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SUMMARY

Cryo-electron tomography (cryo-ET) captures the
3D electron density distribution of macromolecular
complexes in close to native state. With the rapid
advance of cryo-ET acquisition technologies, it is
possible to generate large numbers (>100,000) of
subtomograms, each containing a macromolecular
complex. Often, these subtomograms represent a
heterogeneous sample due to variations in the struc-
ture and composition of a complex in situ form or
because particles are a mixture of different com-
plexes. In this case subtomograms must be classi-
fied. However, classification of large numbers of
subtomograms is a time-intensive task and often a
limiting bottleneck. This paper introduces an open
source software platform, TomoMiner, for large-
scale subtomogram classification, template match-
ing, subtomogram averaging, and alignment. Its
scalable and robust parallel processing allows effi-
cient classification of tens to hundreds of thousands
of subtomograms. In addition, TomoMiner provides
a pre-configured TomoMinerCloud computing ser-
vice permitting users without sufficient computing
resources instant access to TomoMiners high-per-
formance features.

INTRODUCTION

Cryo-electron tomography (cryo-ET) captures the density distri-

butions of macromolecular complexes and pleomorphic objects

at nanometer resolution (e.g., Asano et al., 2015; Briggs, 2013;

Lu�ci�c et al., 2013; Mahamid et al., 2016; Milne et al., 2013;

Pfeffer et al., 2015; Tocheva et al., 2014). Cryo-ET has provided

important insights into the ultra-structures of entire bacterial

cells, and revealed the structures of numerous macromolecular

complexes.

Several factors complicate the analysis of cryo-electron tomo-

grams to determine structures of macromolecular complexes;

these factors include the relatively low and non-isotropic resolu-
tion and distortions due to electron optical effects and missing

data (Förster et al., 2008). For example, unavoidable systematic

distortions are caused by variations in the contrast transfer func-

tion (CTF) in individual electronmicrographs (Briggs, 2013).Orien-

tation-specific distortions can result from the missing wedge

effect, which arises from the restricted range of tilt angles when

collecting the micrographs (typically between �60� and +60�).
This limitation in data coverage means that Fourier space struc-

ture factors are missing from a wedge-shaped region, causing

non-isotropic resolution and other image artifacts that depend

on the orientation and shape of the object relative to the tilt axis

(Bartesaghi et al., 2008; Förster et al., 2008; Xu et al., 2012).

The nominal resolution of tomography images can be

increased by aligning and averaging multiple subtomograms

containing the same structure (Briggs, 2013). Typically, for a

given complex of interest subvolumes (i.e., the subtomograms)

are extracted from a tomogram containing distinct examples of

the complex, which are typically aligned and their signals aver-

aged to generate a density map with increased nominal resolu-

tion. However, if the subtomograms represent a heterogeneous

sample (a mixture of different complexes, or multiple conforma-

tional or compositional states of the target complex), it is neces-

sary to first group them into homogeneous sets in an unbiased

manner, using reference-free classificationmethods. This classi-

fication or clustering step is a common subtask in subtomogram

analysis. It often costs significantly more computation than sub-

tomogram averaging and therefore requires fast and accurate

subtomogram alignments. We recently introduced an efficient

alignment algorithm designed for use with reference-free subto-

mogram classification (Xu et al., 2012, STAR Methods). The

method relies on fast rotational alignment and uses the Fourier

space equivalent form of a constrained correlationmeasure (För-

ster et al., 2008) that accounts for missing wedge effects and

density variances in the subtomograms. The fast rotational

search is based on 3D volumetric matching (Kovacs and Wrig-

gers, 2002). We have also proposed a fast real space alignment

method (Xu and Alber, 2013) and a gradient-based local search

method for alignment refinement to increase the alignment

precision (Xu and Alber, 2012). However, all our methods were

implemented only as prototype MATLAB codes and were not

optimized to be executed on computer clusters.

Having a larger number of subtomograms increases the accu-

racy of the classification, which in turn improves the resolution of
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the resulting averaged structures (e.g., Bartesaghi et al., 2008;

Chen et al., 2014; Xu et al., 2012). With the rapid advance of

cryo-ET acquisition technologies (Morado et al., 2016), it has

become easy to acquire a large number (>10,000) of instances

of macromolecular complexes. Offsetting the clear advantage

in accuracy is the high computational cost of 3D image process-

ing. To take advantage of the available data, the field therefore

needs efficient high-throughput computational methods for pro-

cessing large numbers of subtomograms, in particular for subto-

mogram classifications. To our knowledge, currently only a few

alignment algorithms (e.g., Bartesaghi et al., 2008; Chen et al.,

2013; Xu and Alber, 2013; Xu et al., 2012) have the scalability

to process large subtomogram datasets. A performance com-

parison of algorithms (Bartesaghi et al., 2008; Chen et al.,

2013; Xu et al., 2012) can be found in Chen et al. (2013).

Here, we describe the Python/C++ software package

TomoMiner, which was developed with particular focus for

scalability and therefore the ability to process a large number

of subtomograms (>100,000). TomoMiner includes a high-per-

formance implementation of several of our previously developed

methods, including reference-free subtomogram classification

(Xu et al., 2012), template matching, and both Fourier space

(Xu et al., 2012) and real space (Xu and Alber, 2013) fast subto-

mogram alignment. All these methods are implemented in a

parallel-computation framework designed to be highly scalable,

efficient, robust, and flexible. The software can run on a single

personal computer or in parallel on a computer cluster, in order

to quickly process large numbers (>100,000) of subtomograms.

