EE 641 Final Exam December 12, Fall 2022

Name: Key
Q1: Instructions (4pt)
Rules: I understand that this is an open book exam that shall be done within the allotted
time of 180 minutes. I can use my notes, previous posted exams and exam solutions, and
web resources. However, I will not communicate with any other person other than the official
exam proctors during the exam; I will not seek or accept help from any other persons other
than the official proctors; and I will not use GPT-3 or any other variant of an AI response
engine.
Signature:

Q2: Generating Random Variables (10pt)

Let X be a random variable with the CDF given by

$$F(\lambda) = P\{X \le \lambda\} ,$$

where F is continuous and strictly monotone increasing.

Q2.1:

Give a method for generating a new random variable, X', with the same distribution as X.

Q2.2:

Prove that if $F'(\lambda)$ is the CDF of X', then $F'(\lambda) = F(\lambda)$.

Q2.1:

Since F is a CDF, we know that $\lim_{\lambda\to\infty} F(\lambda) = 1$ and $\lim_{\lambda\to-\infty} F(\lambda) = 0$. In addition, since $F: \Re \to [0,1]$ is a continuous and strictly monotone increasing function, we know that there exits an inverse function $F^{-1}: (0,1) \to \Re$ such that $\forall u \in (0,1)$

$$F(F^{-1}(u)) = u .$$

So then we generate a random variable U that is uniformly distributed on the interval (0,1), and we can then generate the desired random variable with

$$X' = F^{-1}(U) .$$

Q2.2:

We know that

$$F'(\lambda) = P\{X' \le \lambda\}$$

$$= P\{F^{-1}(U) \le \lambda\}$$

$$= P\{F(F^{-1}(U)) \le F(\lambda)\}$$

$$= P\{U \le F(\lambda)\}$$

$$= F(\lambda).$$

Q3: Properties of Discrete Distribution (25pt)

Consider $X = (X_0, \dots, X_{N-1})$ where X_n are i.i.d. random variables such that

$$P\{X_n = i\} = \theta_i .$$

Also let $p_{\theta}(x)$ denote the associated family of distributions such that $\theta \in S$ where S denotes the M dimensional simplex given by

$$S = \left\{ \theta \in S : \forall i \in \{0, \dots, M - 1\} , \ \theta_i \ge 0 \text{ and } \sum_{i=0}^{M-1} \theta_i = 1 \right\} .$$

Q3.1:

Show that

$$K_i = \sum_{n=0}^{N-1} \delta(X_n - i) ,$$

is a sufficient statistic for the family of distributions $p_{\theta}(x)$.

Q3.2:

Show that $p_{\theta}(x)$ is an exponential distribution with natural sufficient statistics of $\{K_i\}_{i=0}^{M-1}$.

Q3.3:

Derive the maximum likelihood estimate of θ given the observations X.

Q3.1:

In order to show that K_i is a sufficient statistic, we need to show that the density can be put in the form of equation (12.21) given by

$$p_{\theta}(x) = g(K, x)$$
.

Manipulating the expressions results in the form

$$p_{\theta}(x) = \prod_{m=0}^{M-1} \theta_i^{K_i}$$
$$= \exp \left\{ \sum_{m=0}^{M-1} K_i \log(\theta_i) \right\}.$$

So therefore, K is a sufficient statistic for the family of distributions.

Q3.2:

In order to show that $p_{\theta}(x)$ is an exponential family of distributions with natural sufficient statistic K, we must show that it has the form of equation (12.25).

$$p_{\theta}(x) = \exp \{ \langle \eta(\theta), K \rangle + d(\theta) + s(x) \}$$
.

