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Abstract

It is often necessary to estimate the parameters of

a compartmental model from PET image data. These

kinetic parameters are important because they quan-

tify physiological processes. Existing methods for com-

puting kinetic parametric images work by first recon-

structing a sequence of PET images, and then esti-

mating the kinetic parameters for each voxel location

in the images. We propose a novel iterative tomo-

graphic reconstruction algorithm for directly comput-

ing a MAP estimate of the kinetic parameter image

directly from dynamic PET sinogram data. This MAP

reconstruction process estimates a vector of kinetic pa-

rameters at each voxel using explicit models of mea-

surement noise, temporal tracer concentration, and

spatial parameter variation. Experimental simulations

using a two tissue compartment model show that our

method can substantially reduce parameter estimation

error.

1 Introduction
Many clinical applications of positron emission

imaging (PET), such as heart perfusion, brain acti-
vation, and glucose utilization, require the measure-
ment of temporal information about the tracer con-
centration. Typically, it is assumed that the tracer
concentration in a voxel is governed by ordinary dif-
ferential equations (ODE’s) resulting from a compart-
mental model. Such models consist of compartments
that represent kinetically distinct sources of radioac-
tivity. The parameters of interest are then the rates of
tracer exchange between the model’s compartments.
By solving the associated ODE’s, it is easily shown
that these model parameters are nonlinearly related
to the observed tracer emission rates.

Current methods for estimating these model pa-
rameters divide the PET data into K time frames and
reconstruct each frame independently. However, di-
viding the data decreases the amount of available data

for each frame, so the reconstructions of these frames
tend to have very low SNR. To alleviate this problem,
a region of interest (ROI) is typically selected and the
voxels in the ROI are averaged for each frame to pro-
duce a single time-sequence of emission rates. A curve
is then fit to this average time response and the model
parameters of the ROI are estimated.

More recently, there has been interest in estimat-
ing parameters at each voxel by using regularization
or clustering methods to spatially smooth the param-
eter estimates. (See [1] for an overview of such ap-
proaches.) However, these approaches suffer from the
low SNR of individual time frame reconstructions.

In this paper, we propose an alternative method
for computing dense estimates of the compartmental
model parameters by directly reconstructing the para-
metric image from the entire PET data set. This ap-
proach has a number of advantages: a) It can improve
SNR by integrating together the information from all
the PET data using an appropriate noise model. b) It
can accurately account for the point spread function
of the PET system’s forward model. c) It can more di-
rectly model the spatial variations of the actual model
parameters, rather than simply spatially regularizing
the emission rates themselves.

We use a realistic simulated phantom as the basis
of a quantitative comparison between our method and
conventional techniques that first form reconstructions
at each time frame. Results indicate the the paramet-
ric reconstruction algorithm can substantially improve
the accuracy of parameter estimates.

2 Compartmental Model
The physiological processes can often be modeled

using compartmental models [2]. These models con-
sist of compartments that represent physical spaces or
different states of the tracer. The parameters of the
model are then the rate of tracer exchange between
the compartments. In this paper, we use a 2-tissue
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Figure 1: 2-tissue compartment model with 4 param-
eters

compartment model with 4 parameters. This model,
shown in Fig. 1, is commonly used for FDG imaging
and for high specific activity receptor-ligand imaging
when there is no non-specific binding.

This model consists of 3 compartments: 1) CP , the
plasma compartment, represents the tracer concentra-
tion in the plasma 2) CF , the free compartment, rep-
resents tracer concentration in the tissue that is not
metabolized or bound 3) CB , the bound compartment,
represents tracer concentration in the tissue that is
metabolized or bound. Typically, tracer in the plasma
compartment can be measured by sampling blood dur-
ing the scan. The quantities in this model obey the
ODE’s:

dCF (t)

dt
= K1CP (t) − (k2 + k3)CF (t) + k4CB(t)(1)

dCB(t)

dt
= k3CF (t) − k4CB(t) . (2)

The PET signal is formed by the weighted sum of the
tracer concentrations in the tissue and blood, appro-
priately attenuated by the decay rate of the isotope,
λ,

CT (t) = CF (t) + CB(t) (3)

f(K1, k2, k3, k4) = [(1 − VB)CT (t) + VBCP (t)] SAe
−λt

(4)

where SA is the initial specific activity of the tracer.
Besides K1, k2, k3 and k4, there are two more

important parameters that can be derived from the
model. These are the binding potential (BP ) and the
volume of distribution (VD) given by

BP =
k3

k4

(5)

VD =
K1

k2

(

1 +
k3

k4

)

. (6)

These parametric images are also examined as a means
of comparing methods.

