A Local Update Strategy for
[terative Reconstruction from Projections

Ken Sauer Charles Bouman
Department of Electrical Engineering School of Electrical Engineering
University of Notre Dame Purdue University
Notre Dame, IN 46556 West Lafayette, IN 47907-0501
(219) 239-6999 (317) 494-0340

August 24, 2004

Abstract

We present a method for Bayesian reconstruction from projections which updates sin-
gle pixel values, rather than the entire image, at each step. The technique is similar to
Gauss-Seidel (GS) iteration for the solution of differential equations on finite grids. The
computational cost per iteration of the GS approach is found to be approximately equal
to that of gradient methods. For continuously valued images, GS is found to have signifi-
cantly better convergence at modes representing high spatial frequencies. In addition, GS is
well-suited to segmentation when the image is constrained to be discrete-valued [1, 2.

1 Introduction

2 Model of Physical System

In practice, reconstruction requires finite-dimensional representation of both the projection
data, p, and the modeled image, f. The Radon transform equations may be written in the
discrete form

p=Af

where A is a sparse MxN matrix with A;; equal to the length of the intersection of projection
ray j and pixel 7.
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Figure 1: This is an example of a figure drawn in xfig that contains Latex equations.
3 Optimization Techniques

3.1 Gradient Ascent

We will first consider gradient ascent, an iterative scheme whose update equation may be
written in the form of a standard discrete time system.

= [I - «(ADA +9R)] /" + aA'D)p (1)
= [[—a(H+~R)] f™ +ab

f(nJrl)

Each iteration of (1) requires the computation of a projection, a backprojection and multi-
plication by the matrices D and R.

4 Experimental Results

Regularization both speeds convergence, and prevents excessive oscillation in the estimate.
For the following results, we use an R with the form of a discrete 5-point Laplacian. Typical
convergence rates are shown in Fig. 2 for MAP estimation with the same optimization
methods and v = 100cm?. (This corresponds to a standard deviation of a pixel given its
neighbors of 0.1cm™!) The associated error spectrum has substantial energy at very low
frequencies, plus an approximately flat spectral content across the higher frequencies. Here
CG enjoys a slight advantage in convergence rate, and both CG and GS are essentially
completely converged at fewer than 15 iterations. GA is much slower, as expected. Trials
with larger ~ yielded still faster convergence, but very similar relationships among the three
techniques.
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Figure 2: Convergence comparison for real projection weighting matrix D and regularization
using a Gaussian prior.



