Monte Carlo simulation result of E[ys ] vs ds for μ = 50 with 100,000 tries. The plot shows that
E[ys ] can be approximated very closely as a linear function of ds .
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(a)

(b)

Fig. 2. Shows the behavior of the MLE and convergence of the EM algorithm for μ = 50. (a) Shows that the EM
algorithm converges to the MLE, (b) shows the peculiar behavior of the MLE at low values of ys .

of μ = 50 and at a low-rate case of μ = 1. It is seen from Fig. 2 that for a typical high-rate
case, there may be some peculiarities in the MLE for low values of ys but for large values
of ys the MLE is well-behaved. However, as illustrated in Fig. 3, the MLE acts almost like
a step-function and hence does not give a reliable estimate of ds for the low-rate case. It
was also observed that for the low rate case, increasing the noise variance just shifts the
step-function.

Though it was difficult to reconstruct information in a particular cell, we found that
estimating parameters over several cells was possible for a low-rate case. Figure 4 shows
the result of estimating a cloud of pollutant dispersing in the atmosphere with different
techniques for μ = 1. The different constants were assumed to have the following values:



A. Khemka et al. / Digital Signal Processing 16 (2006) 638–651 647
(a)

(b)

Fig. 3. Shows the peculiar behavior of the MLE in the low-rate case of μ = 1. (a) Shows the MLE with ψ(ys |ks)

as described in Ref. [1], (b) shows the effect of adding noise of variance σ 2 = 0.08, to the signal.

T = 2, M = 10, a = b = d = 1, and c = 0.5. In the first technique, we used the most
general method by using a Markov random field prior on ds with σ 2 = 0.000192 and
estimating the concentration in each look. Next we used the semi-parameterized method
which relied on assuming that the concentration could be modeled as a Gaussian, i.e.,
ds = h exp{−(s − c)2/γ 2} and estimating its parameters {h, c, γ 2} for each look. Thus, no
correlation in time was assumed in this method. This method is the special case for a single
look, i.e., for M = 1, as described in Section 4.3. Finally we used the Gaussian plume
model to estimate the parameters in the fully parameterized equation of the pollutant. It was
found that the fully parameterized version using the Gaussian plume model out-performed
the other methods and the result was very close to the true values. Tables 1 and 2 shows
the numerical result of the estimation algorithms corresponding to Fig. 4.
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Fig. 4. The figure shows a sequence of snapshots of the pollutant dispersing in the atmosphere in an area which
is divided into 64 × 64 cells. It compares the result of estimating the concentration of the pollutant with different
methods for the low-rate case of μ = 1. (a) True sequence of the pollutant dispersing in the atmosphere, (b) the
estimated sequence using a Markov random field prior, (c) the estimated sequence using a semi-parameterized
model, and (d) the estimated sequence using the fully parameterized Gaussian plume model.

Table 1
This table shows the result of estimating the parameters by using the fully parameterized Gaussian plume model

D x0 y0 z0 t0 u

True 1800 10 32 4 −2 2
Estimated 2083 10.7572 32.8335 2.6642 −2.0711 1.8507

Table 2
This table shows the result of estimating the parameters by using the semi-parameterized model

Time True Estimated

t h xc yc γ 2 h xc yc γ 2

0 10.3466 14 32 32 2.4995 13.793 32.3 53.233
2T 0.9321 22 32 288 1.0448 21.774 32.421 282.787
4T 0.2162 30 32 800 0.2308 30.557 31.857 839.06
6T 0.0803 38 32 1568 0.1436 34.43 31.456 535.795
8T 0.0381 46 32 2592 0.052 57.45 35.661 2500.0
10T 0.0210 54 32 3872 0.0317 32.364 32.605 1001.01
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6. Conclusion

In this paper, we have shown that useful information can be reconstructed by using in-
expensive randomly scattered sensors. In particular, we showed how the concentration of
a pollutant can be estimated using sensors which only respond if the concentration has ex-
ceeded a threshold. An algorithm was also derived to find the source location and strength
from these sensors using the Gaussian plume dispersion model which was shown to work
in the low-rate case. We also showed that, in some circumstances, the algorithm can be
simplified and the convergence rate can be increased.