To show this, we take

$$[\eta(\theta)]_i = \log(\theta_i)$$

$$d(\theta) = 0$$

$$s(x) = 0.$$

Q3.3:

In order to compute the maximum likelihood estimate, we need to minimize the negative log likelihood subject to the constraint that $1 = \sum_{i=0}^{M-1} \theta_i$. We can do this using the Lagrange multiplier, λ , with

$$\nabla_{\theta_m} \left\{ \sum_{i=0}^{M-1} K_i \log(\theta_i) + \lambda \sum_{i=0}^{M-1} \theta_i \right\} \bigg|_{\theta = \hat{\theta}} = 0$$

$$\frac{K_i}{\hat{\theta}_m} + \lambda = 0$$

$$\hat{\theta}_m = \frac{K_i}{-\lambda} .$$

We can then solve for λ by

$$1 = \sum_{i=0}^{M-1} \theta_i = \sum_{i=0}^{M-1} \frac{K_i}{-\lambda} = \frac{1}{-\lambda} \sum_{i=0}^{M-1} K_i = \frac{1}{-\lambda} N.$$

So we have that $\lambda = -1/N$ and

$$\hat{\theta}_m = \frac{K_i}{-\lambda} = \frac{K_i}{-\lambda} = \frac{K_i}{N} \ .$$

Q4: ADMM Optimization (20pt)

Let $X = (X_0, \dots, X_{N-1})$ be i.i.d. random variables with distribution

$$P\{X_n = m\} = \pi_m ,$$

where $\pi_i \geq 0$ and $\sum_{m=0}^{M-1} \pi_m = 1$.

Also, let $Y = (Y_0, \dots, Y_{N-1})$ be conditionally independent discrete random variables given X with each Y_n having the conditional distribution given by

$$P\{Y_n = j | X_n = i\} = P_{i,j}$$

where $P_{i,j} \ge 0$ and $\sum_{j=0}^{M-1} P_{i,j} = 1$.

Furthermore, let $\theta = (\pi_0, P_{0,0}, \dots, P_{0,M-1}, \dots, \pi_{M-1}, P_{M-1,0}, \dots, P_{M-1,M-1})$ parameterize the model.

Q4.1:

Using the statistic,

$$N_i = \sum_{n=0}^{N-1} \delta(X_n - i) ,$$

write out an expression for the density of X.

Q4.2:

Using the statistic,

$$K_{i,j} = \sum_{n=0}^{N-1} \delta(X_n - i)\delta(Y_n - j) ,$$

write out an expression for the conditional density of Y given X.

Q4.3:

Write out the negative log likelihood, $-\log p_{\theta}(x, y)$, in terms of the sufficient statistics N_i and $K_{i,j}$.

Q4.4:

Write out the maximum likelihood estimate of θ given the complete data, (X,Y).

Q4.5:

Write out the explicit expression for the E-step of the EM algorithm for estimating θ given Y.

Q4.6:

Write out the explicit expression for the M-step of the EM algorithm for estimating θ given Y.

Q4.1:

$$p_{\theta}(x) = \exp\left\{\sum_{i=0}^{M-1} N_i \log(\pi_i)\right\}$$

Q4.2:

$$p_{\theta}(y|x) = \exp\left\{\sum_{i=0}^{M-1} \sum_{j=0}^{M-1} K_{i,j} \log(P_{i,j})\right\}$$

Q4.3:

$$-\log p_{\theta}(x,y) = -\log p_{\theta}(y|x) - \log p_{\theta}(x)$$

$$= -\sum_{i=0}^{M-1} \sum_{j=0}^{M-1} K_{i,j} \log(P_{i,j}) - \sum_{i=0}^{M-1} N_i \log(\pi_i)$$

Q4.4:

$$\hat{\pi}_i = \frac{N_i}{N}$$

$$\hat{P}_{i,j} = \frac{K_{i,j}}{N_i}$$

Q4.5:

We first need to compute

$$f_n(i|\theta') = P\left\{X_n = i|Y_n = y_n\right\} = \frac{\pi'_i P'_{i,y_n}}{\sum_{m=0}^{M-1} \pi'_m P'_{m,y_n}}$$