In addition, TomoMiner provides an open source platform for

users to implement their own tomographic structural analysis

algorithms within the parallel-computation framework of the

TomoMiner framework. Although many methods have been pro-

posed for the structural analysis of macromolecular complexes

from cryo-ET subtomograms, only a few software packages

are currently available to the research community. These

include, but are not limited to, the TOM Toolbox (Nickell et al.,

2005), PyTOM (Hrabe, 2015; Hrabe et al., 2012), AV3 (Förster

et al., 2005; Nickell et al., 2005), Dynamo (Castaño-Dı́ez et al.,

2012), EMAN2 (Galaz-Montoya et al., 2015; Tang et al., 2007),

PEET (Nicastro et al., 2006), Bsoft (Heymann et al., 2008), and

RELION (Bharat et al., 2015; Scheres, 2012). TomoMiner com-

plements existing software solutions because it focuses on

large-scale data processing and implementing proven algo-

rithms and tools in parallel form, so that researchers can process

tens or even hundreds of thousands of subtomograms.

TomoMiner has been designed to run on computer clusters,

and scales to hundreds of processors. Some components,

such as the data storage interface, have been abstracted, and

so are easily replaced with different implementations on different

cluster computing platform architectures. In addition, we provide

a cloud computing version of TomoMiner on Amazon’s web

services (AWS, http://aws.amazon.com). Those research labs

without access to substantial computational capacity, or the

ability to adapt, install andmaintain TomoMiner on existing com-

puter clusters can use the cloud computing version immediately

by paying for resources as they go.

Our results show that TomoMiner is able to achieve a close to

linear scaling with increasing amounts of input data. Here, we

show that TomoMiner is able to efficiently and accurately
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average 100,000 subtomograms, and classify 100,000 subtomo-

grams of a heterogeneous mixture of five different complexes. In

addition, TomoMinerCloud is able to perform large-scale aver-

aging and classification at affordable cost on cloud computing

services.

RESULTS

Software Implementation
The TomoMiner package contains a suite of programs covering

a variety of important tasks in subtomogram analysis, including,

among others: (1) fast and accurate subtomogram alignment

that accounts for missing wedge effects; (2) large-scale,

reference-free subtomogram averaging and classification; (3)

reference-based subtomogram classification; and (4) template

matching for detecting complexes in large tomograms.

TomoMiner is optimized for processing large numbers

(z100,000) of subtomograms. It is designed to be scalable,

robust, computationally efficient, and flexible. This is accom-

plished throughmodular design and parallel computing architec-

ture. The programs function by breaking computations into

smaller independent tasks, which can be computed in parallel

by individual CPU cores on a computer cluster.

Software Design and Modular Architecture for Parallel

Processing

TomoMiner’s parallel processing system consists of three major

components (Figure 1): (1) the analysis programs, such as the

subtomogram classification, averaging and template matching;

(2) the TomoMiner server, which manages the execution of tasks

generated by the analysis programs and passes the results of

each task back to its requesting program; and (3) the workers,

which process the tasks.

Each analysis program breaks its computations down into

small independent tasks, which are submitted to the TomoMiner

server. The server distributes the tasks to workers for execution,

monitors worker processes, and passes results from the

workers back to the analysis program. Workers and analysis

programs communicate with the server over a network, allowing

all of these components to run on separate computers. Since

workers are single-threaded, we usually run one worker per

CPU core. The workers connect to the server and request tasks

for execution. When a task is finished, the worker sends the

result to the server and requests a new task. The results of all

completed tasks are collected by the analysis program. Impor-

tantly, several independent analysis programs from different

users can submit their tasks to the same TomoMiner server

and worker pool at the same time. This design allows for

maximum utilization of cluster resources. For example, an anal-

ysis program may stop running as it awaits the completion of a

non-parallelizable task or a set of parallel tasks. Typically,

some parallel tasks finish earlier than others, so if only one anal-

ysis program is using the server then many workers will remain

idle when the number of unfinished tasks is smaller than the

number of workers. We can decrease the idle time on the avail-

able cluster nodes by running two or more analysis programs

communicating with the same TomoMiner server. Idle nodes

can then receive tasks from a second program, and total node

utilization will be higher. This design is particularly useful when

programs are submitted in a shared cluster environment that

http://aws.amazon.com


Figure 1. Parallel Processing Architecture
limits the number of submitted jobs and the assigned cluster

time per user.

The TomoMiner software system can run the analysis and

server programs and the workers layer on a single desktop

computer, or run each component independently on separate

computers within a cluster. For example, we frequently use

TomoMiner with 256 workers running on different machines.

To reduce the communication load on the server, both the

tasks and the results that pass through the server are limited to

small messages. Large results or inputs, such as the subtomo-

grams themselves, are kept on shared data storage (Figure 1),

where they can be easily retrieved by workers and analysis pro-

grams as needed. A task passed to a worker only needs the path

to the data, not the data object itself.

Software Robustness. Component failures are inevitable when

using distributed computer systems; these must be handled

without causing the failure of other system components and

without terminating the analysis process. TomoMiner compo-

nents are designed to be robust to intermittent network and

remote failures. When a task is sent to a worker, the TomoMiner

server monitors its progress. If the task takes longer than ex-

pected, or the connection to the worker is lost, the server re-as-

signed the task to another worker. If a task fails, the worker

passes the failure notification to the server. The server can

then take an action, such as rescheduling, or pass the notifica-

tion back to the analysis program for handling. All tasks are care-

fully tracked, and an uncompleted task can be attempted by

multiple workers when computational resources are available.

As soon as one of these attempts succeeds, the server can

cancel remaining instances of the same task, so that the freed

workers can request new tasks. A worker processes each task

by launching an independent subprocess, so that the worker

program cannot be crashed by bugs in the analysis code. If

the subprocess crashes, the worker notifies the server of the fail-

ure, but remains online.

Each task can also be assigned properties to control how it is

executed. For example, one can specify the maximum run time,

after which the task will be considered lost and the server will

send the task to another worker. One can also set up an upper

limit on the number of times a task can be re-assigned to a

new worker after loss or failure. All these features provide the

foundation for a robust parallel processing system. Because
subtomogram analysis is usually an iterative process, we have

also added checkpointing so that the can resume from the last

iteration if the program is terminated unexpectedly.

