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Abstract—Over the past decade, Plug-and-Play (PnP) [1], [2]
has become a popular method for reconstructing images using a
modular framework consisting of a forward and prior model. The
great strength of PnP is that an image denoiser can be used as a
prior model while the forward model can be implemented using
more traditional physics-based approaches. However, a limitation
of PnP is that it reconstructs only a single deterministic image.

In this paper, we introduce Generative Plug-and-Play (GPnP),
a generalization of PnP to sample from the posterior distribution.
As with PnP, GPnP has a modular framework using a physics-
based forward model and an image denoising prior model.
However, in GPnP these models are extended to become proximal
generators, which sample from associated distributions. GPnP
applies these proximal generators in alternation to produce
samples from the posterior. We present experimental simulations
using the well-known BM3D denoiser [3]. Our results demon-
strate that the GPnP method is robust, easy to implement, and
produces intuitively reasonable samples from the posterior for
sparse interpolation and tomographic reconstruction. Code to
accompany this paper is available at https://github.com/gbuzzard/
generative-pnp-allerton.

Index Terms—Plug-and-Play (PnP), Inverse problems, Gener-
ative model, Posterior sampling

I. INTRODUCTION

The recent explosion in new sensors has led to growing
interest in integrating both physical and data driven models for
scientific applications. This approach captures the enormous
power of modern machine learning methods to model empir-
ical data while also incorporating the benefits of established
physics models in imaging applications ranging from optics
[4] to X-ray CT [5].

A popular method for integrating physics and machine
learning models is Plug-and-Play (PnP) [1]. The key idea
behind PnP is that an image denoising algorithm encodes prior
information implicitly and can be used in place of a functional
prior model commonly found in Bayesian approaches. In
practice, PnP alternates the application of a forward model
proximal map to fit data and a denoiser representing the prior
model. When the denoiser is also a proximal map, then PnP
can be viewed as an optimization algorithm [2]. However,
more generally PnP is the solution to an equilibrium condition,
and under appropriate technical conditions, the algorithm is
known to converge to a unique [6] solution.

The desire to understand variation in possible solutions
given limited, noisy measurements has driven interest in al-

gorithms to sample from the posterior distribution. Generative
adversarial networks (GAN) [7] and variational autoencoders
[8] are two possible methods for generating samples from
a distribution described by training data. However, while
conditional GANs allow the samples to be conditioned on
another random quantity [9], neither model provides a modular
framework that can be decomposed as a forward and prior
model, and GANs can be difficult to stably train [10].

More recently, generative diffusion methods [11] based on
denoising score matching (DSM) [12], [13] and Langevin dy-
namics [14] have displayed remarkable generative capabilities.
These algorithms do not require adversarial training and have
been reported to produce very high quality results [15]. A
number of groups have investigated the use of these generative
diffusion methods as a prior model that works along with a
separate physics-based forward model [16], [17], [18], [19].

In this paper, we introduce Generative Plug-and-Play
(GPnP), a method for sampling from the posterior distribution
of a model. As with PnP, GPnP has a modular framework
based on a forward and prior model in which the prior model is
implemented with a denoiser. The GPnP algorithm alternately
applies a forward model and a prior model, each in the form
of a proximal generator. These proximal generators are similar
in formulation to a proximal map but generate random rather
than deterministic outputs.

Our primary theoretical result is a theorem that this alternat-
ing sequence of random functions generates a Markov chain
(MC) with the desired stationary distribution. We then show
how the methods of denoising score matching [12] can be used
to approximate the prior proximal generator with a denoiser
plus some AWGN. We also describe how to compute or
approximate the forward model proximal generator in several
common cases.

We note that GPnP differs from generative diffusion meth-
ods in that it (a) formulates the solution as the stationary
distribution of a discrete-time MC; (b) does not use a Langevin
dynamics to generate the solution; (c) incorporates proximal
generators rather then gradient updates. However, we do show
that in the special case of a null forward model, GPnP
generates an MC that is exactly the Langevin dynamics for
generation of samples from a prior distribution.

We present experimental simulations using the well-known
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BM3D denoiser [3]. These results demonstrate that the GPnP
method is robust, easy to implement, and produces intuitively
reasonable samples from the posterior for sparse interpolation
and tomographic reconstruction.

II. GENERATIVE PNP THEORY

Let u0(x) and u1(x) be two non-negative integrable energy
functions; that is, u0, u1 : Rp → [0,∞) and

Z =

∫
Rp

exp {−u1(x)− u0(x)} dx < ∞ .

