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Digital Image Processing Laboratory:

Image Halftoning
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1 Introduction

An 8-bit monochrome image allows 256 distinct gray levels. Modern computer monitors
generally support the display of such images, however some other rendering technologies
allow for much fewer gray levels. At the far end of the spectrum are devices, such as
printers, that can only display two levels, black or white, for a monochrome image.

This lab will introduce a useful area of image processing called halftoning, which is the
conversion of a grayscale image into a binary image. The key in this application is to exploit
properties of the human visual system to give the impression of a continuous tone image
even though only two levels are present in the rendering. Halftoning is required in several
electronic applications such as facsimile (FAX), electronic scanning and copying, and laser
and inkjet printing.

This lab will emphasize two halftoning techniques known as ordered dithering and error
diffusion. Exercises covering these techniques will all be performed in Matlab. An im-

portant note about rendering: The halftone images you produce in this lab need to
represented exactly pixel-by-pixel to get the proper visual effect. Therefore when viewing
images within Matlab, issue the truesize command just after the image command in order
to map 1-to-1 the image pixels to display pixels. Otherwise, the image will likely interpolate
on your display and obscure the intended binary result. For the same reason, your halftone
results should be written out to TIFF files (using imwrite, NOT by a figure export) and
submitted independently in a zip file along with your report.

To help facilitate comparison between the various halftone images in this lab, we will use
an image fidelity metric that incorporates a simple model of the human visual system. This
requires some background, so we will begin with a short discussion of image fidelity.

2 Image Fidelity Metrics

As we explore halftoning methods in this lab, we will also assess quantitatively how well the
halftone images reproduce the original grayscale images. We will see that simply computing
the average squared pixel error is a fairly useless metric in this application because it fails
to take into account the spatial blurring response of the human visual system. This blurring
property is precisely what halftoning methods exploit to make a binary pattern appear as a
continuous gray tone.

Questions or comments concerning this laboratory should be directed to Prof. Charles A. Bouman,
School of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907; (765) 494-
0340; bouman@ecn.purdue.edu
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The numerical comparison we will use between a halftone image, g(x, y), and the original
grayscale image, f(x, y), is represented in Figure 1. A very important property of the human
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Figure 1: Block diagram for a simple image fidelity metric

visual system is the spatial blurring response, represented here by the low pass filters. This is
an optical blurring of light energy, therefore the scale of the input images needs to be linear in
energy. This means that if the images we want to compare are encoded in a gamma-corrected
scale, denoted fg(x, y) and gg(x, y), then we first need to undo the gamma correction with
the transformation,

fl(x, y) = 255

(

fg(x, y)

255

)γ

(1)

and similarly for gg(x, y). Equation (1) assumes the original image pixel values are in the
range [0,255]. The topic of gamma correction was discussed in depth in a previous laboratory
so we will limit further discussion of that here.

The purpose of the pixel-wise (·)1/3 operations prior to taking the difference is to weight
pixel differences in terms of contrast rather than direct light energy. Simply put, the visual
system is more sensitive to differences in light energy in darker regions than in lighter regions,
and the cube-root operation places a scaling that will weight these differences in brightness
equally in a perceptual sense.

3 Thresholding and Random Noise Binarization

The simplest method of converting a grayscale image to a binary image is by thresholding,
i.e. a two-level (one-bit) quantization. Let f(i, j) be a grayscale image, and b(i, j) be the
corresponding binary image based on simple thresholding. For a given threshold T , the
binary image is computed as

b(i, j) =

{

255 if f(i, j) > T
0 else

. (2)

Figure 2 illustrates the conversion to a binary image by thresholding, using T = 127.
It can be seen that the binary image is not “shaded” properly–an artifact known as false
contouring. This often occurs when quantizing at low bit rates (one bit in this case), be-
cause the quantization error is highly dependent upon the input signal. If one reduces this
dependence, the visual fidelity of the binary image can be greatly enhanced.
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(a) (b)

Figure 2: (a) Original grayscale image. (b) Binary image produced by simple fixed thresh-
olding.

One way to reduce the signal/error dependence is to add uniformly distributed white
noise to the input image prior to quantization. Specifically, to each input pixel of the
grayscale image, f(i, j), add an independent uniform[-A,A] random number, and quantize
the result according to equation (2). An illustration of this approach is shown in Figure 3,
where the additive noise is uniform over [−128, 128]. Notice that even though the resulting
binary image is somewhat noisy, the false contouring has been dramatically reduced, and
with enough blurring (e.g. looking at it from a distance) it gives the impression of having
several gray levels.

Figure 3: Random noise binarization.

3.1 Exercise: Thresholding

1. Down load the image house.tif from the lab web page. Apply the simple thresholding
of equation (2) to the image, using T = 127.

2. Compute the root mean square error (RMSE) between the original and binary images,
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defined by

RMSE =

√

√

√

√

1

NM

∑

i,j

{f(i, j) − b(i, j)}2 (3)

where NM is the total number of pixels in each image. Note: In this calculation,
be sure that both images f and b are of type double. If either image is of type uint8,
differences outside the range [0,255] will clip.