Software Flexibility. TomoMiner is designed to run multiple

analysis programs connected to the same TomoMiner server

with the same pool of workers (Figure 1). Multiple users can

run multiple analysis programs concurrently. The server will

manage tasks for multiple programs on the same pool of

workers. Such design enables our system to simultaneously

perform different types of calculations, for example replicate

calculations with different initializations and/or different param-

eter settings. In addition, the same pool of workers and the

same TomoMiner server can act as a shared service used by

multiple users, multiple research labs, or even multiple research

institutions. Moreover, developing new subtomogram analysis

programs does not require knowledge of the internal parallel

worker implementation, only away tomatch the parallel interface

to the functions processed by the tasks.

Software Components and Dependencies. The TomoMiner

code consists of several components. The core is a library of

basic functions dealing with (1) data input and output, (2) subto-

mogram processing, such as fast rotational and translational

alignment of subtomograms and averaging, and (3) calculations

of subtomogram correlations. This core is written in C++ tomaxi-

mize computational efficiency.

This core has been wrapped into a Python module. All

TomoMiner top-level programs are implemented as Python

programs. These include analysis programs such as the

reference-free subtomogram classification routine, parallel pro-

cessing programs such as the TomoMiner server, and utility

programs such as Fourier shell correlation calculator. The choice

of languages allows for fast prototyping of new algorithms and

interoperability with other software. Python is more accessible

for novice programmers. TomoMiner provides the advantages

of developing software in a high-level language without sacri-

ficing performance, because all numerically intensive calcula-

tions are carried out by the wrapped C++ functions.

The C++ code is built on top of several existing libraries. The

open source Armadillo (Sanderson, 2010) library is used to repre-

sent volumes, masks, matrices, and vectors. Fast Fourier trans-

forms are provided by FFTW (Frigo and Johnson, 2005). The C++

core is wrapped using Cython (Behnel et al., 2011). This library
Structure 25, 951–961, June 6, 2017 953



Table 1. The Various Executables Included in the TomoMiner

Software Package

Description

Parallel Processing Programs

tm_server Run a server

tm_worker Run a worker which will process subproblems

tm_watch Report progress and statistics on the server

Utility Programs

tm_align Calculate optimal alignment between two

subtomograms using fast rotational matching

tm_fsc Calculate the Fourier shell correlation (FSC)

between two aligned structures

tm_corr Calculate the correlation score of the best

alignment between two subtomograms

Analysis Programs

tm_classify Reference-free or reference-based

subtomogram classification

tm_average Reference-free or reference-based

subtomogram alignment and global averaging

tm_match Template matching
enables a user to call core functions written in C++ directly from

Python programs, using Python data structures as arguments. A

number of auxiliary routines from SciPy (Jones et al., 2001) and

scikit-learn (Pedregosa et al., 2011) are also used by the classi-

fication code.

Cloud Computing Setup
Due to the computationally intensive nature of 3D image pro-

cessing of large numbers of subtomograms, analysis software

needs to scale well and support parallel-computation environ-

ments to achieve high performance. TomoMiner was designed

tomeet these criteria, and can be installed on computer clusters.

However, many research labs do not have access to a computer

cluster with sufficient computational resources. Also, the hard-

ware and software architectures of computer clusters can vary

substantially and the installation and configuration of specialized

software is often non-trivial, and may introduce conflicts with the

previously installed software and libraries. Therefore, it may be

impractical for labs who may only occasionally perform subto-

mogram analysis tasks to invest money and/or labor in setting

up and maintaining the required software and hardware.

Here, we provide a pre-installed and pre-configured

TomoMiner system (TomoMinerCloud) in the form of a cloud

computing service to those labs without access to high-perfor-

mance computing. TomoMinerCloud is a system image that

can be used on publicly available cloud computing platforms,

such as AWS. Cloud platforms allow computational capacity to

be purchased as a service, where users are charged based on

the amount of computational resources used (Cianfrocco and

Leschziner, 2015). They provide the flexibility to run large com-

putations or analyses using a pool of virtual machines (VMs),

without the burdens of owning and maintaining hardware or

installing cluster management software.

We have built a publicly available VM image and installed our

software into the image to provide cloud services. The service

allows users to immediately use the TomoMiner software for

large-scale subtomogram analysis, at an affordable cost, and

with very little configuration or maintenance burden. The amount

of computational resources can be determined dynamically as a

function of the data size and budget. Currently TomoMinerCloud

is available on AWS. TomoMinerCloud is designed so that re-

searchers can set up a high-performance parallel data analysis

environment with little informatics expertise. Inside a virtual

private cloud (VPC), the VM used to run the analysis program

can be started and accessed from the users own computer.

The same VM can also host the server layer and shared data

storage. A large number of workers (hundreds or thousands)

can be executed in the cloud, each running on its own VM.

Therefore, an end-user only needs a computer with Internet

access, a web browser, and a secure shell (SSH) client. No

specialized software is required. TomoMinerCloud can be

instantiated using the web console of AWS. SSH can be used

to transfer data and launch the jobs on the VMs.

An additional advantage of TomoMinerCloud is that snap-

shots can be taken to record the current status of the VM,

TomoMiner program, and data. The snapshot mechanism can

be used to verify the reproducibility of computational experi-

ments, record exact parameter settings and configuration de-

tails, measure the effect of bug fixes or algorithmic changes,
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and share analysis between collaborators. Detailed procedures

for using TomoMinerCloud are described in the documentation

available from the main TomoMiner website (http://web.cmb.

usc.edu/people/alber/Software/tomominer).
TomoMiner Analysis Programs
TomoMiner includes the high-performance, parallel software im-

plementation of several of our previously described and new

methods, which include: (1) fast subtomogram alignment; (2)

reference-free and reference-based large-scale subtomogram

averaging and classification; and (3) template matching applica-

tions (Table 1). In the next section we describe the reference-free

classification program.