Then our goal will be to generate samples from the distribution

p(x) =
1

Z
exp {−u1(x)− u0(x)} , (1)

with the interpretation that u1, u0 are the energy functions for
the data distribution and prior distribution, respectively.

A. Proximal Distributions and Generators

To do this, we introduce the proximal distributions given by

q0(x|v) =
1

Z0(v)
exp

{
−u0(x)−

1

2γ2
∥x− v∥2

}
(2)

q1(x|v) =
1

Z1(v)
exp

{
−u1(x)−

1

2γ2
∥x− v∥2

}
(3)

where γ is a parameter of the proximal distribution and again
Z0(v) and Z1(v) are normalizing constants that depend on v.
By assumption, u0 ≥ 0 and u1 ≥ 0, so the quadratic term
implies that Zi(v) < ∞ for all v ∈ RN .

With the proximal distributions, we define proximal gen-
erators denoted by F0(v) and F1(v). Intuitively, a proximal
generator generates a new independent random variable with
the proximal distribution. More specifically, let

Y0 = F0(V ) (4)
Y1 = F1(V ) , (5)

where V is a random vector in Rp. Then Y0 and Y1 are as-
sumed conditionally independent of any previously generated
random vectors given V , and the conditional densities of Y0

and Y1 given V are given above in (2) and (3), respectively.

B. Markov Chains from Proximal Generators

We can produce a Markov chain (MC) by repeatedly apply-
ing the proximal generators. More specifically, each new state
of the MC is generated from the previous state by applying
the two proximal generators in sequence.

Xn = F1(F0(Xn−1)). (6)

Ideally, by repeatedly applying this sequence of operations,
the random vector Xn will converge in distribution to samples
from p(x). This isn’t quite true, but the following theorem,
proved in the appendix, states that when γ is small, then the
MC has a stationary distribution near p(x) in (1) with u0

replaced by a Gaussian convolution approximation to u0.

Theorem 1. Let Xn be a Markov chain given by

Xn = F1(F0(Xn−1)) . (7)

Then Xn forms a reversible Markov chain with a stationary
distribution given by

Xn ∼ p̃γ2(x) =
1

Z ′ exp
{
−u1(x)− ũ0(x; γ

2)
}

, (8)

where
ũ0(x; γ

2) = − log
(
e−u0(x) ∗ gγ2(x)

)
, (9)

and ∗ denotes multidimensional convolution with a Gaussian
density of variance γ2 given by

gγ2(x) =
1

(2πγ2)p/2
exp

{
− 1

2γ2
∥x∥2

}
. (10)

This theorem serves as the basis for the generative Plug-and-
Play (GPnP) algorithm. Assuming that the MC is ergodic, as
n → ∞, the GPnP algorithm will converge to the stationary
distribution, p̃γ2(x). Furthermore, this stationary distribution
has the property that

p(x) = lim
γ→0

p̃γ2(x) , (11)

so the samples of the MC become close to the desired
distribution as n → ∞ and γ → 0.

III. SAMPLING FROM THE POSTERIOR

In this section, we show how GPnP can be used to generate
samples from the posterior distribution for a canonical inverse
problem with data y and object of interest x. Given a prior
distribution p0(x) and a forward model py|x(y|x), we define

u0(x) = − log p0(x) + C0 (12)
u1(x) = − log py|x(y|x) + C1 . (13)

By Bayes’ rule, the posterior distribution of X given Y can
be expressed as

px|y(x|y) =
1

Z
exp {−u1(x)− u0(x)} .

Note that this has the same form as (1). So Theorem 1 implies
that the GPnP algorithm can be used to sample from the
posterior distribution.

In order to implement the GPnP algorithm, we will need to
implement both the forward proximal generator F1(v) and the
prior proximal generator F0(v).

To implement the prior proximal generator, we use the
recent theory of denoising score matching [12]. This theory
relates the MMSE denoiser for noise variance of σ2 to a
modified noisy prior distribution given by

p̃0,σ2(x) = (p0 ∗ gσ2)(x) ,

which is a blurred version of the true prior distribution p0(x).
The associated energy function for p̃0,σ2 is then given by

ũ0(x;σ
2) = − log p̃0,σ2(x) + C0 .