3. Compute the image fidelity, which we will define by

fidelity =

√

√

√

√

1

NM

∑

i,j

{f̃(i, j) − b̃(i, j)}2 (4)

where f̃(i, j) and b̃(i, j) are the original and binary images transformed by the systems
illustrated in Figure 1. The steps for this transformation include the following:

(a) Un-gamma correct f(i, j) and b(i, j) using equation (1) and γ = 2.2. Note the
un-gamma transformation does not actually change the binary image. (Why?)

(b) Low-pass filter f(i, j) and b(i, j) using a 7 × 7 Gaussian filter, defined by the
following point spread function,

h(i, j) =

{

C exp(− i2+j2

2σ2 ) for |i| ≤ 3 and |j| ≤ 3
0 otherwise

(5)

where σ2 = 2, and C is a normalizing constant such that
∑

i,j h(i, j) = 1.

(c) Apply the transformation y = 255(x/255)1/3 to each pixel value of the filtered f
and b images.

You will have to compute the fidelity for several results going forward, so you should
write a function fid=fidelity(f,b) to avoid replicating the code.

Section 3.1 Report:

• Hand in the original image and the result of thresholding.

• Submit the computed RMSE and fidelity values.

• Hand in the code for your fidelity function.
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4 Ordered Dithering

The goal in halftoning is to give the impression of grayscale tones while using only black
and white pixels. Although the random thresholding technique described in Section 3 can
produce this effect, it is not often used in real applications since it yields very noisy results.
In this section, we will describe a better class of halftoning techniques known as ordered
dithering.

Because the human visual system tends to average a region around a pixel instead of
sensing each pixel individually, we can create the illusion of many gray levels in a binary
image that in actuality only contains two gray levels. Using 2× 2 binary pixel grids, we can
represent 5 different “effective” intensity levels, as illustrated in Figure 4. Similarly for 3× 3
grids, we can represent 10 distinct gray levels. In dithering, we replace blocks of the original
image with these types of binary grid patterns.

0 1 2 3 4

Figure 4: Five different patterns of 2 × 2 binary pixel grids.

Remember from Section 3 that false contouring artifacts can be reduced if we reduce
the dependence between the quantization error and the original signal. We illustrated that
adding uniform noise to the monochrome image can achieve this decorrelation. Equiva-
lently, one could use a variable threshold in the quantization process, which is related to the
approach used in dithering.

Ordered dithering consists of comparing blocks of the original image to a 2-D grid of
thresholds called a dither pattern. Each element of the original block is quantized according
to the corresponding threshold value in the dither pattern. The values in the dither matrix
are fixed, but are typically different from each other. Because the threshold changes between
adjacent pixels, some decorrelation from the quantization error is achieved.

A dither matrix can also be defined by a so called index matrix. The index matrix
determines the order in which dots are “turned on” (change from white to black) as the
image becomes darker (greater absorptance). For the example in Figure 4, the corresponding
index matrix is given by

I2(i, j) =

[

1 2
3 0

]

(6)

where 0 indicates the first pixel to turn on, and 3 indicates the last pixel to turn on. This
index matrix is a special case of a family of dither matrices first defined by Bayer [1], which
are defined recursively by,

I2n =

[

4 ∗ In + 1 4 ∗ In + 2
4 ∗ In + 3 4 ∗ In

]

(7)

where I2n is the new (2N) × (2N) matrix and In is the old N × N matrix. This operation
can be performed with the following Matlab command.
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I2N = [ 4*IN + 1, 4*IN + 2; 4*IN + 3, 4*IN];

For each index matrix, there is a corresponding threshold matrix which is used to halftone
the image. The threshold matrix can be determined from the index matrix I(i, j) by the
relationship,

T (i, j) = 255
I(i, j) + 0.5

N2
, 0 ≤ i, j ≤ N − 1 (8)

where N2 is the total number of elements in the matrix. This produces thresholds evenly
spaced between 0 and 255. The halftoning is performed by thresholding each pixel in the
original image according to the values in T (i, j). Since the image is usually much larger
than the threshold matrix, the dither pattern is repeated periodically, or tiled, across the full
image. Specifically we can write the operation as,

b(i, j) =

{

255 if f(i, j) > T (i modN, j modN)
0 else

. (9)

Figure 5 shows the result of Bayer dithering using a 4 × 4 pattern. It is clear that the
halftone image provides decent detail rendition. However, the down side is that square grid
patterns are typically visible in the halftone image.

Figure 5: The halftone image produced by Bayer dithering of size 4.

