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ABSTRACT
Directed energy applications require the estimation of

digital-holographic (DH) phase errors due to atmospheric
turbulence in order to accurately focus the outgoing beam.
These phase error estimates must be computed with very low
latency to keep pace with changing atmospheric parameters,
which requires that phase errors be estimated in a single shot
of DH data. The digital holography model-based iterative re-
construction (DH-MBIR) algorithm is capable of accurately
estimating phase errors in a single shot using the expectation-
maximization (EM) algorithm. However, existing implemen-
tations of DH-MBIR require hundreds of iterations, which
is not practical for real-time applications.

In this paper, we present the Dynamic DH-MBIR (DDH-
MBIR) algorithm for estimating isoplanatic phase errors
from streaming single-shot data with extremely low latency.
The Dynamic DH-MBIR algorithm reduces the computation
and latency by orders of magnitude relative to conventional
DH-MBIR, making real-time throughput and latency feasible
in applications. Using simulated data that models frozen
flow of atmospheric turbulence, we show that our algorithm
can achieve a consistently high Strehl ratio with realistic
simulation parameters using only 1 iteration per timestep.

Index Terms—Coherent Imaging, Phase Retrieval, Atmo-
spheric Turbulence, Digital Holography, Directed Energy,
Wavefront Sensing

I. INTRODUCTION
The goal of a directed energy system is to focus a beam

of light on a distant object. In terrestrial applications, this
can be difficult because atmospheric turbulence introduces
random phase errors (or distortions) that tend to disperse
the otherwise focused beam. A solution to this problem is to
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pre-distort the phase of the outgoing beam. This can be done
by first performing wavefront sensing (WFS), in which the
phase distortion of incoming light is measured. The outgoing
light can then be pre-distorted with the conjugate phase.
However, this approach requires that the WFS be performed
with very low latency, so that the phase corrections can be
used before the atmospheric distortion changes.

Traditionally, WFS is performed with a Shack-Hartmann
wavefront sensor. However, since the Shack-Hartmann
method is based on hardware, it is limited in speed and is
effective only with moderate turbulence strength [1].

Alternatively, digital holography (DH) sensors can be used
to estimate the wavefront from direct measurements of the
light. DH sensors measure the amplitude and phase of in-
coming light by interfering the received light with a reference
beam. The resulting complex-valued measurements can then
be used to computationally estimate phase distortions by
solving an inverse problem [2].

The Image Sharpening (IS) algorithm is one approach to
estimating phase distortions from DH data [3]. This method
is optimization-based and models the phase distortion with
a Zernike expansion. However, the measured reflection from
coherent light contains speckle [4], which reduces the ef-
fectiveness of the IS algorithm. A solution to this speckle
problem is to take multiple shots of DH data in which the
speckle is decorrelated, but this increases the latency of the
WFS, which is not acceptable in directed energy systems.

The DH model-based iterative reconstruction (DH-MBIR)
approach in [5] uses a probabilistic model that accounts for
speckle together with prior information or regularization.
This approach represents a target image using the real-
valued reflectance, which is smoother than the complex-
valued reflection coefficients associated with speckle; hence
reflectance is more amenable to regularization. This ap-
proach yields state-of-the-art estimates of images and pupil-
plane phase errors using single-shot DH data. However, the
current version of DH-MBIR is designed to process a single
shot of DH data, and it requires hundreds of iterations per
shot, hence is not practical in a real directed energy system.
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In this paper, we introduce the Dynamic DH-MBIR al-
gorithm (DDH-MBIR) that can reconstruct a streaming se-
quence of single-shot DH data with only 1 iteration per shot.
This results in a low-latency, high-throughput algorithm for
dynamic reconstruction of phase errors due to atmospheric
turbulence.

The DDH-MBIR algorithm has two key advantages:
• It uses temporal correlation in both ϕ and r to dramat-

ically reduce the number of iterations per time-step.
• It avoids poor quality solutions associated with local

minima by incorporating the bootstrap step into the
dynamic update process.

Our simulation results demonstrate that under realistic
assumptions, the Dynamic DH-MBIR algorithm can achieve
highly accurate, low latency phase error estimation in a
streaming system using single-shot DH data in each frame.

II. FORWARD MODEL
A DH sensor allows us to measure the complex elec-

tromagnetic field reflected from an object using spatial-
heterodyne interferometry. As in [5], we model the complex-
valued measurements at time n as

yn = Aϕn
gn + wn, (1)

where yn ∈ CM is the rasterized vector of complex
DH measurements, gn ∈ CM is the vector of unknown
complex reflection coefficients from the illuminated object,
wn ∈ CM is a vector of complex measurement noise, and
Aϕn ∈ CM×M is a linear transformation that is dependent
on the unknown phase error, ϕn.