Appendix A

Our objective in this appendix is to provide an algorithm for estimating the source loca-
tion and strength in the case when Ns is not assumed to be an independent Poisson random
variable for each look, but instead is constant in time.

We make an assumption that if Ns is known for a particular cell s, then K̃s becomes
independent for each look. This assumption is not true in the case of having a fixed thresh-
old for each sensor but is equivalent to the dithering of threshold of the sensors for each
look. We thus have the relationship f (k̃s |Ns = ns, g) = ∏M−1

i=0 f (ks,i |ns, g). Using this
assumption and Eq. (1) we get

f (y, k,n|g) =
∏
s∈C

(
M−1∏
i=0

ψ(ys,i |ks,i)

(
ns

ks,i

)

× (
1 − FT (ds,i)

)ns−ks,i
(
FT (ds,i)

)ks,i

)
PN(ns). (A.1)

Taking the expectation of Eq. (A.1) we get the simplified Q-function

Q(g,gk) =
∑
s∈C

M−1∑
i=0

((
N̄s − K̄s,i

)
log

(
1 − FT (ds,i) + K̄s,i log

(
FT (ds,i)

))
, (A.2)

where the terms constant in g have been dropped. We note that N̄s = E[Ns |ỹs , g], K̄s,i =
E[Ks,i |ỹs , g], and

f (ỹs |g) =
∞∑

ns=0

ns∑
ks,0=0

ns∑
ks,1=0

· · ·
ns∑

ks,M−1=0

f
(
ỹs , k̃s , ns |g

)

=
∞∑

ns=0

PN(ns)

M−1∏
i=0

(
ns∑

ks,i=0

ψ(ys,i |ks,i)

(
ns

ks,i

)

× (
1 − FT (ds,i)

)ns−ks,i
(
FT (ds,i)

)ks,i

)
. (A.3)

The expectation can now be computed by using equations (A.1) and (A.3) and the equa-
tions
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N̄s =
∞∑

ns=0

ns∑
ks,0=0

ns∑
ks,1=0

· · ·
ns∑

ks,M−1=0

ns

f (ỹs, k̃s , ns |g)

f (ỹs |g)

= 1

f (ỹs |g)

∞∑
ns=0

nsPN(ns)

M−1∏
i=0

(
ns∑

ks,i=0

ψ(ys,i |ks,i)

(
ns

ks,i

)

× (
1 − FT (ds,i)

)ns−ks,i
(
FT (ds,i)

)ks,i

)
,

K̄s,i =
∞∑

ns=0

ns∑
ks,0=0

ns∑
ks,1=0

· · ·
ns∑

ks,M−1=0

ks,i

f (ỹs , k̃s , ns |g)

f (ỹs |g)

= 1

f (ỹs |g)

∞∑
ns=0

PN(ns)

M−1∏
i=0

(
ns∑

ks,i=0

ks,iψ(ys,i |ks,i)

(
ns

ks,i

)

× (
1 − FT (ds,i)

)ns−ks,i
(
FT (ds,i)

)ks,i

)
.

The maximization in the M-step for the Q-function can be done through an iterative
maximization strategy such as the steepest-descent or conjugate-gradient algorithm.

References

[1] J.S. Daba, M.R. Bell, Statistics of the scattering cross-section of a small number of random scatterers, IEEE
Trans. Antennas Propagat. 43 (8) (1995) 773–783.

[2] I.G. Enting, Inverse Problems in Atmospheric Constituent Transport, Cambridge Univ. Press, Cambridge,
2002.

[3] F. Pasquill, J.B. Smith, Atmospheric Diffusion, third ed., Halsted Press, New York, 1983.
[4] P. Kasibhatla, M. Heimann, P. Rayner, N. Mahowald, R.G. Prinn, D.E. Hartley (Eds.), Inverse Meth-

ods in Global Biogeochemical Cycles, in: AGU Geophys. Monogr., vol. 114, AGU, Washington, DC,
ISBN 0-87590-097-6, 2000.

