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The performance of optically coherent imaging systems can be limited by measurement and speckle noise. In this
paper, we develop an image formation framework for computing the maximum a posteriori estimate of an object’s
reflectivity when imaged using coherent illumination and detection. The proposed approach allows for the use of
Gaussian denoising algorithms (GDAs), without modification, to mitigate the exponentially distributed and
signal-dependent noise that occurs in coherent imaging. Several GDAs are compared using both simulated
and experimental data. The proposed framework is shown to be robust to noise and significantly reduce
reconstruction error compared to the standard inversion technique.
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1. INTRODUCTION

Optically coherent imaging systems, such as synthetic aperature
LADAR (SAL) [1–4] and digital holography (DH) [5–7], offer
significant improvements in resolution and sensitivity com-
pared to passive and non-coherent systems. Coherent detection
allows synthesizing apertures that are much larger than the
receiver optics. In addition, detection involves measuring the
modulation of a strong reference field by a potentially weak
signal field. This allows detection of signals with energies
equivalent to a single photon [8].

Despite the benefits, coherent imaging systems are typically
based on simple image-formation techniques and suffer from
high noise. For imaging modalities using pupil-plane detection,
the data are inverted using discrete Fourier transforms (DFTs),
which can amplify noise and produce artifacts known as side-
lobes. In addition, these techniques produce an estimate of
the complex-valued reflection coefficient, g , rather than the
real-valued reflectance, r. The reflectance, given by r � E �jgj2�,
where E �·� indicates the expected value, is a smoother quantity,
which we are accustomed to seeing in conventional images
and is of greater interest for many imaging applications [9].
Conversely, reconstructing the reflection coefficient leads to
images with high-spatial-frequency variations known as
speckle. The signal-dependent speckle noise obscures image
detail while shot noise from the reference field creates a noise
floor that can overpower weak signals. The combination of the

two noise sources is referred to as doubly stochastic and can
make tasks such as object identification and characterization
difficult.

There has been significant progress made in the area of im-
age denoising for an additive white Gaussian noise (AWGN)
model. Gaussian denoising algorithms (GDAs), such as non-
local means (NLM) [10] and block-matching and 3D filtering
(BM3D) [11], have pushed the limits of image denoising by
leveraging self similarity within images through non-local,
patched-based filtering. For most coherent imaging systems,
the shot noise is well modeled as AWGN in the data domain;
however, the signal-dependent speckle noise is not. Therefore,
GDAs are not effective at reducing speckle variation.

Modifications to GDAs have been proposed for multiplica-
tive noise models that modify the image data using a variance-
stabilizing transform [12–15] or that modify the GDA itself
[16–18]. While both methods help mitigate speckle noise, they
do not account for shot noise and therefore produce poor re-
sults at low SNRs. In addition, they are applied in post-process-
ing rather than incorporated into an image-formation process.

More advanced image reconstruction techniques have been
proposed for synthetic aperture radar (SAR) imaging, which
combine image formation and denoising using regularized in-
version [19–29]. However, most of these advanced techniques
enforce sparsity in the image domain, which is not typically the
case for optically coherent imaging. They also regularize the
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reflection coefficient magnitude, jgj, rather than the reflectance,
r, which results in speckled images. In Ref. [9] a model-based
iterative reconstruction (MBIR) algorithm designed specifically
for SALwas proposed. The algorithm computes the maximum a
posteriori (MAP) estimate of the reflectance, r, rather than the
reflection coefficient, g , using a relatively simple prior and is the
basis for the work in this paper.

In Ref. [30] a new framework called plug and play (P&P)
was proposed for computing MAP estimates using more-
advanced prior models inherent in GDAs. Through variable
splitting and the use of alternating direction method of multi-
pliers (ADMM) [31], the forward and prior models can be
decoupled. Optimization over terms relating to the prior model
can be mathematically formulated as a Gaussian denoising
operation, and a GDA can be used to reduce the cost function.

Gaussian denoising can be viewed as computing a MAP
estimate with an identity operator as the forward model and
with a prior model that is inherent to the algorithm. By using
GDAs in the P&P framework, we inherit the associated prior
model without having to explicitly define it. Therefore, we may
leverage the advances in GDAs to compute the MAP estimate,
even for non-Gaussian forward models.

In Refs. [30,32], P&P was shown to be effective for appli-
cations with AWGN such as tomography and super resolution.
In Refs. [33,34], the framework was extended to Poisson
inverse problems. Rond, Giryes, and Elad also developed a
framework called multi-prior plug and play (MPP&P), which
can leverage multiple GDAs. However, standard P&P cannot
easily be used to compute the MAP estimate of the reflectance
for optically coherent imaging systems due to the non-tractable
cost function associated with the forward model. Additionally,
the algorithm has not been demonstrated for use with multi-
plicative speckle noise or for applications with multiple noise
sources.