As before, ũ0(x;σ
2) is not exactly the desired energy function

of u0(x), but as σ → 0 it becomes a good approximation.
Hence we use this energy function to implement the prior
proximal generator F̃0(v;σ) in the GPnP algorithm.
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Note that the blur introduced from this σ2-denoiser is
independent from the noise introduced by γ in the GPnP
Algorithm as specified in Theorem 1. This means that if we
use u1 and ũ0 as the forward and prior energy functions, then
GPnP will generate samples from the posterior distribution

p̃x|y(x|y;σ2 + γ2) = py|x(y|x)p̃0,σ2+γ2(x) ,

where p̃0,σ2+γ2(x) = (p̃0,σ2 ∗gγ2)(x) is a version of the prior
distribution that is blurred with a Gaussian of variance σ2+γ2.
Again, as σ and γ become small, we get that

px|y(x|y) = lim
σ→0

lim
γ→0

p̃x|y(x|y;σ2 + γ2) .

So we can use the GPnP algorithm to generate samples from
the true posterior distribution of X given Y .

The following sections provide more details on how to
implement the proximal generators F̃0(v) and F1(v).

A. Prior Model Proximal Generator

In this section, we show how to implement the proximal
generator, X = F̃0(v) of the previous section. We first define
the score of the blurred distribution as

s(x;σ2) = −∇xũ0(x;σ
2) . (14)

Vincent showed the amazing result that this score can be es-
timated by minimizing the Denoising Score Matching (DSM)
loss [12]. For the special case of AWGN, the DSM has the
form [13],

Loss(θ;σ) = E

[∥∥∥∥Wσ + sθ(X + σW )

∥∥∥∥2
]

, (15)

where sθ is a function parameterized by θ, X ∼ p0(x)
is a random image from the desired prior distribution, and
W ∼ N(0, I) is independent Gaussian white noise.

The key result of Vincent’s work is that the loss in (15)
is minimized when the function sθσ (x) is equal to the score,
s(x;σ2). To best estimate the score of the blurred distribution,
we choose θ to be

θσ = argmin
θ

Loss(θ;σ) .

A more traditional point of view is that (15) implies that
the MMSE denoiser with AWGN of variance σ2 is given by

Denoise(x;σ) = x+ σ2sθσ (x) . (16)

From this, we see that if we have an MMSE denoiser designed
for a noise variance of σ2, then we can compute an estimate
of the score as

sθσ (x) =
1

σ2
[Denoise(x;σ)− x] . (17)

Then a first order Taylor series and completing the square
yields an approximate proximal distribution given by

q̃0(x|v;σ2)

=
1

Z(v)
exp

{
−ũ0(x;σ

2)− 1

2γ2
∥x− v∥2

}
≈ 1

Z ′(v)
exp

{
(x− v)tsθσ (v)−

1

2γ2
∥x− v∥2

}
=

1

Z ′′(v)
exp

{
− 1

2γ2
∥x− [v + γ2sθσ (v)]∥2

}
. (18)

Notice that for this approximation to be accurate, we need that
γ << σ so that the second derivative of the score function is
small relative to 1/γ2. In order to ensure this, we will express
our results in terms of β = γ2/σ2, where we will pick the
parameter β < 1.

Combining (17) and (18), we can rewrite the proximal
generator as

F̃0(v;β, σ) ≈ (1− β)v + β Denoise(v;σ) +
√
βσW , (19)

where W ∼ N(0, I), β < 1, and Denoise(v, σ) is an MMSE
denoiser designed to remove AWGN of variance σ2.

B. Forward Model Proximal Generator

We first consider the case in which u1(x) has two continu-
ous derivatives. In this case, we denote the proximal map for
u1 as

F̄1(v; γ) = arg min
x∈Rp

{
u1(x) +

1

2γ2
∥x− v∥2

}
. (20)

Again, a first order approximation for u1, this time centered
at the proximal point F̄1(v; γ), implies that for γ small, we
can express the proximal distribution as

q1(x|v; γ) ≈
1

Z
exp

{
− 1

2γ2
∥x− F̄1(v; γ)∥2

}
.

So then for small γ, the forward model proximal generator
can be implemented as

F1(v; γ) ≈ F̄1(v; γ) + γ W , (21)

where W ∼ N(0, I).
From this we see that for sufficiently small values of γ,

we can approximate the forward model proximal generator as
the forward model proximal map plus Gaussian white noise.
However, in some cases we can practically implement a more
accurate proximal generator for larger values of γ as discussed
in Sections IV-A and IV-B.