[5] H.F. Hemond, E.J. Fechner-Levy, Chemical Fate and Transport in the Atmosphere, second ed., Academic
Press, San Diego, ISBN 0-12-340275-1, 1994.

[6] K. Wark, C.F. Warner, W.T. Davis, Air Pollution its Origin and Control, third ed., Prentice Hall, New York,
1998.

[7] V. Penenko, A. Baklanov, E. Tsvetova, Methods of sensitivity theory and inverse modeling for estimation of
source parameters, Future Generat. Comput. Syst. 18 (2002) 661–671.

[8] S. Raza, R. Avila, J. Cervantes, A 3D Lagrangian particle model for the atmospheric dispersion of toxic
pollutants, Internat. J. Energy Research 26 (2002) 93–104.

[9] M.A. Islam, Application of a Gaussian plume model to determine the location of an unknown emission
source, Water, Air Soil Pollut. 112 (1999) 241–245.

[10] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm,
J. Roy. Statist. Soc. 39 (B) (1977) 1–38.

[11] C.F.J. Wu, On the convergence properties of the EM algorithm, Ann. Statist. 11 (1983) 95–103.
[12] G.I. Marchuk, Adjoint Equations and Analysis of Complex Systems, Kluwer Academic, Dordrecht/Norwell,

MA, 1995.
[13] R.I. Sykes, C.P. Cerasoli, D.S. Henn, The representation of dynamic flow effects in a Lagrangian Puff dis-

persion model, J. Hazard. Mater. 64 (1990) 223–247.



A. Khemka et al. / Digital Signal Processing 16 (2006) 638–651 651
[14] T. Elbir, Comparison of model predictions with the data of an urban air quality monitoring network in Izmir,
Turkey, Atmosph. Environ. 37 (2003) 2149–2157.

[15] P. Seibert, Inverse modelling with a Lagrangian particle dispersion model: application to point releases over
limited time intervals, in: S.E. Gryning, O. Schiermeier (Eds.), Air Pollution Modeling and Its Application,
vol. XIV, Plenum, New York, 2001, pp. 381–389.

[16] N. Bredin, Y. Gningue, M. Heitz, A correlation between the crosswind and vertical concentrations in the
Gaussian atmospheric dispersion model, Internat. J. Modeling Simulat. 21 (2) (2001) 107–114.

[17] G. Mocioaca, S. Stefan, Different parameterization of a Gaussian scheme: Intercomparision study, Internat.
J. Environ. Pollut. 19 (1) (2003) 32–45.

[18] G. Maes, G. Cosemans, J. Kretzschmar, L. Janssen, J.V. Tongerloo, Comparison of six Gaussian dispersion
models used for regulatory purposes in different countries of the EU, Internat. J. Environ. Pollut. 5 (4–6)
(1995) 734–747.

[19] X.H. Yan, R. Leahy, MAP image reconstruction using intensity and line processes for emission tomography
data, in: Proceedings of SPIE, Image Processing Algorithms and Techniques II, vol. 1452, 1991, pp. 158–
169.

[20] C. Bouman, K. Sauer, Unified approach to statistical tomography using coordinate descent optimization,
IEEE Trans. Image Process. 5 (3) (1996) 480–492.

[21] C. Bouman, K. Sauer, Generalized Gaussian image model for edge-preserving MAP estimation, IEEE Trans.
Image Process. 2 (3) (1993) 296–310.

[22] S.S. Saquib, C. Bouman, K. Sauer, ML parameter estimation for Markov random fields with applications to
Bayesian tomography, IEEE Trans. Image Process. 7 (7) (1998) 1029–1044.

[23] J. Zheng, S. Saquib, K. Sauer, C. Bouman, Parallelizable Bayesian tomography algorithms with rapid, guar-
anteed convergence, IEEE Trans. Image Process. 9 (10) (2000) 1745–1759.