In this paper, we show how the P&P framework can be ex-
tended for use with optically coherent imaging systems to com-
pute the MAP estimate of the real-valued reflectance function.
The major contributions are:

1. An extension of the P&P algorithm is proposed that
uses the expectation maximization (EM) algorithm to over-
come the non-tractable cost function associated with coherent
imaging.

2. Simulated and laboratory data are used to demonstrate
that P&P, and therefore GDAs, can be effectively used for
denoising coherent images corrupted by doubly stochastic,
exponentially distributed noise.

3. High-performance computing (HPC) resources are
used to compare six GDAs and one despeckling algorithm
within the P&P framework. We determine which algorithm
works best for optically coherent imaging applications at
various SNRs and for different image types.

4. We investigate the benefits of MPP&P for a doubly
stochastic application where different priors can be chosen
to target the effects of the different noise sources.

2. MAP ESTIMATION USING PLUG AND PLAY

For coherent imaging systems, we formulate the image
reconstruction problem as the MAP estimate of the scene’s

real-valued reflectance function, r ∈ RN , from complex-valued
noisy data, y ∈ CM , given by

r̂ � argmin
r∈Ω

f− log p�rjy�g;� argmin
r∈Ω

fl�r� � βs�r�g; (1)

where Ω is the set of feasible solutions, l�r� � − log p�yjr�, and
βs�r� � − log p�r� [30]. (In practice, r̂ is proportional to the
actual reflectance by an unknown multiplicative constant α.)
The parameter β can be used to tune the prior model.

The P&P algorithm decouples the forward and prior models
by splitting the variable r into both r and v and converting the
unconstrained optimization of Eq. (1) into a constrained
problem given by

r̂ � argmin
r∈Ω
r�v

fl�r� � βs�v�g: (2)

The ADMM algorithm is then used to solve the constrained
optimization problem according to Algorithm 1 [30,32]. The
algorithm parameters are σ2λ � 1∕λ [30], where λ controls the
gain of the penalty to enforce the constraint, and u, which acts
as the Lagrange multiplier [35]. The two primary operations of
the P&P algorithm are the inversion operator given by

F�r̃; σλ� � argmin
r

�
l�r� � 1

2σ2λ
kr − r̃k22

�
; (3)

where r̃ � v − u, and the denoising operator given by

H�ṽ; σn� � argmin
v

�
1

2σ2n
kṽ − vk22 � s�v�

�
; (4)

where σ2n � βσ2λ and ṽ � r � u. Using this notation, the P&P
algorithm for computing the MAP estimate is shown as
Algorithm 1 below.

Algorithm 1: Plug and Play Algorithm

Initialize: v�0�, u�0� � 0
Repeat{

r̃�k�1� � v�k� − u�k�
r�k�1� � F�r̃�k�1�; σλ�
ṽ�k�1� � r�k�1� � u�k�
v�k�1� � H�ṽ�k�1�; σn�
u�k�1� � u�k� � �r�k�1� − v�k�1��

}.

The operator F is a proximal mapping of l�r� [35]. It is
mathematically equivalent to the MAP estimate of r using a
Gaussian prior with distribution p�r� ∼N �r̃; σ2λI�, where
N �μ; R� indicates a Gaussian distribution with mean μ and
covariance matrix R.

The operator H is a proximal mapping of s�v�. It is math-
ematically equivalent to a Gaussian denoising operation.
Specifically, it is equivalent to computing the MAP estimate
of v from the noisy image ṽ. The variable σ2n represents the noise
variance of an i.i.d. Gaussian forward model, and s�v� is the prior
[30,32]. Therefore, the ADMM cost function can be reduced by
replacing H with a GDA. We thus inherit the prior model,
which is either explicitly or implicitly part of the GDA.

In general, multiple prior models can be combined into a
single hybrid prior model by splitting the negative log-prior
model into K terms given by [33]
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− log p�r� �
XK
i�1

βi si�r�: (5)

In this paper, we investigate the MPP&P algorithm by com-
bining two different priors, i.e., K � 2. One prior is chosen to
help regularize the effects of measurement noise, and the other
to help regularize the effects of speckle. In Appendix A, we
provide the MPP&P algorithm.

3. COHERENT IMAGING FORWARD MODEL

For imaging systems that use optically coherent illumination
and detection, the complex data can be represented using an
additive noise model given by [9]

y � Ag � w: (6)

In Eq. (6) the matrix A ∈ CM×N models the propagation
geometry for the particular imaging modality, g ∈ CN is a dis-
crete representation of the complex-valued reflection coefficient
for the scene being imaged, and w ∈ CM models the measure-
ment noise. While the number of measurements, M , is fixed,
we may choose N > M if we wish to reconstruct r with
increased resolution. However, we use N � M in this work.

Examples of the matrix A include a discrete space Fourier
transform (DSFT) for DH, a non-uniform DSFT for SAL, and
the identity matrix for simple image denoising. Field-modifying
functions, such as phase errors and pupil functions, may be
included in A when applicable, and jointly estimated as
necessary [9].