C. The GPnP Algorithm

Algorithm 1 provides a pseudo-code implementation of the
GPnP algorithm that starts with a large value of σ and then
iterates the GPnP proximal generators F̃0 and F1 for each
value of σ. Notice that the prior proximal generator, F̃0, is
implemented with the approximation of (19), and the forward
proximal generator, F1, is implemented as described in (21)
with γ =

√
βσ.
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procedure GPNP-BASIC(α, β, σmax, σmin, N )
X ← σmaxRandN(0, I) + 1/2

a←
(

σmin
σmax

)1/N

for n = 0 to N − 1 do
σ ← anσmax

X ← (1−β)X+β Denoise(X;ασ)+
√
βσ RandN(0, I)

X ← F̄1(X;
√
βσ) +

√
βσ RandN(0, I)

end for
return X

end procedure

Fig. 1. Generative Plug-and-Play where α ∈ [1, 1.5], 0 < β << 1, σ
decreases by the multiplicative factor a on each iteration, F̄1 denotes the
forward model proximal map, and Denoise(x;σ) performs MMSE denoising
of an image x with AWGN of variance σ2.

The decreasing sequence of σ values is known as annealing
and has been shown to dramatically speed convergence to the
stationary distribution of the Markov chain by more stably
modeling the distribution in low probability regions of the
space [11]. In our experiments, we have found that β = 0.25
works well. We also incorporate a parameter α to modulate
the strength of the denoiser. This is used to account for
inaccuracies in denoiser calibration and to account for the fact
that σ decreases on each iteration, which means we need to
denoise at a higher rate than the current value of σ. We use
α ≈ 1.3 in our experiments.

IV. SPECIAL PROXIMAL GENERATORS

In this section, we discuss some special cases of proximal
generators that can be useful in practice.

A. Proximal Generator: Linear Forward Model

In this section, we show how to implement the proximal
generator, X = F1(v), where X ∼ q1(x|v), for a general
linear forward model. To do this, consider a linear forward
model of the form

Y = AX +W , (22)

where W ∼ N(0,Λ−1), A is a linear forward operator, and Λ
is a positive definite precision matrix. Then the energy function
associated with this forward model is given by

u1(x) =
1

2
∥y −Ax∥2Λ . (23)

The first-order optimality conditions imply that the proximal
map for this function is given by

F̄1(v; γ) = v +

(
ATΛA+

1

γ2
I

)−1

AtΛ(y −Av) . (24)

We define R to be the conditional covariance given by

R =

(
ATΛA+

1

γ2
I

)−1

. (25)

The energy function for the proximal distribution for u1 is
the objective in (20), which has a minimum at the conditional

mean F̄1(v; γ) and which has Hessian R. Since the energy
function is quadratic, the proximal distribution is exactly

q1(x|v; γ) =
1

Z
exp

{
−1

2
∥x− F̄1(v; γ)∥2R−1

}
.

From this, we see that the proximal generator is given by

F1(v; γ) = F̄1(v; γ) +WR ,

where WR ∼ N(0, R).

N σmax σmin β α σy

Subsampling 100 0.5 0.005 0.25 1.3 0.005
Tomography 100 0.5 0.005 0.25 1.3 0.25

TABLE I
PARAMETERS USED IN EXPERIMENTS

B. Proximal Generator: Subsampling

Another useful special case occurs when our measurements
are samples at selected pixels. Let Sm be a set of measurement
points so that

Ys = Xs +Ws ,

where Ws ∼ N(0, σ2
y) are i.i.d. noise samples. In this case, the

energy function associated with this forward model is given
by

u1(x) =
∑
s∈Sm

1

2σ2
y

(ys − xs)
2 . (26)

The first-order optimality conditions imply that the associated
proximal map is given by

[
F̄1(v; γ)

]
s
=

{
vs +

γ2

σ2
y+γ2 (ys − vs) if s ∈ Sm

vs if s /∈ Sm .
(27)

From the result of Section IV-A the forward model proximal
generator is given by

[F1(v; γ)]s =


[
F̄1(v; γ)

]
s
+

√
σ2
yγ

2

σ2
y+γ2Ws if s ∈ Sm[

F̄1(v; γ)
]
s
+ γWs if s /∈ Sm

.

where Ws ∼ N(0, 1) are i.i.d. Gaussian random variables.