Reference-free Classification

TomoMiner contains a program for large-scale reference-free

subtomogram classification. The software is based on a previ-

ously published method (Xu et al., 2012), and includes modifica-

tions for processing large datasets. The program does not rely

on template structures; the only input is a large set of subtomo-

grams that are randomly oriented at the beginning of the iterative

process. The outputs are a classification of the subtomograms

into individual complexes, a rigid transformation for each subto-

mogram, and a density map generated by averaging all the

aligned subtomograms within each class. In comparison with

our previously published method (Xu et al., 2012), which is a

variant of alignment-through-classification method (Bartesaghi

et al., 2008), this software implementation has several adapta-

tions to parallelize the algorithm and improve efficiency and scal-

ability. The reference-free classification is an iterative process.

Each iteration consists of the following steps.

Step 1: Dimension Reduction. The similarity between subto-

mograms is measured in a reduced dimension space to focus

on the features most relevant for discrimination. For each voxel

and its neighbors, this step calculates the average covariance

of the voxel intensities across all subtomograms in a similar

http://web.cmb.usc.edu/people/alber/Software/tomominer
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way as Xu et al. (2012). The voxels with the largest covariance are

selected as the most informative features, and each subtomo-

gram is represented by a high-dimension feature vector (see

Xu et al., 2012 for details). To account for missing wedge effects,

the covariances and feature vectors are calculated on missing

wedge-masked difference maps (Heumann et al., 2011). In

contrast to our previous work (Xu et al., 2012), we use feature

extraction to further reduce the number of dimensions in order

to reduce the computational costs in the clustering step. To do

so, principal component analysis (PCA) is used to project the

high-dimension feature vectors into a low-dimension space. In

practice, expectation maximization-PCA (Bailey, 2012) is used

for its scalability and speed when one only extracts a small num-

ber of principal components.

Step 2: Clustering. K-means clustering is performed based on

the Euclidean distance of the low-dimension feature vectors

generated in step 1. The value of the K parameter is specified

by the user and should be chosen to over-partition the dataset.

This is because clusters leading to similar averaged tomograms

are easily identified and the corresponding subtomograms

merged into one cluster later in the analysis. In our previous

method, we used hierarchical clustering (Xu et al., 2012) but

K-means clustering results in a more efficient and scalable algo-

rithm. Finally, the class labels of all subtomograms are assigned

according to the clustering.

Step 3: Generate Cluster Averages. The subtomograms within

each cluster are averaged to generate density maps, which are

used as cluster representatives.

Step 4: Alignment of Cluster Averages. All the averaged density

maps resulting from step 3 are grouped using hierarchical clus-

tering, based on the pairwise optimal alignment scores of the

cluster averages (Xu et al., 2012). A silhouette (Rousseeuw,

1987) score determines the optimal cutoff to cluster all averaged

density maps into classes. Within each hierarchical class, the

map that was generated from the largest number of subtomo-

grams is chosen as a reference. Then all other maps in the hier-

archical class are aligned relative to this reference.

Step 5: Alignment of Subtomograms. All of the original subto-

mograms are aligned to each of the cluster averages generated

in step 4. To allow high-throughput processing, we implemented

a fast computationally efficient alignment algorithm based on

fast rotational matching (Xu et al., 2012). For each subtomogram

the rigid transform with the highest scoring alignment is used as

input for the next iteration.

The iterative process (steps 1 to 5) can either be executed for a

fixed number of iterations, or terminated when the amount of

changes in subtomogram class labels or changes in the cluster

averages between two iterations is small.

Reference-Based Classification

If template structures are provided as a reference, the classifica-

tion process can use these alongside the averaged density maps

of each cluster as cluster representatives.

Subtomogram Alignment by Fast Rotational Matching

TomoMiner contains a program for fast alignment (Xu et al.,

2012, STARMethods). This method increases the computational

efficiency of subtomogram alignments by at least three orders of

magnitude (Xu et al., 2012) compared with exhaustive search

methods (Förster et al., 2008), while at the same time accounting

for missing wedge effects when calculating the correlations be-
tween the tomograms. This approach allows subtomogram

alignments on a single CPU core to achieve comparable speeds

to exhaustive search-based alignment methods accelerated

GPU usage. The missing wedge constrained fast alignment is

implemented as a C++ library. This new C++ implementation

has been thoroughly tested, and is at least six times faster

than our previous MATLAB prototype used in Xu et al. (2012).

In addition, TomoMiner implements our previously proposed

real space fast subtomogram alignment method (Xu and

Alber, 2013).

Template Matching

TomoMiner also provides an efficient template-matching proto-

col. Given a set of templates with known structures, and a set of

candidate subtomograms with unknown structures extracted

through template-free particle picking (e.g., Langlois et al.,

2011; Voss et al., 2009), TomoMiner can perform fast alignment

(Xu et al., 2012) to compute which structures are most similar to

the unknown subtomograms in terms of the alignment score.

Data Scalability, Worker Scalability, and Efficiency
Scalability is an important measure of performance for parallel

software. We evaluate it using two measures: data scalability

and strong scalability. Data scalability measures the perfor-

mance of TomoMiner when the number of subtomgrams in-

creases while the number of workers is held constant. Strong

scalability measures performance when the number of workers

increases for a dataset of fixed size.

Whether we change the number of processors or the number

of subtomograms, we are most interested in the time required to

process a single subtomogram. This is captured by the effi-

ciency, defined as the ratio of the observed rate (total time/sub-

tomogram number) to the expected linear rate. As a reference

point for both performancemeasures (data scalability and strong

scalability) we use the highest observed rate among all the calcu-

lations as the linear expected rate to represent the ideal scenario.

A relative efficiency of 100% corresponds to perfect linear

scaling, while a relative efficiency of 50% indicates that the pro-

gram took twice as long as the ideal scenario.

Data scalability and strong scalability are assessed for a single

iteration of the reference-free subtomogram alignment and aver-

aging process: averaging all subtomograms and aligning them

against a single average. The subtomograms are cubes (463 vox-

els) containing a single randomly oriented complex (PDB:

2AWB). They were generated following the simulation procedure

described in the STAR Methods Section using a signal-to-noise

ratio (SNR) of 0.01 and a tilt angle range of ±60�.
Data Scalability

TomoMiner makes effective use of computational resources.