The vector, g , can be modeled as a conditionally complex
Gaussian random variable for surfaces that are rough relative
to the illumination wavelength. Given the underlying reflec-
tance of the scene, r, the conditional distribution of the
reflection coefficient is given by

p�gjr� ∼ CN �0;D�r��; (7)

where CN indicates a complex normal distribution andD�r� is
a matrix with diagonal elements equal to the vector, r.

It is common for coherent detection systems to use a refer-
ence beam that is much stronger than the return signal. In such
cases, shot noise driven by the power of the reference beam is
the dominant source of measurement noise and can be modeled
as additive, zero-mean, complex Gaussian white noise [1,36].
The distribution of w is therefore given by

p�w� ∼ CN �0; σ2wI�; (8)

where σ2w is the noise variance and I is the identity matrix.
Given Eqs. (6)–(8), it can be shown that the likelihood

function of the data has a conditionally complex Gaussian
distribution given by

p�yjr� ∼ CN �0; AD�r�AH � σ2wI�; (9)

where H indicates the Hermitian transpose [37]. The negative
log-likelihood function can then be written as

l�r� � − log p�yjr�;
� log jAD�r�AH � σ2wI j � yH �AD�r�AH � σ2wI �−1y � c;

(10)

where c includes all terms that are constant with respect to r.

Unfortunately, it is often the case that evaluation of the de-
terminate and inverse in Eq. (10) is a non-tractable problem.
Therefore, using the P&P framework is not practical for
optically coherent image formation without modification.

4. P&P USING EM ALGORITHM

In this section we describe how the P&P algorithm is extended
for use with coherent imaging applications.

A. EM Algorithm Surrogate Function
For any function q�x�, we define a surrogate function, q̃�x; x 0�,
to be an upper-bounding function such that q�x� ≤
q̃�x; x 0� � c, where x 0 is the current value of x, which deter-
mines the functional form of q̃, and c is a constant that ensures
the two functions are equal at x 0. Surrogate functions have the
property that minimization of q̃ implies the minimization of q.
That is,

fq̃�x; x 0� < q̃�x 0; x 0�g ⇒ fq�x� < q�x 0�g: (11)

To overcome the non-tractable determinate and inverse in
Eq. (10), we can use the EM algorithm to replace the log-like-
lihood function, l�r�, with a more tractable surrogate function.
Thus, the P&P inversion operator, F, will be replaced with an
alternate function, F̃. To start, we introduce the reflection
coefficient, g , into the forward model as the missing data.
The resulting surrogate function for l�r�, given by the EM
algorithm, has the form

l̃�r; r 0� � −E�log p�y; gjr�jY � y; r 0�; (12)

where r 0 is the current estimate of r, and the tilde indicates it is
a surrogate function. The operator E�·jY � y; r 0� is a
conditional expectation over g, given y and r 0.

Using Bayes’ theorem and the fact that p�yjg; r� � p�yjg�,
Eq. (12) becomes

l̃�r; r 0� � −E�log p�gjr�jY � y; r 0� � c;

� log jD�r�j �
XN
i�1

1

ri
E�jgij2jY � y; r 0� � c; (13)

where c is the sum of terms constant with respect to r. To evalu-
ate the second moment in Eq. (13), we must specify the condi-
tional posterior distribution of g. We can use Bayes’ theorem
and p�yjg; r� � p�yjg� to write the posterior distribution as

p�gjy; r� � p�yjg�p�gjr�
p�yjr� ;

� 1

z
exp

�
−
1

σ2w
ky − Agk2 − gHD�r�−1g

�
; (14)

where z is the partition function, which has absorbed any
exponential terms that are constant with respect to g. By
completing the square, it can be shown that the posterior
distribution is a complex Gaussian with mean

μ � C
1

σ2w
AHy; (15)

and covariance
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C �
�
1

σ2w
AHA�D�r�−1

�
−1

: (16)

The surrogate for the log-likelihood function then becomes

l̃�r; r 0� � log jD�r�j �
XN
i�1

1

ri
�Ci;i � jμij2�; (17)

where μi is the ith element of the posterior mean and Ci;i is the
ith diagonal element of the posterior covariance. Both μ and C
are computed using the current reflectance value r 0.

The likelihood surrogate can then be substituted back into
Eq. (3) to obtain a modified inversion operator given by

F̃�r̃; r 0; σλ� � argmin
r

�
l̃�r; r 0� � 1

2σ2λ
kr − r̃k22

�
: (18)

Evaluation of the expectation in Eq. (13) constitutes the
E-step of the EM algorithm while the minimization in the
modified inversion operation given by Eq. (18) represents
the M-step of the EM algorithm. Putting these together,
Algorithm 2 then shows the combined steps for the P&P algo-
rithm with EM updates, which uses the modified inversion
operator. (To use this approach with MPP&P, we replace
l�r� with l̃�r; r 0� in Eq. (A1).)