3 Direct Reconstruction
Our proposed method reconstructs a single para-

metric image using the entire PET data set. The vox-
els of this image correspond to parameter vectors in-
stead of emission intensities. More specifically, let ϕs

be the 4-dimensional parameter vector at voxel s, and
let ϕ be the parameter vectors at each voxel, which we
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Figure 2: Direct reconstruction model

refer to as the parametric image. Then the emission
rate at voxel s at each time frame is given by

f(ϕs) = [f(t1, ϕs), f(t2, ϕs), · · · , f(tK , ϕs)]
t

where t1, · · · , tK are the K time frames, and we fur-
ther define the function

F (ϕ) = [f(ϕ1), f(ϕ2), · · · , f(ϕN )]

to be the function which maps the parametric image
to the emission rates for each voxel at each time. Us-
ing F (ϕ), it is possible to compute LL(y|ϕ), the log
likelihood of the sinogram data y given ϕ based on a
Poisson model of the sinogram counts.

Using the log likelihood, we form a cost functional

C(y|ϕ) = −LL(y|ϕ) + S(ϕ) (7)

where S(ϕ) is a log prior or equivalently a stabilizing
functional added to regularize the inversion. In the
framework, the maximum a posteriori (MAP) recon-
struction is given by

ϕ̂ = arg min
ϕ

C(y|ϕ) (8)

This reconstruction is computed efficiently by using
pixel-wise iterated coordinate descent (PICD). This
algorithm is similar to the ICD algorithm used in con-
ventional PET image reconstruction methods[3], but
it is adapted to account for the nonlinear parameters
of the compartmental model. PICD sequentially up-
dates the parameters of each voxel thereby monoton-
ically decreasing the cost function given in Eq. (7).
When F (ϕ) is a nonlinear function, the PICD al-
gorithm reduces computation by decoupling the de-
pendencies between the compartment model nonlin-
earities and the forward tomography model. We use
the log prior from the Gaussian Markov random field
model as the stabilizing function S(ϕ).

In order to compute a PICD voxel update, we must
compute

ϕs ← arg min
ϕs

C(y|ϕs) . (9)
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To do this efficiently, we approximate the change in
the cost functional as

∆C(y|ϕs) (10)

= −LL(y|ϕs) + LL(y|ϕ̃s) + S(ϕs)

≈
∑

k

(θ1k∆fsk +
1

2
θ2k∆f2

sk) + S(ϕs)

where ∆fsk is the change in the time response function
of voxel s given as

∆fsk = f(tk, ϕs)− f(tk, ϕ̃s)

and θ1k and θ2k can be recursively updated using the
same algorithm as in conventional ICD [3].

In order to further simplify the update computa-
tions, we re-parameterize the compartmental model
from ϕs = [K1s, k2s, k3s, k4s] to ϕs = [as, bs, cs, ds] to
yield the time response

f(tk, ϕs) =
[

(ase
−cst + bse

−dst) ∗ CP (t)
]∣

∣

t=tk

SAe−λtk

where ∗ indicates continuous time convolution, and λ

is the tracer decay constant.
Since the parameters as and bs are linear, there are

closed form expressions for their PICD update in (9)
when cs and ds are fixed. Substituting in these closed
form expressions, we can write the PICD update as

ϕs ← arg min
cs,ds

C̃(y|cs, ds) . (11)

In order to enforce uniqueness in the solution and sta-
bility of the model, we add the constraint that ds ≤ cs

and ds ≥ 0. The update of (11) can then be replaced
with two coordinate-wise updates given by

cn ← arg min
{cs:cs≥ds}

C̃(y|cs, ds)

dn ← arg min
{ds:0≤ds≤cs}

C̃(y|cs, ds) .

The reconstructions are initialized using a multi-
resolution scheme. Coarsest resolution is initialized
with a user selected constant. The reconstruction of
each resolution is used to initialize the reconstructions
of the next level of finer resolution. We used 3 levels
of resolutions, 32×32, 64×64 and 128×128.