C. Sampling from the Prior

Below we derive the update equations for sampling from
the prior distribution. In this case, we set u1(x) = 0, so from
(21), the forward proximal generator is exactly

F1(v; γ) = v + γW ,

where W ∼ N(0, I). Then for small γ, (16), (19), and the
definition of β imply that the prior model proximal generator
is

F̃0(v) = v + γ2sθσ (v) + γW ′ ,

where W ′ ∼ N(0, I) is independent of W . Taking the
composition of F̃0 followed by F1 results in the update

Xn = Xn−1 + γ2sθσ (Xn−1) +
√
2γW ,
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(a) σ = 0.500 (b) σ = 0.107 (c) σ = 0.023 (d) σ = 0.005

(e) Ground Truth (f) Mean over 10 samples (g) Std Dev over 10 samples

Fig. 2. Tomographic experiment for 128× 128 phantom with 16 views: (a) - (d) GPnP outputs with decreasing values of σ; (e) phantom; (f) mean and (g)
standard deviation over 10 trials.

which is the familiar Langevin update equation [14]. Rewriting
in terms of the denoiser and the parameters β, σ results in the
following recursion that generates samples from the posterior
distribution for small σ

Xn = (1−β)Xn−1+β Denoise(Xn−1;σ)+
√
2βσW , (28)

where W ∼ N(0, I).

V. RESULTS

In this section, we present experimental results using the
GPnP algorithm to sample from the posterior distribution of
a model. We consider the cases of sparse image interpolation
from Section IV-B and 2D parallel-beam, sparse-view tomo-
graphic reconstruction from Section IV-A. Table I lists the
parameters used for both experiments. For both experiments,
the BM3D denoiser [3] was used as an implicit prior model.
However, we have found that more advanced, domain-specific
denoisers such those used in [13] can yield better results.

Figure 2 shows the results for the case of tomographic
reconstruction using 8 views of a 128 × 128 phantom. The
algorithm was implemented using the SVMBIR tomographic
software package [20]. Figures 2(a) to (d) show a typical
progression of samples for the GPnP algorithm as σ decreases.
For large values of σ, the prior is essentially white noise, so the
reconstructed image has similar attributes. As σ decreases, the
image stabilizes to a less noisy image, but each trial produces
a somewhat different result that represents the variation in the
posterior distribution. Figures 2(f) and (g) show the mean and
standard deviation over 10 trails. Notice that Figure 2(g) shows

that most of the variation occurs near edges, which is what one
might expect.

Figure 3 shows similar results for sparse interpolation from
10% of the pixels from a color 256×256 ground-truth image.
This gives results qualitatively similar to the tomography case,
with most of the variation occurring along image edges.

VI. CONCLUSION

In this paper, we presented a novel theory for Generative
PnP, a generalization of the PnP that allows for sampling from
the posterior distribution given a forward model and a prior
specified using a MMSE denoising algorithm. As with PnP,
GPnP has a modular implementation in which two proximal
generators are alternately applied. The proximal generators
generate conditionally independent random variables from a
distribution inspired by the proximal map and in practice can
be implemented by adding noise to the conventional proximal
map.

Our key theoretical result is that the sequence generated
by GPnP forms a reversible Markov chain with the desired
posterior distribution. Our experimental results indicate that
the algorithm can be robustly implemented for simple inverse
problems such as sparse interpolation and 2D parallel beam
tomographic reconstruction.

APPENDIX

We first prove the following lemma
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(a) σ = 0.500 (b) σ = 0.108 (c) σ = 0.023 (d) σ = 0.005

(e) Ground Truth (f) Mean over 10 samples (g) Std Dev over 10 samples

Fig. 3. Interpolation experiment for 256×256 RGB image with 10% of pixels sampled uniformly at random, starting from radial basis function interpolation
plus AWGN with σ = 0.5: (a) - (d) GPnP outputs with decreasing values of σ; (e) original image; (f) mean and (g) standard deviation over 10 trials.

Lemma 1. Let [Xn,0, Xn,1] be a Markov chain such that

Vn = F0(Xn−1,1)

[Xn,0, Xn,1] = [Vn, F1(Vn)] .

Then [Xn,0, Xn,1] is a Markov chain in time, n, with a
stationary distribution given by

[Xn,0, Xn,1] ∼ p(x0, x1)

where

p(x0, x1) =
1

Z
exp

{
−u1(x1)− u0(x0)−

1

2γ2
∥x0 − x1∥2

}
.

Proof of Lemma 1. Note that the distribution p(x0, x1) has
conditional distributions

p0|1(x0|x1) = q0(x0|x1)

p1|0(x1|x0) = q1(x1|x0) .