When using a constant 256 workers, the computational time

increases nearly linearly with increasing numbers of subtomo-

grams (5,000–100,000 subtomograms, see Figure 2A). The soft-

ware aligns and averages 100,000 subtomograms in under 2 hr

using 256 workers (Figure 2A). For all datasets with more than

5,000 subtomograms, the efficiency remains above 80% (Fig-

ure 2B). TomoMiner scales very well with increasing data and

is an efficient platform for data analysis.

Strong Scalability

When increasing the number of workers for a fixed number of

subtomograms, the computing time decreases (Figure 2C). For
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Figure 2. Efficiency and Scalability

(A) The time required for a single round of alignment

and averaging as a function of subtomogram

number, for a constant 256 workers. The curve is

close to linear across the entire range of data.

(B) The relative efficiency of the data scalability

when additional data is added, for a constant 256

workers. The rate of processing is very stable

across several orders of magnitude.

(C) The time required for a single round of align-

ment and averaging for two different datasets, with

8,000 and 16,000 subtomograms. The number of

workers varies from 32 to 256. For a relatively small

number of subtomograms, there are not enough

subproblems generated to occupy 256 workers, so

some are idle, creating the plateau seen in the

graphs.

(D) The relative efficiency of strong scalability. For

these problem sizes TomoMiner scales well, with

very little overhead for the increased communica-

tion and coordination load of additional workers.

There is a clear loss of efficiency when using too

many workers for a given problem size, but this

demonstrates that even formedium-sized datasets

(10,000 + subtomgorams) TomoMiner is far away

from reaching its computational limits.
example, for a dataset containing 16,000 subtomograms, the

computing time dramatically decreases when increasing the

number of workers from 32 to 128 (Figures 2C and 2D).

Increasing the number of workers further results in less pro-

nounced gains, because the worker pool is not fully utilized.

When using 256 workers for 8,000 subtomograms, for example,

many of the workers are idle at any given moment so the pro-

cessing rate is lower than the expected linear rate leading to a

decreased efficiency (Figure 2D). Interestingly, we find optimal

performance at about 100 subtomograms/worker. To further

validate our observations, we have also simulated subtomo-

grams at 3 Å voxel spacing, and achieved similar linear scaling

(STAR Methods, Figure S1).
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In summary, we can demonstrate that

TomoMiner makes effective use of

computational resources and is able to

process very large numbers of subtomo-

grams in an effective manner.

Performance of Reference-free
Subtomogram Classification
We previously presented a reference-free

subtomogram classification method (Xu

et al., 2012).We implemented this pipeline

in TomoMiner and adapted it to increase

its scalability. To test the performance of

this program, we classified 100,000 sub-

tomograms, divided into five groups of

20,000, each group depicting a different

complex (Figure 3A; Table 2). Each subto-

mogram is a cube with sides of 41 voxels.

The complexes are generated with an

SNR of 0.01, and tilt angles in the range
of ±60�. The complexes were randomly rotated, and given a

random offset from the tomogram center up to seven voxels in

each dimension. The classification program requires a user-

defined number of clusters, which should be chosen to over-

partition the data as described earlier. In our example, the initial

number of clusters was set to 10 to demonstrate the perfor-

mance with the expected over-partition of the data.

After ten iterations, the reference-free classification process

converged and all the subtomograms were successfully classi-

fied. Because we have access to the true subtomograms used

to generate the data, we can compare the cluster averages

to the corresponding true structures for validation. The classifi-

cation performance is assessed as described in the STAR
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Figure 3. Reference-free Classification of 100,000 Subtomograms

A total of 20,000 subtomograms are generated for each of five different structures, using the procedure defined in the STAR Methods. The subtomograms were

simulated using a signal-to-noise ratio of 0.01 and a tilt angle of ±60�. The clusters converged after 10 iterations of reference-free subtomogram classification,

using a cluster number of 10.

(A) After ten iterations, the averaged subtomograms in each cluster converged to structures close to the ground truth. Since there are more clusters than

structures, some clusters have converged to the same structure.

(B) Pairwise correlations between the averaged density maps of all ten clusters. Clusters corresponding to the same complex are easily identified by their high

correlation values, then can be combined into a single cluster.

(C) The number of subtomograms in each cluster (top). Each cluster is dominated by a single complex. The percentages of subtomograms generated from the

dominant complex are 96.2%, 97.8%, 99.9%, 100%, 95.6%, 98.5%, 97.7%, 90.7%, 89.4%, and 99.9% for clusters 1 to 10, respectively. Cluster IDs are shown

on the horizontal axis. Since the numbers are arbitrary labels, they have been arranged so that similar clusters are adjacent. The correlations between the true

structures (bottom), and the averaged density maps demonstrate that the clustering is accurate.
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Table 2. To Assess the Methods We Used Five Different

Macromolecular Complexes Selected from the PDB and Used

Previously as a Test Set

PDB ID Description

1BXR Carbamoyl phosphate synthetase complexed with the

ATP analog AMPPNP

1KP8 GroEL-KMgATP

1W6T Octameric enolase from S. pneumoniae

1YG6 ClpP

2AWB 50s subunit of E. coli ribosome

Berman et al. (2000).
Methods ‘‘Assessment of classification accuracy.’’ The result-

ing cluster averages are accurate reconstructions of the true

complexes, with Pearson correlation values between cluster

averages and the ground truth >0.9 (Figures 3A and 3C). The

over-partition leads to several clusters containing identical

complexes, which can easily be identified based on the high

correlation score between the aligned cluster averages (Fig-

ure 3B). Subtomograms within a cluster overwhelmingly depict

only a single complex. The fraction of subtomograms from the

same complex ranges between 89.4% and 99.9% (Figure 3C)

for the ten clusters.

When using 256 workers, TomoMiner required an average of

207 min per iteration to classify the 100,000 subtomograms

without a reference structure.