If the wavelength of the light is small compared to the re-
solved pixel size on the object, then the reflection coefficient,
gn, is accurately modeled as a circularly symmetric, complex
Gaussian with unknown variance, rn. In this case, rn is real-
valued reflectance with rn = E[|gn|2] and gn ∼ CN(0, rn).

We assume an isoplanatic propagation model in which
the phase distortion, ϕn, occurs close to the detector [6]
(however, our proposed method also applies in the aniso-
planatic case). The isoplanatic linear forward model can be
decomposed as

Aϕn
= DaD(ejϕn)F Γ

where Da is a diagonal matrix that models the camera
aperture, D(ejϕn) is a diagonal matrix of phase distortions,
F is a normalized 2D discrete Fourier transform (DFT), and
Γ is a diagonal matrix of quadratic phase factors resulting
from Fresnel propagation [7].

III. THE DH-MBIR ALGORITHM
Our goal is to estimate the unknown phase errors, ϕn,

from the measurements, yn. To do this, we will also need
to estimate the object reflectance, rn. Importantly, the re-
flectance is typically a smoother quantity with higher spatial
correlation relative to the reflection coefficient, gn, hence is

more amenable to accurate estimation. Thus, our goal will
be to compute at each time-step the joint-MAP estimate

(r̂n, ϕ̂n) = argmin
r,ϕ

{− log p(yn|r, ϕ)− log p(r)− log p(ϕ)}

(2)
Direct minimization of (2) is not tractable due to the nonlin-
ear relationship between rn and yn. However, the DH-MBIR
algorithm solves this problem by using the expectation-
maximization (EM) algorithm to solve for the MAP estimate
using the iterative application of surrogate functions [5].

The DH-MBIR algorithm has the form

r ← 0; ϕ← 0
while not converged do
(r, ϕ)← EM(r, ϕ; y)
end while

where the function EM(r, ϕ; y) computes one iteration of
the EM algorithm. We also note that the computation of
the EM() function is dominated by the application of two
FFTs [8] and has roughly the same computational cost as
one iteration of the IS algorithm.

However, the existing DH-MBIR algorithm is impracti-
cally slow for two reasons. First, it requires hundreds of it-
erations of the EM() function. Second, since the underlying
function being minimized is non-convex, the algorithm tends
to become trapped in local minimum. This second problem
has been largely solved using a bootstrapping technique
proposed by Pellizzari [9] in which the reconstructed image
r is reset to a backprojected estimate every 200 iterations.

IV. DYNAMIC DH-MBIR ALGORITHM

In directed energy applications, ϕn must be estimated at
a sufficiently high sampling rate, fs, that the atmospheric
phase distortion is nearly unchanged between samples. For
this, we propose the Dynamic DH-MBIR (DDH-MBIR) al-
gorithm for estimating rn and ϕn from a streaming sequence
of DH data, yn. Figures 1 and 2 show the pseudo-code and a
flow diagram for DDH-MBIR. With each iteration, the data
is read, normalized, and then residual tip/tilt removed using
least-squares regression. Next, the value of rn is initialized,
and Nk iterations of the EM algorithm are performed.

The key innovation of the DDH-MBIR algorithm is the
initialization of rn given by

rinitn ← (1− λ) rn−1︸︷︷︸
1st term

+λα |AH
ϕn−1

yn|2︸ ︷︷ ︸
2nd term

. (3)

This initialization leverages the temporal correlation of both
ϕ and r to dramatically reduce the number of EM iterations
per time step, Nk (we show later that Nk = 1 yields high
quality estimates of the phase distortion on simulation data
under practical conditions). This initialization is formed by a
weighted sum of two terms where λ and α are user selectable
weights in the range [0, 1]. Since r does not typically change
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function DDH MBIR(λ, α,Nk)
n← 0; r ← 0; ϕ← 0
while Data is available do

y ← ReadData(n)
y ← Normalize(y)
ϕ← RemoveTipTilt(ϕ)

r ← (1− λ)r + λα
∣∣∣AH

ϕ y
∣∣∣2

for i = 0 to Nk − 1 do
(r, ϕ)← EM(r, ϕ; y)

end for
WriteData(n, r, ϕ)
n← n+ 1

end while
end function

Fig. 1: Pseudo-code for the Dynamic DH-MBIR algorithm.
Each iteration initializes r with a weighted combination of
the previous estimate and a back-projection of the DH data.

Fig. 2: Dynamic DH-MBIR

substantially between samples, the first term, rn−1, provides
a good initial condition for the estimation of rn.

The second term uses the magnitude squared of the back-
projected data. This is typically how images are formed with
DH data, and in particular, this is the term that is used in the
bootstrapping algorithm of [9]. Intuitively, this second term
incorporates a small amount of continuous bootstrapping
into the dynamic update loop, which keeps the DDH-MBIR
output away from solutions associated with local minima.