Algorithm 2: Plug and Play Algorithm with EM

Initialize: v�0�, u�0� � 0
Repeat{

r̃�k�1� � v�k� − u�k�
r�k�1� � F̃�r̃�k�1�; r�k�; σλ�
ṽ�k�1� � r�k�1� � u�k�
v�k�1� � H�ṽ�k�1�; σn�
u�k�1� � u�k� � �r�k�1� − v�k�1��

}.

Each iteration of the P&P algorithm requires an evaluation of
the proximal mapping F, which in turn requires the exact min-
imization of the cost function associated with the optimization in
Eq. (3). However, in our case, we compute an approximation to
the proximal mapping that results from the use of the surrogate
function given by the EM algorithm’s l̃ function. More specifi-
cally, each update of Algorithm 2 uses the function F̃ given in
Eq. (18), rather than the true F of Eq. (3).

This raises the question as to whether the modified
algorithm using F̃ converges to the same result as the original
formulation. Convergence of the P&P algorithm is itself a com-
plex issue with most theoretical results holding only for the case
of convex optimization [32,38,39].

However, we can show that a fixed point of the P&P algo-
rithm will also be a fixed point of the modified Algorithm 2.
This ensures that any solution to the P&P iterations will be a
fixed point to the modified iterations of Algorithm 2; and in
particular, any solution to the MAP optimization of Eq. (1) will
also be a fixed-point solution to Algorithm 2.

In order to see this, note that any fixed point to the P&P
algorithm must solve the equations

F�r� − u�; σλ� � r� andH�r� � u�; σn� � r�; (19)

where �r�; u�� are the values of �r; u� that achieve the fixed
point to Algorithm 1. This relationship can be derived by

substituting v�k� � r�k� � r� and u�k� � u� in Algorithm 1.
Assuming that l�r� and s�v� are continuously differentiable,
then this implies that

0 � ∇r

�
l�r� � 1

2σ2λ
kr − r̃k2

�����
r�r�

; (20)

which implies that

∇r l�r�� � −
1

σ2λ
�r� − r̃�: (21)

If l̃�r; r 0� denotes the surrogate function to l�r�, then we
know that

∇r l̃�r; r��jr�r� � ∇r l�r�� � −
1

σ2λ
�r� − r̃�: (22)

So therefore, we know that

0 � ∇r

�
l̃�r; r�� � 1

2σ2λ
kr − r̃k2

�����
r�r�

; (23)

and that

F̃�r� − u�; r� − u�; σλ� � r� andH�r� � u�; σn� � r�: (24)

The relationship of Eq. (24) ensures that �r�; u�� is a fixed
point of Algorithm 2.

B. Optimization
Algorithm 2 is implemented, in part, by executing the optimi-
zations that make up the modified inversion and denoising op-
erators. In this section we describe how that is accomplished.

1. Modified Inversion Operation
Since the elements of r are not coupled by the cost function
associated with the modified inversion operator of Eq. (18),
we use iterative coordinate descent (ICD) to optimize. The cost
function for the ith element is given by

c�ri ; r̃ i ; μi ; Ci;i ; σλ� � log ri �
1

ri
�Ci;i � jμij2�

� 1

2σ2λ
�r2i − 2ri r̃ i�: (25)

If Eq. (25) is differentiated with respect to ri, set equal to
zero, and both sides are multiplied by r2i , we see that the
solution is contained within the set of roots for a 3rd order
polynomial given by

α1r3i � α2r2i � α3ri � α4; (26)

where

α1 �
1

σ2λ
; α2 �

−r̃ i
σ2λ

; α3 � 1; α4 � −�Ci;i � jμij2�: (27)

Therefore, the inversion operation can be carried out by
simply rooting this polynomial for each pixel. The general sol-
ution to a 3rd order polynomial can be found in closed form
using the cubic equation. For convenience, we used MATLAB’s
roots.m. If multiple real-valued roots exist, we use the cost
function to determine the best choice among them.

2. Denoising Operation
One of the core ideas behind P&P is that we use a GDA to
reduce the cost function associated with minimization in
Eq. (4). Since each GDA has a unique prior model associated
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with it, we must determine which works best for coherent im-
aging applications. Thus, we compare results using six well-
known GDAs as well as a leading speckle-denoising algorithm
[17]. In addition, two MPP&P algorithms are designed to
specifically target the effects of speckle and shot noise. Each
algorithm is described in Appendix B.

3. Stopping Criteria
The algorithm is stopped after either a set number of iterations,
NK , has been reached or

krk − rk−1k
krk−1k ≤ εT ; (28)

where k is the iteration index and εT is a specified stopping
threshold.

4. Initialization
Since the cost function associated with the minimization in
Eq. (3) is non-convex, the initial conditions are important
in avoiding local minima. To begin Algorithm 2, we initialize
according to

v�0� � jAHyj°2; u�0� � 0; σλ �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2�v�0��

q
; (29)

where j · j°2 indicates the element-wise magnitude square of a
vector and s2�·� computes the sample variance of a vector’s
elements [40]. These initial conditions were found to be effec-
tive for computing the MAP estimate of r in a conventional,
non-P&P framework [9]. The noise power, σ2w, is assumed to
be known via system calibration.