Accuracy Increases with Larger Datasets
Next, we demonstrate the benefit of very large datasets

for reference-free subtomogram averaging. We generated

100,000 subtomograms of the 50S subunit of the Escherichia

coli ribosome (PDB: 2AWB) with an SNR of 0.005 and tilt angle

range ±60�. Each subtomogram is a cube with a side length of
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33 voxels. Our reference-free iterative alignment and averaging

pipeline is able to recover the underlying structure. TomoMiner

required an average of 37 min per iteration for alignment and

averaging using 256 workers. Figure 4 shows the correlation

score after 20 iterations, when different numbers of subtomo-

grams are given as the input dataset. Using a very large number

of subtomograms increases the accuracy of the generated

model, demonstrating the advantage of using high-perfor-

mance parallel analysis software. To further validate our obser-

vations, we have also simulated subtomograms at 3 Å voxel

spacing. Similar to our previous tests, the accuracy of averaging

increases with the number of subtomograms (STAR Methods,

Figure S2).

Reference-free Classification of GroEL and GroEL/
GroES Subtomograms
Next we demonstrate the use of our reference-free classification

method on a set of publicly available experimental subtomo-

grams of purified GroEL andGroEL/GroES complexes published

previously by Förster et al. (2008) and frequently used for testing

of subtomogram classification methods (Xu et al., 2012). The da-

taset consists of two sets of subtomograms: 214 obtained from

13 cryo-electron tomograms of purified GroEL complexes, and

572 obtained from 11 cryo-electron tomograms containing

GroEL/GroES complexes. The differences between the subto-

mograms of the two different complexes are subtle, so their clas-

sification is a challenging test case.

Because the total number of subtomograms is small (786),

the classification can be easily performed on a single computer

with multiple CPU cores. The test was carried out on a work-

station with 8 CPU cores and 12 GB memory. When using 8

parallel workers, and setting the number of classes to K = 2, 5 it-

erations of classification only took 140 min. Both major classes

of structures GroEL and GroEL/GroEL were well recovered

(Figure 5).
Figure 4. Accuracy of the Averaged Density

Maps Generated from Reference-free Align-

ment and Averaging

The accuracy is measured as the Pearson corre-

lation between the generated averages and the

template of the true structure. Several correlations

are shown, for averages generated with an

increasing number of subtomograms in the data-

set. We generated 100,000 subtomograms of a

randomly oriented complex (PDB: 2AWB) using the

procedure described in the STAR Methods, with a

signal-to-noise ratio of 0.005 and a tilt angle range

of ±60�. The computed average is more accurate

when using more subtomograms. TomoMiner’s

ability to handle large numbers of subtomograms

therefore efficiently allows for accurate re-

constructions and classifications of structures

from noisy data, given sufficiently large datasets.



Figure 5. Reference-free Classification of 886 Experimental Subto-

mograms Containing the GroEL and GroEL/GroES Complexes

Taken from Förster et al. (2008)

Convergence was reached after five iterative rounds of reference-free classi-

fication.

(A) Slice through the resulting cluster averages. Scale bar, 5 nm.

(B) Cluster averages depicted by isosurface rendering. The atomic structure of

the GroEL/GroES complex is fitted into both cluster averages for comparison.
Cost Analysis of Cloud Computing
We have implemented and made TomoMinerCloud publicly

available on the AWS cloud. The AWS cloud infrastructure can

be accessed worldwide, and there are data centers in many re-

gions of the world. Researchers without access to local

computing clusters are now able to leverage Amazon’s cloud

computing infrastructure to perform large-scale data analysis,

at low cost.

Current prices for renting an analysis program and server VM

with two cores and 15 GB memory (instance type r3.large) start

from $0.175 (USD) per hour, based on AWS pricing (http://aws.

amazon.com/ec2/pricing). Renting a worker VM with 36 core

and 60 GB memory (instance type c4.8xlarge) can cost as little

as $1.763 (USD) per hour. Each such VM can host 36 workers,

therefore the cost per worker per hour is $0.049 (USD). The

design of our task distribution also conveniently enables one to

rent spot instances, which use unused AWS capacity at a signif-

icantly lower price. Renting solid-state storage costs $0.10 USD

per GB per month. Uploading data is free of charge. Download-

ing analysis results is nearly free of charge, because the gener-

ated results consist of only a small amount of data, namely the

rigid transformations of each subtomogram and the class aver-

ages. Inter-communication among VMs inside the VPC is also

free of charge. Given such pricing, the total cost for the

reference-free classification example of 100,000 subtomograms

depicted in Figure 3 is estimated to be below $500. Therefore

TomoMinerCloud is an affordable and efficient solution for

high-performance subtomogram analysis for tomography labo-
ratories that will not maintain a large computer cluster or need

additional computing resources to perform the calculations.

We also estimated the time cost for uploading data. The trans-

fer of a compressed file containing 100 subtomograms (volume

36 nm3, voxel spacing 3 Å) to AWS North California region took

8.61 s at a speed of around 76 MB/s. In such case the transfer

of 100,000 subtomograms would be estimated to take 2.4 hr.

In addition, we performed a simple averaging test of the

tobacco mosaic virus (TMV) subtomograms (Kunz et al., 2015)

using TomoMinerCloud, following a similar procedure as in

(Kunz et al., 2015). The total cost for the averaging is below

$50. The results for the TMV averaging are summarized in the

STAR Methods and Figure S3.

DISCUSSION

With current developments in cryo-ET it is possible to acquire

cryo-ET 3D images of large numbers of particles. Processing

large numbers of subtomograms is a bottleneck in structural

analysis, so high-performance subtomogram analysis software

is an increasingly important part of the toolkit used for the struc-

tural analysis of macromolecular complexes.

TomoMiner is a software for high-performance parallelized

cryo-ET structural analysis. It is able to handle very large

numbers of subtomograms, which is necessary for handling

structural heterogeneity and increasing the quality and resolution

of macromolecular complex structures from cryo-ET applica-

tions. TomoMiner provides a scalable architecture with respect

to computational resources and can handle huge numbers of

subtomograms. The platform provides both reference-based

and reference-free subtomogram classification methods, and

perform averaging and template matching based on subtomo-

gram alignment methods.