4 Simulations
A rat phantom is used for simulations. This phan-

tom has 7 regions including the background. These
regions are obtained by segmenting MRI scans of a
rat through automated and manual techniques [4].
The regions and their corresponding parameters [5]
are given in Table 1 and their time activity curves are

Region K1 k2 k3 k4

ml
g min

1

min
1

min
1

min

Background 0 0 0 0

CSF 0 0 0 0

Nonbrain .1836 .8968 0 0

Whole brain .0918 .4484 0 0

Striatum .0918 .4484 1.2408 .1363

Cortex .0918 .4484 .141 .1363

White matter .02295 .4484 0 0

Table 1: Rat simulation

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time (min)

A
ct

iv
it

y 
(u

C
i/m

l)

nonbrain
whole brain
striatum
cortex
white matter

Figure 3: Time-activity curves for distinct regions in
rat phantom.

shown in Fig. 3. Time frames of emission images are
generated using these parameter images and the 2-
tissue compartment model equations. The blood con-
tribution to the PET activity is assumed to be zero
and raclopride with 11C is assumed to be used as the
tracer. The decay constant is λ = 0.034 min−1. To-
tal scan time is 60 min. , divided into 18 time frames
as 4×0.5 min, 4×2 min and 10×5 min. The blood
function, CP (t), is generated using equation (2) from
reference [6].

These images are forward projected into sinograms
for each frame using a Poisson model for the detected
counts. Each sinogram consists of 180 angles and 200
radial bins per angle. A triangular point spread func-
tion with 4 mm base width is used in forward projec-
tions. The blood function, Cp(t) was scaled so that
the total number of counts in all sinogram frames was
approximately 10 million.

The proposed parametric reconstruction method is
compared with pixel-wise methods for parametric es-
timation. The pixel-wise methods use reconstructed
emission image frames to obtain the time response
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function of each voxel. Estimation is done by weighted
non-linear least-squares fitting of the model in Eq. (4)
to the data at every voxel. This method is called
pixel-wise weighted least squares method (PWLS).
The PWLS with regularization (PWLSR) uses spa-
tial regularization to smooth the estimates. For the
pixel-wise methods, emission images are reconstructed
using filtered backprojection (FBP).

The parameters are estimated only inside of a cir-
cular mask to reduce the estimation time. This mask
is slightly bigger than the rat head and can be seen
easily in the parametric image reconstructions.

In Fig. 4 the reconstructions of the re-organized pa-
rameters are shown. The PWLS method has created
high variance estimations especially for nonlinear pa-
rameters, c and d. PWLSR can reduce this variation
using the stabilizing function. The reconstructions of
the parametric reconstructions are visually much bet-
ter than the pixel-wise methods.

In Fig. 5 the reconstructions of the original parame-
ters are shown. They are calculated using back trans-
forms from a, b, c, and d. In this domain, the pro-
posed parametric reconstruction method outperforms
the pixel-wise techniques.

The normalized root mean squared errors (RMSE)
for these parameters are given in Fig. 6. The RMSE
of each parameter is normalized to the RMSE of the
PWLS method. From this figure, it can be seen that
the proposed method has uniformly lower RMSE in
all parameters.

In Fig. 7 reconstructions of clinically important pa-
rameters are shown. These images are calculated us-
ing the equations given in Eq. (5) and Eq. (6). The
improvement of the proposed methods on these para-
metric images can also be seen.

Finally, in Fig. 8 emission images reconstructed by
FBP and created by using emission images are shown.
There is a big improvement in the emission images cal-
culated using the parametric images. Since each FBP
frame is reconstructed using the corresponding sino-
gram frame, only a small portion of the entire dynamic
PET data is used. However, each reconstruction cal-
culated from the parametric images is obtained using
the entire PET data set. Therefore the SNR in these
images is substantially improved.

5 Conclusions
In this paper, we proposed a method for reconstruc-

tion of dense parametric images directly from the dy-
namic PET data. Using an anatomically and physi-
ologically realistic small animal phantom, we demon-
strated that our method can reduce the mean squared
error in model parameter estimates.

a b c d

(a)

(b)

(c)

(d)

Figure 4: Parametric images of a, b, c and d estimated
by the algorithms; (a) original (b) PWLS (c) PWLSR
(d) parametric reconstruction (new method)
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Figure 5: Parametric images of K1, k2, k3 and k4 es-
timated by the algorithms; (a) original (b) PWLS (c)
PWLSR (d) parametric reconstruction (new method)
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Figure 6: Normalized RMSE for the reconstructed
parametric images
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Figure 7: Parametric images of BP and VD estimated
by the algorithms; a) original (b) PWLS (c) PWLSR
(d) parametric reconstruction (new method)
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