Finally, the RemoveTipTilt() function removes the linear
component of the phase corresponding to spatial shifts of the
reconstructed image; and the Normalize() function is defined
as

Normalize(y) =
√
p

y − µ

∥y − µ∥
, (4)

where µ is the mean value of y and p is the number of entries
in y. This normalization allows algorithmic parameters to be
chosen more robustly.

V. EXPERIMENTAL RESULTS

In this section, we present estimation results from syn-
thetic data using the Dynamic DH-MBIR algorithm.

V-A. Data Simulation
We generated data using the 1951 USAF resolution test

chart for r along with a frozen flow phase-error model as
specified in [10] for ϕ. We also removed the piston, tip,
and tilt of the phase-errors because we are interested only
in estimating the higher-order aberrations. At each timestep,
the DH data, yn, was generated as in [5].

Furthermore, we used an isoplanatic model, image and
phase distortion array sizes of N × N where N = 256, a
sampling frequency of fs = 10kHz, a Greenwood frequency
fg = 100Hz, a turbulence strength of D/r0 = 10 where D
is the diameter of the aperture and r0 is Fried’s parameter
[11], a wavelength of 1.064µm, and an SNR of 10dB.

Using these parameters, we find the magnitude of the
phase displacement between time samples by scaling Equa-
tion 4.15 in [12] to convert from m/s to pixels/sample. This
gives

∥v∥ = 1

0.43

fg
fs

N

D/r0
.

In our simulation we assumed a flow downward and to
the right, which gives a vector displacement of v =
(0.421, 0.421) pixels per time step.

V-B. Algorithm Parameters and Metrics
In all our simulations, the DDH-MBIR parameters are α =

0.025, λ = 0.45, which were found to be the best in a grid
search over the range α ∈ [0, 0.1] and λ ∈ [0.1].

We used peak Strehl ratio, S, to evaluate the quality of
the phase-errors estimates, where

S =
[|AH

ϕ̂n−ϕn
Da|2]max

[|AH
0 Da|2]max

,

and ϕ̂n is the estimated phase, AH
0 is back-propagation

through a vacuum, and [·]max indicates the maximum value
of the argument.

V-C. Results
Figures 3 (Nk = 1 or 1 iteration per time step) and 4

(Nk = 2) show a box and whiskers plot over 10 simulations,
with results from a typical simulation overlaid in blue. In
both cases, the Strehl ratio achieves a value ≥ 0.8 within
150 timeframes. However, the Nk = 2 case achieves a
slightly higher Strehl ratio with less variation at the cost
of approximately twice the computation and latency.

The inset in Figure 4 shows the Strehl ratio of a particular
simulation versus the time for four different values of Nk.
Notice that more iterations per timeframe improves the
Strehl ratio but that Nk = 1 works well and achieves a
Strehl ratio of greater than 0.8.

Figure 5 shows the true and estimated phase-errors for
time n = 300 and Nk = 1, 2 iterations per timeframe. The
residual phase plot is computed by subtracting the true and
estimated phase, and the residual PSF is computed by taking
the inverse FFT of the residual phase. Both the residual
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Fig. 3: Box plot of Strehl ratio for 10 simulations of Nk = 1
iteration/timeframe of DDH-MBIR with the Strehl curve of
a particular simulation overlaid in blue.

Fig. 4: Box plot of Strehl ratio for 10 simulations of Nk = 2
iteration/timeframe of DDH-MBIR with the Strehl curve of
a particular simulation overlaid in blue. Inset shows Strehl
ratios as a function of time frame for Nk = 1, 2, 4, 8.

phase and PSF indicate that even with Nk = 1 the phase
is accurately reconstructed.

VI. CONCLUSION

We described the Dynamic DH-MBIR algorithm for
quickly estimating phase-errors due to atmospheric turbu-
lence. Using synthetic DH data generated from frozen flow
phase-errors with no boiling, we showed that this algorithm
can achieve a Strehl ratio greater than 0.8 within 150
timeframes using only 1 iteration of the EM algorithm per
timeframe. Since the computational cost of each iteration
of the Dynamic DH-MBIR algorithm is dominated by two
2D FFTs [8], this makes the Dynamic DH-MBIR algorithm
practical for real-time implementation.

(a) True phase (b) Residual PSF (zoomed 5.3X)

(c) Est. phase, Nk = 1 iters
per step

(d) Residual phase, Nk = 1 iters
per step

Fig. 5: Phase estimates at time n = 300, for a particular
simulation. Plotted from −π to π, windowed to match the
aperture, and with tip and tilt removed. Residual phase is
calculated as ∠ej(ϕ−ϕ̂). Residual PSF is obtained by taking
the FFT of the residual phase.

(a) Ground truth reflectance (b) Nk = 1 iters/time

Fig. 6: Ground truth and reconstructed reflectance estimates
at time n = 300 of a particular simulation. Shown on a scale
of 0 to 1.
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