EE 641 Midterm Exam November 4, Fall 2022

Name:
Q1: Instructions (4pt)
Rules: I understand that this is an open book exam that shall be done within the allotted
time of 120 minutes. I can use my notes, previous posted exams and exam solutions, and
web resources. However, I will not communicate with any other person other than the official
exam proctors during the exam, and I will not seek or accept help from any other persons
other than the official proctors.
Signature:

Q2: MAP Estimation (35pt)

Consider a zero mean N-dimensional GMRF, X, with a density function given by

$$p(x) = \frac{1}{z} \exp\left\{-\frac{1}{2}x^t B x\right\} ,$$

where $B_{i,j} = a_{(i-j) \mod N}$ and the row/column indices have the range $i, j \in \{0, \dots, N-1\}$. (i.e., The rows and columns are indexed starting at 0.)

Q2.1:

What is the name given to the matrix B?

Q2.2:

Give an explicit expression for the value of z.

Q2.3:

If for $i \neq j$ we have that $B_{i,j} \neq 0$, then what do you know about the relationship between X_i and X_j ?

Q2.4:

Write down an expression for the conditional expectation

$$E[X_i|X_j j \neq i]$$
,

in terms of the the function a_i .

Q2.5:

Write down an expression for the conditional distribution

$$p(x_i|x_j j \neq i)$$
,

in terms of the the function a_i .

Q3: Augmented Lagrangian and ADMM (35pt)

Consider an inverse problem in which the map estimate is given by

$$\hat{x} = \arg\min_{x} \left\{ f(x) + h(x) \right\}$$

where $x \in \mathbb{R}^N$, and the two functions, $f: \mathbb{R}^N \to \mathbb{R} \cup \{\infty\}$, and $h: \mathbb{R}^N \to \mathbb{R} \cup \{\infty\}$, are proper closed convex functions.

Q3.1:

Write an equivalent expression for \hat{x} based on the constrained optimization of two variables, (x, v).

Q3.2:

Write out an expression for the augmented Lagrangian L(x, v; u) which solves the problem for the proper value of u.

Q3.3:

Let

$$(\hat{x}, \hat{v}) = \arg\min_{(x,v)} L(x, v; u)$$
.

As u is increased, what will happen to the values of \hat{x} and \hat{v} ?

Q3.4:

Give an algorithm for solving the problem that uses the following two functions

$$F(z) = \arg\min_{x} \left\{ f(x) + \frac{a}{2} ||x - z||^2 \right\} ,$$

$$H(z) = \arg\min_{x} \left\{ h(x) + \frac{a}{2} ||x - z||^{2} \right\}.$$

Q3.5:

If we choose,

$$h(x) = \begin{cases} \infty & \text{if } \exists i \text{ s.t. } x_i < 0 \\ 0 & \text{otherwise} \end{cases},$$

then calculate an explicit expression for H(z).

Q4: Surrogate Functions (30pt) Consider the function

$$f(x) = \frac{1}{2} ||y - Ax||^2 ,$$

with the associated quadratic surrogate function of the form

$$f(x;x') = \frac{a}{2} ||x - x'||^2 + b^t(x - x') + c.$$

Q4.1:

Calculate expressions for the gradient, $\nabla f(x)$, and the Hessian, $\nabla \nabla f(x)$.

Q4.2:

Calculate expressions for c and b in the surrogate function.

Q4.3:

Calculate the matrix B so that the following expression is a Taylor series expression of f(x) about the point x'.

 $f_T(x) = \frac{1}{2}(x - x')^t B(x - x') + b^t(x - x') + c$

Q4.4:

Find an expression for a so that f(x; x') is a surrogate function for f(x).

Q4.5:

Give an iterative algorithm for computing the $\hat{x} = \arg\min_{x} f(x)$ by using the surrogate function.