Hence the Markov chain is an implementation of a Gibbs
sampler that first replaces Xk,0 with a conditionally inde-
pendent random variable from its conditional distribution, and
then replaces Xk,1 with a conditionally independent random
variable from its conditional distribution [21], [22].

For notational compactness, we denote the state at time
n − 1 by (x0, x1), and the state at time n by (x′

0, x
′
1), and

let q(x′
0, x

′
1) denote the distribution of the state at time n.

Defining p1(x1) =
∫
p(x0, x1)dx0, we have p(x0, x1) =

q0(x0|x1)p1(x1). Then standard manipulations give

q(x′
0,x

′
1) =

∫ ∫
q1(x

′
1|x′

0)q0(x
′
0|x1)p(x0, x1)dx0dx1

=

∫ ∫
q1(x

′
1|x′

0)q0(x
′
0|x1)q0(x0|x1)p1(x1)dx0dx1

=

∫
q1(x

′
1|x′

0)q0(x
′
0|x1)

∫
q0(x0|x1)dx0 p1(x1)dx1

=

∫
q1(x

′
1|x′

0)q0(x
′
0|x1)p1(x1)dx1

=

∫
q1(x

′
1|x′

0)p(x
′
0, x1)dx1.

Since q1(x
′
1|x′

0) does not depend on x1, while p(x′
0, x1)dx1

integrates to p0(x
′
0), this simplifies to give

q1(x
′
1|x′

0)p0(x
′
0) = q(x′

0, x
′
1) = p(x′

0, x
′
1).

Hence p(x0, x1) is a stationary distribution of the Markov
chain.

Proof of Theorem 1. Recall that Xn = F1(F0(Xn−1) from
Theorem 1, so that Xn is a Markov chain that equals Xn,1 in
Lemma 1. By Lemma 1 we know that Xn,1 has a stationary

Authorized licensed use limited to: Purdue University. Downloaded on October 09,2025 at 18:28:23 UTC from IEEE Xplore.  Restrictions apply. 



distribution given by

p(x1) =

∫
p(x0, x1)dx0

=

∫
1

Z
exp

{
−u1(x1)− u0(x0)−

1

2γ2
∥x0 − x1∥2

}
dx0

=
1

Z
exp {−u1(x1)} ·∫

exp

{
−u0(x0)−

1

2γ2
∥x0 − x1∥2

}
dx0 .

Then notice that∫
exp

{
−u0(x0)−

1

2γ2
∥x0 − x1∥2

}
dx0

=

∫
e−u0(x0) exp

{
− 1

2γ2
∥x0 − x1∥2

}
dx0

=

(
e−u0(·) ∗ exp

{
− 1

2γ2
∥ · ∥2

})
(x1)

= (2πγ2)p/2
(
e−u0(·) ∗ gγ2

)
(x1)

= (2πγ2)p/2 exp {−ũ0(x1)} ,

where

ũ0 = − log
(
e−u0 ∗ gγ2

)
.

So we have that

p(x1) =
1

Z ′ exp {−u1(x1)} exp {−ũ0(x0)}

=
1

Z ′ exp {−u1(x1)− ũ0(x0)} ,

where Z ′ = Z/(2πγ2)p/2.
To show reversibility, we denote the joint distribution

of (Xn,1, Xn−1,1) as q(x′
1, x1). As in Lemma 1, we de-

fine p0(x0) =
∫
p(x0, x1)dx1 and note that p(x0, x1) =

q1(x1|x0)p0(x0). Then we have

q(x′
1,x1) =

∫ ∫
q1(x

′
1|x′

0)q0(x
′
0|x1)p(x0, x1)dx0dx

′
0

=

∫ ∫
q1(x

′
1|x′

0)q0(x
′
0|x1)q0(x0|x1)p1(x1)dx0dx

′
0

=

∫
q1(x

′
1|x′

0)q0(x
′
0|x1)

∫
q0(x0|x1)dx0 p1(x1)dx

′
0

=

∫
q1(x

′
1|x′

0)q0(x
′
0|x1)p1(x1)dx

′
0

=

∫
q1(x

′
1|x′

0)p(x
′
0, x1)dx

′
0

=

∫
q1(x

′
1|x′

0)q1(x1|x′
0)p0(x

′
0)dx

′
0 .

Since q1(x
′
1|x′

0)q1(x1|x′
0) is symmetric in x1 and x′

1, this
implies that

q(x′
1, x1) = q(x1, x

′
1) ,

which means that the Markov chain Xn,1 is reversible.
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