We intend to transfer the TomoMiner into a community-

centered, collaborative development project, with publication

of the initial source code and programs as the first step. Our

framework will be available through a distributed source

code repository, which makes it easy for developers to partic-

ipate in the project, modify TomoMiner to suit their own needs,

and build their own tools on the platform. In addition, the

TomoMiner core library can be easily integrated into other

tomogram analysis systems, especially those written in Python

or C++. As an example, the core library and distributed

processing components of TomoMiner have recently been

used for supporting de novo visual proteomics analysis (Xu

et al., 2015).

In TomoMiner, various components such as the data storage

interface have been abstracted, allowing for fast adaptation to

novel computing environments. Further, different implementa-

tions of these components can be used on different high-perfor-

mance computing clusters.

TomoMinerCloud provides an instant solution for users who

do not have access to, or do not want to maintain, a high-perfor-

mance computing cluster. VMs running on cloud computing

platforms are a useful alternative to local infrastructure, requiring

minimal setup and no up-front hardware costs. Renting VMs

allows smaller research laboratories to avoid the costs of

hardware and maintaining a data center, while still benefitting

from large-scale computational methods. Currently, the cloud
Structure 25, 951–961, June 6, 2017 959
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computing solution only runs on AWS.We expect future releases

to support other cloud computing providers, such as Google

Cloud (https://cloud.google.com) and Rackspace (http://www.

rackspace.com).

In summary, TomoMiner provides several high-performance,

scalable solutions for large-scale subtomogram analysis. We

believe that TomoMiner will be an important and efficient tool

for the cryo-ET community, and it complements existing tools

in the community.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Tomominer Source Code http://web.cmb.usc.edu/people/alber/Software/tomominer/ TomoMiner

TomominerCloud Source Code http://web.cmb.usc.edu/people/alber/Software/tomominer/ TomoMinerCloud
METHOD DETAILS

Fast Subtomogram Alignment Based on Fast Rotational Matching
Subtomograms are 3D volumes defined as 3D arrays of real numbers representing the intensity values at each voxel position. The

voxel intensities are the result of a discretization of the density function f : R3/R.

A tomogram is subject to orientation specific distortions as a result of themissing-wedge effect. This effect is a consequence of the

data collection being limited to tilt angle ranges when collecting individual micrographs (with a maximum tilt range of q ± 70�). As a

result, in Fourier space structure factors are missing in a characteristic wedge shaped region. This missing data leads to anisotropic

resolution and distortion artifacts that depend on the structure of the object and its orientation with respect to the tilt-axis.

To accurately calculate the similarity between two subtomograms, we have recently introduced a Fourier space equivalent form

(Xu et al., 2012) of a popular constrained correlation score (Förster et al., 2008) that accounts for missing wedge effects. It is based on

a subtomogram transform that eliminates the Fourier coefficients located in the missing wedge regions of any of the two subtomo-

grams. For each subtomogram (f), a missing wedge mask functionMf : R3/f0;1g defines valid and missing Fourier coefficients in

Fourier space.

To allow for missing wedge corrections in our analysis procedures, a series of missing wedge masks can be given as input infor-

mation together with the subtomograms.

The search for the optimal subtomogram alignments is performed through rigid transformations with rotational and translational

components. A transformed subtomogram can be represented as:

taLRfðxÞ= f
�
R�1ða� aÞ� (Equation 1)

where f is a subtomogram,LR is a transformation operator which applies the rotation given by rotationmatrixR. ta is a transformation

operator applying a shift by vector a˛R.
The previously developed correlation score (Xu et al., 2012) for subtomograms f and g, where g has been rotated by LR, the cor-

relation is defined as

c=Re

0
B@

R ðF fUÞFtaLRgUffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF fÞUF fU

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFtaLRgÞUFtaLRgU

q
1
CA (Equation 2)

HereF is the Fourier transform andU : =MfLRgMg. The optimal rotational alignmentR and translation a are found bymaximizing

this correlation.

The above formulation allowed us to design a fast alignment procedure (Xu et al., 2012). Summarizing, we first form a translation

invariant approximation score defined by keeping only the magnitudes of the Fourier coefficients of the subtomograms. This score

can be decomposed into three rotational correlation functions. After representing the values in a spherical harmonics expansion of

the magnitude values these rotational correlation functions can be efficiently and simultaneously calculated over all rotation angles

(Kovacs andWriggers, 2002) using the FFT after representing the values in Spherical Harmonics expansion of the magnitude values.

Therefore a small number of local maxima of the approximation score can be collected, representing a set of rotation angle candi-

dates. Given each candidate rotation, a fast translation search can be performed to obtain optimal translations to determine a. The

overall optimal alignment can then be obtained. This procedure is detailed in Equations 7-9 of (Xu et al., 2012).

In our software implementation, the volume rotation method for rotating the volumes uses cubic interpolation. Mask rotations use

linear interpolation. In rotational searches, we re-sample the volume in spherical coordinates using cubic interpolation.

Generating a Benchmark Set of Cryo-Electron Subtomograms
We tested the performance of TomoMiner with realistically simulated subtomograms as ground truth. This benchmark set of

tomograms contains five known protein complexes (Table 2). For a reliable assessment of the software, the subtomograms must

be generated by simulating the actual tomographic image reconstruction process, including the applications of noise, distortions

due to the missing wedge effect, and electron optical factors, such as the Contrast Transfer Function (CTF) and Modulation Transfer
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Function (MTF). We follow a previously described methodology for realistic simulation of the tomographic image reconstruction pro-

cess (Beck et al., 2009; Förster et al., 2008; Nickell et al., 2005; Xu et al., 2011). Macromolecular complexes have an electron optical

density proportional to the electrostatic potential. The PDB2VOL program from the Situs (Wriggers et al., 1999) package has been

used to generate volumes with a 4 nm or 3 Å resolution, with a voxel spacing of 1 nm or 3 Å. The volumes are cubes, whose length

dimension can be chosen depending on the experiment. The density maps are used to simulate electron micrograph images through

a set of tilt-angles. The angles are chosen to represent the experimental conditions of cryo electron tomography, and to have a

missing wedge angle similar to experimental data. For this paper we use a typical tilt-angle range of ±60�. Noise is added to achieve

the desired SNR value (Förster et al., 2008). Next the images are convoluted with the CTF andMTF to simulate optical artifacts (Frank,