5. RESULTS

In this section results are presented for both simulated and lab-
oratory data. Although the proposed approach is applicable to
several optically coherent imaging modalities, we focused on
inverse synthetic aperture LADAR (ISAL) data. High-
performance computing resources were used to test the
proposed algorithms over a wide range of images, SNRs,
and model parameters.

A. Simulation Results
To simulate mock data, we started with the reflectance func-
tion, r, and generated a realization of the reflection coefficient,
g , according to the distribution given in Eq. (7). We then used
Eq. (6) to produce the measured data, y. The ISAL linear

forward-model operator, A, described in Appendix B of [9]
was used. The model assumes a band-limited and Nyquist
sampled signal, a square A matrix (i.e., M � N ), and linear
object rotation. Under these conditions, A represents a skewed
DSFT given by Eq. (65) of [9]. Data were generated over a
range of SNR values, where SNR is defined as

SNR � s2�Ag�
s2�w� : (30)

Fig. 1. Simulation input images along with gamma value used for
increasing contrast.

Table 1. NRMSE Averaged Over Ten Images Versus SNR

SNR

10 3 1 0.75 0.5 0.25 Avg.

FBR 1.0 1.0 1.1 1.2 1.3 1.5 1.2
P&P NLM 0.91 0.88 0.98 1.0 1.1 1.3 1.0
MPP&P 2 0.42 0.45 0.5 0.52 0.64 1.1 0.61
P&P DR 0.53 0.55 0.62 0.61 0.61 0.65 0.59
P&P BLR 0.4 0.42 0.54 0.57 0.65 0.85 0.57
P&P TV 0.39 0.39 0.42 0.42 0.45 0.51 0.43
P&P QGGMRF 0.36 0.37 0.39 0.41 0.43 0.52 0.41
P&P BM3D 0.33 0.35 0.4 0.41 0.45 0.54 0.41
MPP&P 1 0.38 0.38 0.39 0.39 0.4 0.48 0.4
P&P KSVD 0.33 0.34 0.37 0.38 0.4 0.5 0.39

Table 2. NRMSE Averaged Over Six SNRs Versus Image Number

Image Number

1 2 3 4 5 6 7 8 9 10 Avg.

FBR 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.2 1.2 1.2
P&P NLM 1.2 1.1 1.1 0.98 1.0 1.0 1.0 0.88 1.1 1.1 1.0
MPP&P 2 0.51 0.73 0.43 0.48 0.94 0.67 0.53 0.59 0.59 0.63 0.61
P&P DR 0.59 0.9 0.3 0.48 0.77 0.55 0.47 0.67 0.65 0.57 0.59
P&P BLR 0.55 0.71 0.43 0.43 0.76 0.65 0.48 0.51 0.64 0.56 0.57
P&P TV 0.45 0.48 0.3 0.32 0.67 0.46 0.39 0.39 0.42 0.45 0.43
P&P
QGGMRF

0.45 0.5 0.27 0.35 0.5 0.41 0.38 0.46 0.38 0.43 0.41

P&P BM3D 0.33 0.38 0.25 0.34 0.59 0.44 0.4 0.47 0.44 0.48 0.41
MPP&P 1 0.44 0.49 0.27 0.32 0.54 0.41 0.36 0.38 0.39 0.42 0.4
P&P KSVD 0.52 0.6 0.24 0.29 0.45 0.33 0.35 0.38 0.34 0.36 0.39
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Figure 1 shows the input images used for the reflectance
functions. All but test targ are part of MATLAB’s standard
library of images. In some cases the contrast was increased
to produce a more-discernible coherent image by raising each
element to the power γ.

We found any unknown scaling constant, α, between r and
r̂ by computing the least squares fit given by

α� � argmin
α

fkr̂ − αrk2g: (31)

We then measured the reconstruction distortion using
normalized root mean square error (NRMSE) defined as

NRMSE �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr̂ − α�rk2
kα�rk2

s
: (32)

NRMSE was used to find the optimal values of β for each
algorithm (see Appendix B).

To compare the proposed algorithm against standard,
Fourier-based reconstruction (FBR) techniques, we generated
comparison images according to

r̂FBR � jW FFTD�T �yj°2; (33)

whereW FFT is a two-dimensional fast Fourier transform (FFT)
matrix and T is a M × 1 vector of weights corresponding to a
Taylor window.

Table 1 shows how NRMSE varied as a function of SNR for
each algorithm. The results are ordered by their average over all
60 reconstructions (10 targets ×6 SNRs). The remaining
columns are the average over all 10 images for each SNR.
The bottom five algorithms (P&P KSVD, MPP&P 1, P&P
BM3D, P&P QGGMRF, and P&P TV) performed signifi-
cantly better than the top four, making them the most suitable
for reconstructing coherent images over a wide range of con-
ditions. Not surprisingly, the technique using the despeckling
algorithm Bayesian likelihood ratio (BLR) did poorly. This is
largely due to poor performance at low SNRs where it is unable
to mitigate the effects of measurement noise.