4.1 About Halftoning Gamma Corrected Images

As described above, the goal of halftoning is to produce a pattern of black and white pixels
that will be perceived as a continuous gray level due to the blurring effect of the human
visual system. This blurring is the averaging of light energy over a set of black and white
pixels, and the perceived light energy will be proportional to the fraction of white pixels in
the local region. Therefore the original grayscale image that the halftoning is attempting
to reproduce must also be scaled proportional to light energy for the perceived gray levels
to match. This is a very important point because most digital images are encoded in a
gamma-corrected scale, and such images need to be transformed to linear scale (using (1)
for example) prior to encoding the halftone image.
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If you remove the gamma correction from a grayscale image, it will likely display too dark
on a computer monitor, but that is due to the internal mapping of the computer monitor–it
is not a reflection of the true light energy represented in the image file. The intended light
energy will be displayed properly when the image is encoded in a gamma corrected scale, and
when the gamma value matches the gamma of the monitor. Note this gamma response of
the monitor has no effect on a halftone image because the image contains only the minimum
and maximum display values.

4.2 Exercise: Ordered Dithering

1. Download the image house.tif from the lab web page, and read it into your Matlab
workspace.

2. This image has been gamma corrected, so produce a linear-scale version by applying
the transformation in equation (1), with γ = 2.2. Also retain the original version for
display purposes.

3. Create Bayer threshold matrices of sizes 2 × 2, 4 × 4, and 8 × 8.

4. Generate three different halftone images for house.tif by applying these three dither
patterns to the linear-scale version. When displaying the halftone images in Matlab,
remember to use the truesize command to prevent interpolation of your binary image.
Note that it is sometimes better to view the halftone results from a slight distance.

5. Export the halftone results to TIFF files using imwrite.

6. For each of the three halftone images, compute the RMSE and fidelity between the
halftone and the original image. Use the same procedure described in Section 3.1.

Section 4.2 Report:

Submit the following with your report:

1. The three Bayer index matrices of sizes 2 × 2, 4 × 4, and 8 × 8.

2. The three halftoned images produced by the three dither patterns.

3. The RMSE and fidelity for each of the three halftoned images.
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5 Error Diffusion

Another class of halftoning techniques are called error diffusion. In this method, the pix-
els are quantized in a specific order (raster ordering1 is commonly used), and the residual
quantization error for the current pixel is propagated (diffused) forward to local unquan-
tized pixels. This keeps the local average intensity of the binary image close to the original
grayscale image.
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Figure 6: Block diagram of the error diffusion method.

Figure 6 is a block diagram that illustrates the error diffusion algorithm. The current
input pixel f(i, j) is modified by adding certain past quantization errors, producing a mod-
ified input f̃(i, j). This pixel is then converted to a binary value by the quantizer Q, using
some threshold T . The current error e(i, j) is defined as

e(i, j) = f̃(i, j) − b(i, j) (10)

where b(i, j) is the quantized binary pixel value.

The error e(i, j) of quantizing the current pixel is diffused to “future” pixels by means
of a two-dimensional weighting filter h(i, j), known as the diffusion filter. The process
of modifying an input pixel by past errors can be represented by the following recursive
relationship.

f̃(i, j) = f(i, j) +
∑

k,l∈S

h(k, l)e(i − k, j − l) (11)

A very popular error diffusion method, proposed by Floyd and Steinberg [2], uses the diffusion
filter shown in Figure 7. Since the filter coefficients sum to one, the local average value of
the quantized image will be equal to the local average grayscale value.

Figure 8 shows a halftone image produced by Floyd and Steinberg error diffusion. Com-
pared to ordered dither halftoning, the error diffusion method can be seen to have better
contrast performance. However, error diffusion tends to create “streaking” artifacts, also
known as worm patterns.

1Raster ordering of an image orients the pixels from left to right, and then top to bottom. This is similar
to the order that a CRT scans the electron beam across the screen.
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Figure 7: Point Spread Function of the error diffusion filter proposed by Floyd and Steinberg.

Figure 8: A halftone image produced by Floyd and Steinberg error diffusion method.

5.1 Exercise: Error Diffusion

Apply the error diffusion technique to house.tif using a threshold T = 127 and the diffusion
filter in Figure 7. As in the previous exercise, the algorithm should be applied to a linear-scale
version of house.tif.

A straight forward implementation of the error diffusion algorithm is detailed in the
following steps, performed on each pixel in raster order:

1. Initialize an output image matrix with zeros.

2. Quantize the current pixel to 0 or 255 using using the threshold T , and place the result
in the output matrix.

3. Compute the quantization error by subtracting the binary pixel from the grayscale
pixel.

4. Add scaled versions of this error to “future” pixels of the original image, according to
the diffusion filter of Figure 7.

5. Proceed to the next pixel.

Display the result in Matlab using image (remember to use truesize), and compare this
to the original image. Again, it is best to view the results from a slight distance. Write out
the halftone result to a TIFF using imwrite.

Compute the RMSE and fidelity between the error diffusion result and the original image,
using the same procedure described in Section 3.1.



Purdue University: Digital Image Processing Laboratories 10

Section 5.1 Report:

Submit the following:

1. Your error diffusion Matlab code

2. The error diffusion result

3. The RMSE and fidelity of the error diffusion result

4. Finally, tabulate the RMSE and fidelity for the simple thresholding, ordered dithering,
and error diffusion results. Comment on your observations of both the RMSE and
fidelity for the different methods. Relate these metrics to the observed visual quality.
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