1996; Nickell et al., 2005). The acquisition parameters used are typical of those found in experimental tomograms (Beck et al., 2009);

voxel grid length of 1 nm, spherical aberration of 23 10�3 m, defocus of �4 3 10�6m, and voltage of 300kV. The MTF is defined as

sinc(pu/2) where u is the fraction of the Nyquist frequency, corresponding to a realistic detector ((McMullan et al., 2009). Finally a

backprojection algorithm (Nickell et al., 2005) is used to produce subtomogram from the tilt series.

QUANTIFICATION AND STATISTICAL ANALYSIS

Assessment of Classification Accuracy
We assessed the reference-free subtomogram classification performance with simulated data, by comparing the results with the

ground truth. The accuracy ismeasured as the number of true positives. To compare the computed class labels with the ground truth,

we construct a confusion matrix where each row corresponds to a known class, and each column to a predicted class label. The

matrix elements are the number of subtomograms belonging to each class of a given class label. A maximum-weight matching

(Munkres, 1957) is computed to determine the best correspondence between ground truth classes and detected clusters. That is,

we determine the labeling of ground truth classes to class labels, which maximizes the number of true positives of the confusion ma-

trix. In the event that we have more generated clusters than true classes, we do not require a one-to-one matching, and allow for

multiple clusters tomap to the same ground truth class. The accuracy of the generated subtomogram cluster averages is determined

by comparison with templates of the ground truth protein complexes. The Pearson correlation score between the two structures is

used to quantify the similarity.

Averaging Subtomograms of 3 Å Voxel Spacing
Wealso simulated ribosome subtomogramswith a voxel size of 3 Å, resolution 3 Å, SNR 0.03, and tilt angle range ±60� and performed

the averaging tests. The test was performed to demonstrate the computational efficiency of the parallel implementation with respect

to the scaling of the computational efficiency with respect to the number of subtomograms and cluster nodes. When using the simu-

lated subtomograms at 3 Å voxel size we can show almost identical linear scaling behavior in comparison to tests with maps using

1 nm voxel size. The following figures describe the results for subtomograms at 3 Å voxel size.

Figure S1A shows that the required computation time increases close to linear with respect to the number of tomograms analyzed.

Figure S1B shows that when the number of subtomograms increases the computation time per subtomogram per iterative round

decreases. The plateau at 10,000 subtomograms indicates that the scaling converges on a constant speed. Figure S2 shows the

increase of the structural accuracy of averages with the increase of the number of subtomograms.

Structural Reconstruction of the Tobacco Mosaic Virus (TMV) Using TomoMinerCloud
We also demonstrated the performance of TomoMinerCloud on the amazon cloud computing services using a recent dataset. We

performed a reference-free iterative alignment and averaging for the Tobacco Mosaic Virus (TMV) using TomoMinerCloud. The 2743

TMV subtomograms were provided by the Frangakis lab and the reconstruction followed a similar procedure as in (Kunz et al., 2015).

As shown in Figure S3, we were able to reconstruct the structure and characteristic features of the TMV virus, including its helical

symmetry. The resolution of the subtomogram average is 10.4 Å measured by FSC (with 0.5 cutoff) between two half-set averages.

The reference-free iterative alignment and averaging was performed on amazon cloud. Uploading of the subtomograms took about 1

hour. The amazon cloud application was performed on 3 nodes each running 36 workers. A single iteration took about 30 minutes.

The total cost for the iterative process using TomoMinerCloud is below $50 US Dollars. These results demonstrate the applicability of

our programon direct detector data and also the feasibility to use TomominerCloudwithout the use of a high performance-computing

cluster.

DATA AND SOFTWARE AVAILABILITY

The TomoMiner and TomoMinerCloud source code and user guide are available at http://web.cmb.usc.edu/people/alber/Software/

tomominer
Structure 25, 951–961.e1–e2, June 6, 2017 e2

http://web.cmb.usc.edu/people/alber/Software/tomominer
http://web.cmb.usc.edu/people/alber/Software/tomominer

	TomoMiner and TomoMinerCloud: A Software Platform for Large-Scale Subtomogram Structural Analysis
	Introduction
	Results
	Software Implementation
	Software Design and Modular Architecture for Parallel Processing
	Software Robustness
	Software Flexibility
	Software Components and Dependencies


	Cloud Computing Setup
	TomoMiner Analysis Programs
	Reference-free Classification
	Step 1: Dimension Reduction
	Step 2: Clustering
	Step 3: Generate Cluster Averages
	Step 4: Alignment of Cluster Averages
	Step 5: Alignment of Subtomograms

	Reference-Based Classification
	Subtomogram Alignment by Fast Rotational Matching
	Template Matching

	Data Scalability, Worker Scalability, and Efficiency
	Data Scalability
	Strong Scalability

	Performance of Reference-free Subtomogram Classification
	Accuracy Increases with Larger Datasets
	Reference-free Classification of GroEL and GroEL/GroES Subtomograms
	Cost Analysis of Cloud Computing

	Discussion
	Supplemental Information
	Author Contributions
	Acknowledgments
	References
	STAR★Methods
	Key Resources Table
	Method Details
	Fast Subtomogram Alignment Based on Fast Rotational Matching
	Generating a Benchmark Set of Cryo-Electron Subtomograms

	Quantification and Statistical Analysis
	Assessment of Classification Accuracy
	Averaging Subtomograms of 3 Å Voxel Spacing
	Structural Reconstruction of the Tobacco Mosaic Virus (TMV) Using TomoMinerCloud

	Data and Software Availability