Table 2 shows how NRMSE varied as a function of image
type. The results show that P&P BM3D performed best or near
best for the simple and more discrete-type images (i.e., images
1–4). Its performance tapered off for the more complex images
(i.e., 5–10). Conversely, P&P KSVD performed best for the
complex images, but did not do as well with the simple images.

Figure 2 shows a subset of the resulting reconstructions for
three specific targets of differing complexity. The leftmost im-
age in each row is the FBR reconstruction. To the right of each
FBR image are the top three reconstructions ordered by
descending NRMSE values. It is interesting to note that
although P&P BM3D did not always have the lowest
NMRSE, it produced images with sharper edges compared
to P&P KSVD.

B. Laboratory Results
Experimental data were produced in the ISAL laboratory at JPL
[41,42]. The bench-top setup was a bi-static system consisting
of a transmitter, heterodyne receiver, and rotating target. A
1310 nm tunable laser produced a 34 ms linear frequency
modulated (LFM) chirped pulse with a chirp rate of
2 THz∕s and a pulse repetition frequency (PRF) of 10 Hz.

A self-heterodyning system was employed with 10% of the
transmitted signal used as the local oscillator. The detector sam-
ple rate was 1 MHz. A rotation stage was used to provide rel-
ative movement between the transmitter/receiver and target.

Fig. 2. Simulation results for three different targets at SNRs of 10,
0.75, and 0.25. The leftmost image in each row is the FBR
reconstruction. To the right of each FBR image are the top three re-
constructions ordered by descending NRMSE values. The NRMSE
values are shown in parentheses.
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The data were demodulated, low-pass filtered, and down
sampled to isolate the narrow-band signal of interest. The re-
sulting two-dimensional data array had 90 samples in range and
180 samples in cross-range. The approximate resolution of the
FBR images is 2.3 mm in range and 0.88 mm in cross range.
Phase errors were estimated and removed prior to image
reconstruction using the technique described in Ref. [9].

Figure 3 shows the targets used in the experiment. The first
is a stencil on a Lambertian plate and the second is a 3D printed
satellite made from a single material. The logo was rotated at
6.25 μrad∕s for 120 s and the satellite was rotated at
12.5 μrad∕s for 60 s.

Figure 4 shows the reconstructions for each of the three data
sets. The FBR images are shown in the top left of each block.
For all algorithms, reconstructions were conducted over the
same parameter range used in the simulated experiment.
Since no truth image was available to compute the
NRMSE, the best image had to be picked by eye. Upon visual
inspection of the FBR images, we see that the data have high
SNRs. Since speckle is the dominant noise source, we expect to
observe a reduction in the speckle variation when using P&P,
while a reduction in measurement noise may be less noticeable.
The logo results show that, with such low resolution in the lab
data, blurring from over regularization was a problem. P&P
KSVD did reduce the speckle variation compared to FBR,
but the algorithm also blurred the letters J and P together.
Conversely, P&P BM3 reduced the speckle and preserved
the resolution. From the satellite data, we see that the algo-
rithms that performed well with the simulated data were able
to reduce the speckle variation. Even with the poor resolution
and relatively small targets, the laboratory results appear con-
sistent with the high-SNR simulated results in terms of speckle
reduction and relative algorithm performance.

6. CONCLUSION

In this paper, we have presented an extension of the P&P algo-
rithm for use with optically coherent imaging. The proposed
algorithm reduces measurement noise and speckle variation
by computing the MAP estimate of the reflectivity to produce
a more natural-looking image. To overcome the non-tractable
MAP cost function, the EM algorithm was used to reduce the
complexity of the problem by deriving a more tractable surro-
gate function. Additionally, the P&P framework allows us to

use the denoising properties of GDAs as part of the MAP
optimization process and modeling process.

The strength of the proposed algorithm was demonstrated
using both simulated and laboratory data. HPC resources were
used to test the framework over a wide range of GDAs, model
parameters, input images, and SNRs. We also tested two
MPP&P algorithms designed specifically for low-SNR

(a) (b) (c)

Fig. 3. Targets used for laboratory experiments. (a) JPL logo with
range axis into the page. The stencil was placed on a Lambertian re-
flector angled at 45 deg. (b) Mock satellite (Orientation 1). (c) Mock
satellite (Orientation 2).

Fig. 4. Reconstructions from laboratory data. For each data set, the
reconstructions for all 10 algorithms are shown.
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coherent imaging. Simulated data were used to compare the
various algorithms and quantitatively rank their performance.
We also showed that the proposed approach can significantly
reduce reconstruction error by reducing the effects of measure-
ment noise and speckle variation. Finally, we validated our pro-
posed algorithms using experimental data from the JPL ISAL
laboratory. While the laboratory data were limited in terms of
resolution and fixed SNR, the results were consistent with the
simulated results.

