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Introduction

A common inverse problem in image processing is the estimation of an image given a
corrupted version. This problem is generally known as image restoration. One approach to
this problem is to design a linear filter that predicts the desired image from the corrupted
image. In Section 1, an optimal linear filter known as a minimum mean square error filter
will be designed and applied to corrupted images.

Nonlinear filters can also be very useful in image restoration. In Section 2, a weighted

median filter will be applied to corrupted images.

1 Minimum Mean Square Error (MMSE) Linear Fil-

ters

Often filters are designed to minimize the mean squared error between a desired image and
the available noisy or distorted image. When the filter is linear, minimum mean squared
error (MMSE) filters may be designed using closed form matrix expressions. Simplicity of
design is an important advantage of optimal linear filters.

Suppose we are given a noisy or distorted image x and we want to estimate the image y

by applying a linear filter to x. The estimate ŷs at lattice location s can then be written as

ŷs = zsθ

where zs = [xs, xs+r1
, . . . , xs+rp−1

] is a row vector of pixels from a window surrounding xs,
and θ is a column vector of filter coefficients. In MMSE filtering, the goal is to find the
vector θ that will minimize the expected mean square prediction error

MSE = E[|ys − ŷs|
2]

θ∗ = arg min
θ

E[|ys − zsθ|
2] .

The solution for θ that minimizes the MSE can be shown to be

θ∗ = R−1
zz rzy
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where Rzz is a covariance matrix and ryz is a cross correlation vector.

Rzz = E[zT
s zs] (p×p symmetric matrix) (1)

rzy = E[zT
s ys] (p×1 column vector) (2)

In practice, the values of Rzz and rzy may not be known, so that they must be estimated
from examples of the image pairs X and Y . The coefficients for the filter may then be esti-
mated in a training procedure known as least squares estimation. Least squares estimation
determines that values of the filter coefficients which actually minimize the total squared
error for a specific set of training images. To do this, let Y = [y1, y2, . . . , yN ]T be a column
vector of pixels from the desired image. For reasons that will be discussed later, this vec-
tor Y may not contain all the pixels in y. For each ys there is an associated set of pixels
zs = [xs, xs+r1

, . . . , xs+rp−1
] in a window surrounding xs. We can then express the column

vector of prediction errors as

ǫ = Y − Zθ

where
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is an N × p matrix where each row zs contains p pixels from a window surrounding the
corrupted pixel xs. The total squared error is then given by

N
∑

s=1

|ys − zsθ|
2 = ||Y − Zθ||2 .

By differentiating, we may solve for the filter θ which minimizes the total squared error.

θ∗ = R̂−1
zz r̂zy

where

R̂zz =
ZT Z

N
(3)

r̂zy =
ZT Y

N
. (4)

In practice, (3) and (4) may be too difficult to compute when all the pixels in Y are used
as training samples. To reduce computational complexity, we can select a subset of locations
in the image, and only train on pairs (zs, ys) for those selected values of s. We can express
this idea formally by defining the function π(i) to be the locations of the M selected pixels
for 0 ≤ i ≤ M − 1. The vector Y = [yπ(1), yπ(2), . . . , yπ(M)]

T is then a column vector of pixels
in y at the selected locations. The corresponding matrix

Z =
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is then formed by the associated windows in x centered about the locations xπ(i). Notice
that the original images x and y are left at their original resolution, but that the pair of
(zs, ys) are sparsely sampled.

1. Down load the zip file images.zip from the lab home page. This file contains an im-
age, img14g.tif, a blurred version img14bl.tif, and two noisy versions, img14gn.tif and
img14sp.tif.

2. Use Matlab to compute estimates of the covariance matrix R̂zz and the cross correlation
r̂zy for a 7× 7 prediction window. Use the original img14g.tif for Y and use img14bl.tif

for X. Only sample the pairs (zs, ys) at (1/400)th of the pixel locations in the image.
You can do this by taking a sample at every 20th column and every 20th row. The
Matlab reshape command may be useful in this exercise.

3. Using your estimates R̂zz and r̂zy, compute the corresponding filter coefficients θ∗.

4. Apply the optimal filter to the image img14bl.tif. Print or export the filtered image
for your report.

5. Repeat this procedure using img14gn.tif for X. Then repeat the procedure using
img14sp.tif for X.

Section 1 Report:

1. Hand in the four original images img14g.tif, img14bl.tif, img14gn.tif and img14sp.tif.

2. Hand in the output of the optimal filtering for the blurred image and the two noisy
images.

3. Hand the MMSE filters that you computed for the blurred image and the two noisy
images. (Each filter is specified by the optimum value of θ∗ that you calculated.)
Orient each filter into a 7x7 array to make the spatial orientation clear. For each filter,
clearly state which corrupted image was used to compute the filter coefficients, θ∗.

2 Weighted Median Filtering

A simple median filter is a nonlinear filter which simply replaces each pixel with the
median from a set in a window surrounding the pixel. This has the effect of minimizing the
absolute prediction error. The output of the filter can therefore be written as the following

Ys = arg min
θ

∑

k∈w(s)

|Xk − θ| (5)

where w(s) is a window surrounding pixel s.
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A weighted median filter allows some pixels in the window to have more influence on the
output than others. Here, the output is written as

Ys = arg min
θ

∑

k∈w(s)

as−k|Xk − θ| (6)

where as−k are weighting factors which determine the relative influence pixels in w(s) have
on the output. A typical set of weights is shown in Figure 1. This example allows the pixels
closer to the current pixel to have a stronger influence on the output.

1 1 1 1 1
1 2 2 2 1
1 2 2 2 1
1 2 2 2 1
1 1 1 1 1

Figure 1: Weighting factors

The weighted median is found by sorting the pixels in the window in descending order.
The corresponding pixel weights are placed in the same order as the sorted pixels.

{

X(1), X(2), . . . , X(p)

}

{

a(1), a(2), . . . , a(p)

}

Then the weighted median X(i∗) is determined by incrementing the index i∗ until the following
holds true.

i∗
∑

i=1

a(i) ≥
p

∑

i∗+1

a(i) (7)

1. Write a C program that will apply a 5 × 5 weighted median filter to an image, using
the weights in figure 1.

2. Down load the zip file images.zip from the lab home page. This file contains an image,
img14g.tif, and two corrupted versions, img14gn.tif and img14sp.tif.

3. Apply the median filter to these two noisy images, and compare the results to the
original image. Print or export the results for your report.

Section 2 Report:

1. Hand in your results of median filtering.

2. Hand in your C code.