APPENDIX A: MULTI-PRIOR PLUG AND PLAY

Algorithm 3 shows the update steps for MP&P. The inversion
operator is given by

F�r̃1; r̃2;σλ1 ;σλ2�� argmin
r

�
l�r��

X2
i�1

1

2σ2λi
kr − r̃ ik22

�
; (A1)

where r̃ i � vi − ui, and the two denoising operators are defined
as

Hi�ṽi; σni � � argmin
v

�
1

2σ2ni
kṽi − vik22 � si�vi�

�
;

for i � 1; 2;

(A2)

where ṽi � r � ui and σni � βiσ
2
λi
.

Algorithm 3: Multi-Prior Plug and Play Algorithm

Initialize: v�0�i , u�0�i � 0 for i � 1; 2
Repeat{

r̃ �k�1�
i � v�k�i − u�k�i for i � 1; 2
r�k�1� � F�r̃ �k�1�

1 ; r̃ �k�1�
2 ; σλ1 ; σλ2�

ṽ�k�1�
i � r�k�1�

i � u�k�i for i � 1; 2
v�k�1�
i � Hi�ṽ�k�1�

i ; σni � for i � 1; 2
u�k�1�
i � u�k�i � �r�k�1�

i − v�k�1�
i �for i � 1; 2

}.

APPENDIX B: ALGORITHM DESCRIPTIONS

In this section we describe the denoising algorithms tested in
the P&P and MPP&P frameworks. A brief description is pro-
vided for how each algorithm computes a denoised output, x̂,
from noisy input, y. Most denoising algorithms have several
parameters that must be selected in addition to the P&P param-
eters, σλ and β. To reduce the degrees of freedom, we automate
the choice of σλ according to Eq. (29) and fix all the denoising
parameters except for one. Generally, this tuning parameter is

the estimate of the noise variance, σ2n � βσ2λ , which controls
the strength of the denoising operation. For each of the 60 si-
mulated reconstructions per algorithm (6SNRs × 10images),
we chose the parameter that minimized NRMSE. Table 3 pro-
vides the range of optimal parameters used for each algorithm.

Plug and Play with Non-Local Means (P&P NLM)
Non-local means (NLM) produces a point-wise estimate of
each pixel, which leverages the redundancy in natural images
[10]. Each pixel becomes a weighted average of other pixels
in the image based on the similarity between their neighbor-
hoods. The weights between pixels, yi and yj, are given by

wi;j �
1

c
exp

�
1

σ2n
kbi − bjk22

�
; (B1)

where c is a normalizing constant and b� is the l n × l n neigh-
borhood for the *th pixel. Typically the search for pixels with
similar neighborhoods is limited to some finite search window
of size l s × l s. We fixed the variables l n � 3, l s � 41, and varied
σ2n using β.

Plug and Play with Block-Matching and 3D Filtering
(P&P BM3D)
Block-matching and 3D filtering (BM3D) is a patched-based
denoising algorithm that stacks similar patches and collabora-
tively filters them using shrinkage techniques in a transform
domain [11]. BM3D code was downloaded from [43]. The
noise profile was set to “vn”, for very noisy, and the hard thresh-
olding block size to 4 × 4. All other parameters were left at their
default values. The noise variance σ2n was varied using β. We
found that large values of σ2n were required to sufficiently regu-
larize the speckle variations. In many cases the optimal value of
σn exceeded the range of values in y.

Plug and Play with Total Variation (P&P TV)
Total variation (TV) performs image denoising by solving the
optimization problem given by

x̂ � argmin
x

fky − xk22 − λkDxkg; (B2)

where D computes the magnitude of the directional derivative
for each element in x. A TV algorithm was downloaded from
[44]. Following the example script that was supplied with the
code, we set λ � σn and fixed the number of iterations at
niter � 10 for each loop of P&P. All other parameters were
set at their default values.

Plug and Play with Discrete Representation (P&P DR)
The discrete representation (DR) algorithm computes the
MAP estimate of x using a discrete-state prior, which biases
the output towards one of K discrete states [45,46]. The joint,
non-convex optimization problem to compute both the class
labels, b, for each element of x, and the class values, is given
by

�μ̂; b̂� � argmin
μ;b

�
1

2σ2n
ky − μ�b�k22 �

X
fi;jg∈P

wi;jδ�bi ≠ bj�
�
:

(B3)
The operator μ�b� converts each element of the class

vector, b, to its corresponding value, P is the set of all pair-wise
cliques, wi;j is the weight between elements i and j within a

Table 3. Summary of Optimal Tuning Parameters

Alg Parameter Range Avg

P&P NLM β 0.05–0.51 0.16
P&P BM3D β 110–250 200
P&P TV β 0.42–5.0 0.49
P&P DR β 4.2–15 12
P&P QGGMRF T 0.15–1.0 0.56
P&P KSVD β 3–5 3.9
P&P BLR h 0.22–1.0 0.69
MPP&P 1 β2 0.83–9.7 3.4
MPP&P 2 β2 0.2–0.3 0.27
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neighborhood, and δ is an indicator function that is zero if
the two classes are the same. The final output is given by
x̂ � μ̂�b̂�. The neighborhood size was set to 3 × 3 with weights
equal to 1/12 for diagonal neighbors and 1/6 for horizontal or
vertical neighbors. Each time DR was called from within the
P&P framework, it was run for three iterations. The prior
model was limited to K � 8 states. To initialize DR, we used
the MATLAB functions imquantize.m and multithresh.m
according to

x�0� � imquantize �yLP;multithresh�yLP; K − 1��: (B4)

The variable yLP is a low-pass filtered version of the input
image using a 5 × 5 Gaussian kernel with σ � 1 pixel. The
noise variance σ2n was varied using β.

Plug and Play with Q-Generalized Gaussian Markov
Random Field (P&P QGGMRF)
The Q-Generalized Gaussian Markov Random Field
(QGGMRF) computes the MAP estimate of x using a
Markov random field as the prior [35,47]. For image denoising,
the output is the solution to the optimization problem given by

x̂ � argmin
x

�
1

2σ2n
ky − xk22 �

X
fi;jg∈P

wi;jρ

�
Δ
σr

	�
; (B5)

where P is the set of all pair-wise cliques, wi;j is the weight
between elements i and j, Δ � xi − xj, and σr controls the
variation in r. The potential function, which determines
how much influence pixels have on each other, is given by

ρ

�
Δ
σr

	
� jΔjp

pσpr

 �� Δ
T σr

��q−p
1�

�� Δ
T σr

��q−p
!
: (B6)

The threshold value, T , controls the transition of the
potential function from having the exponent q to having the
exponent p. We limited the algorithm to 10 iterations and fixed
the following parameters: q � 2, p � 1.1, and w was a 3 × 3
Gaussian kernel with σ � 0.8 pixels. The scale parameter was
set to σr � 1

2

ffiffiffiffiffiffiffiffiffi
s2�y�

p
. To tune P&P QGGMRF, we fixed the

noise variance at σn � σλ and varied the threshold, T .

Plug and Play with K-SVD (P&P K-SVD)
K-SVD is a denoising algorithm that uses redundant dictionaries
for sparse representation of patches within an image [48]. The
dictionary, D, and corresponding coefficients, α, can by learned
from the noisy image using a joint optimization given by

�D̂;α̂;x̂��argmin
D;α;x

�
λkx−yk22�

X
p∈P

μkαpk0�
X
p∈P

k�Dα�p−xpk22
�
:

(B7)

The variable λ is the Lagrangian multiplier, μ controls the
relative weight of the second term, P is the set of all patches in

the image, and the subscript p indicates just the elements be-
longing to the pth patch. The second term enforces sparsity in
each patch, and the third term ensures that the error of the
sparse representation is bounded. K-SVD code was down-
loaded from [49]. Each time K-SVD was called from
within the P&P framework, it was run for a single iteration.
The block size was set to 4 × 4, the dictionary size was 100
atoms, and 40 × 103 training signals were used. The code
chooses λ automatically based on the user-supplied noise
variance σ2n.

Plug and Play with Bayesian Likelihood Ratio (P&P
BLR)
The image denoising algorithm in Ref. [17], which we will
call the Bayesian likelihood ratio (BLR) algorithm, is a gener-
alization of the NLM algorithm to account for non-Gaussian
noise distributions. It has become recognized as one of the
top-performing denoising algorithms for speckle removal
[16]. The denoising process is identical to NLM except that
patch similarity is determined using a BLR with weights
given by

wi;j �
1

c
×
�X

j

R
p�yijθi;j � t�p�yjjθi;j � t�p�θi;j � t�dtR

p�yijθi � t i�p�θi � t i�dt i
R
p�yjjθj � t j�p�θj � tj�dtj

�1
h

: (B8)

The variable, c, is a normalizing constant, h controls the
strength of the filter, θn is the underlying parameter of the ran-
dom variable Y n, which represents the noiseless pixel value in
most cases. We fixed the neighborhood size at 3 × 3, the search
window at 41 × 41, and varied h to tune the algorithm.

Multi-Prior Plug and Play 1 (MPP&P 1)
MPP&P 1 uses the approach described in Appendix A to com-
bine two prior models. BM3D was chosen as H1 since it was
found to be most effective at reducing background shot noise,
and QGGMRF was chosen as H2 to promote smoothness in
the reconstruction. The ratio of the tuning parameters was fixed
at β1 � 1.5 × β2.

Multi-Prior Plug and Play 2 (MPP&P 2)
MPP&P 2 also uses the approach described in Appendix A to
combine two priors. BM3D was again chosen as H1, and BLR
was chosen asH2 to help reduce speckle variations. The ratio of
the tuning parameters was fixed at β1 � 5 × β2.
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