Then we compute the expected sufficient statistics

$$\bar{N}_{i} \leftarrow E_{\theta'} \left[\sum_{n=0}^{N-1} \delta(X_{n} - i) | y_{n} \right] = \sum_{n=0}^{N-1} E_{\theta'} \left[\delta(X_{n} - i) | y_{n} \right] = \sum_{n=0}^{N-1} f_{n}(i | \theta')$$

$$\bar{K}_{i,j} \leftarrow E_{\theta'} \left[\sum_{n=0}^{N-1} \delta(X_{n} - i) \delta(Y_{n} - j) | y_{n} \right] = \sum_{n=0}^{N-1} E_{\theta'} \left[\delta(X_{n} - i) | y_{n} \right] \delta(y_{n} - j) = \sum_{n=0}^{N-1} \delta(y_{n} - j) f_{n}(i | \theta')$$

Q4.6:

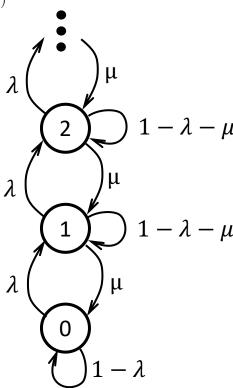
The M-step is then given by

$$\hat{\pi}_i \leftarrow \frac{\bar{N}_i}{N}$$

$$\hat{\pi}_i \leftarrow \frac{\bar{N}_i}{N}$$

$$\hat{P}_{i,j} \leftarrow \frac{\bar{K}_{i,j}}{N_i}$$

Q5: Markov Chain (25pt)



Let $\{X_n\}_{n=0}^{\infty}$ be a homogeneous Markov chain with states $\{0, 1, 2, \cdots\}$ and state-transition diagram as shown above. Furthermore, assume that $\rho = \lambda/\mu < 1$.

Q5.1:

Write out an explicit form for the state transition probabilities, $P_{i,j}$.

Q5.2:

Is there a solution to the detailed balance equations for this Markov chain? If so, give the solution.

Q5.3:

Is there a solution to the full balance equations for this Markov chain? If so, give the solution.

Q5.4:

Is the Markov chain reversible? Justify your answer.

Q5.5:

Determine the stationary distribution for the Markov chain.

Q5.1:

$$P_{i,j} = \begin{cases} \lambda & \text{if } j = i+1\\ \mu & \text{if } j = i-1 \text{ and } i > 0\\ 1 - \lambda - \mu & \text{if } j = i \text{ and } i > 0\\ 1 - \lambda & \text{if } j = i = 0\\ 0 & \text{otherwise} \end{cases}$$

Q5.2:

Since this is a birth-death process, it must be reversible, and therefore, there must be a solution to the DBE. Detailed balance equations are given by

$$\pi_i P_{i,j} = \pi_j P_{j,i}$$
.

If we take j = i + 1, then we have that

$$\pi_i P_{i,i+1} = \pi_{i+1} P_{i+1,i}$$

$$\pi_i \lambda = \pi_{i+1} \mu$$

$$\pi_{i+1} = \frac{\lambda}{\mu} \pi_i$$

So therefore we have that

$$\pi_i = \left(\frac{\lambda}{\mu}\right)^i \pi_0 \ .$$

If we define $\rho = \frac{\lambda}{\mu}$, and using the fact that $1 = \sum_{i=0}^{\infty} \pi_i$, we have that

$$1 = \sum_{i=0}^{\infty} \rho^i \pi_0 = \pi_0 \sum_{i=0}^{\infty} \rho^i = \pi_0 \frac{1}{1 - \rho} .$$

So we have that $\pi_0 = 1 - \rho$, which results in

$$\pi_i = \rho^i (1 - \rho) \ .$$

Q5.3:

Any solution to the DBE must also be a solution to the FBE because

$$\sum_{i=0}^{M-1} \pi_i P_{i,j} = \sum_{i=0}^{M-1} \pi_j P_{j,i} = \pi_j \sum_{i=0}^{M-1} P_{j,i} = \pi_j .$$

So therefore, the solution to the FBE is also

$$\pi_i = \rho^i (1 - \rho) .$$

Q5.4:

Yes, the Markov chain is reversible because it is a birth-death process and also because there is a solution to the DBE.

Q5.5:

The stationary distribution is given by

$$\pi_i = \rho^i (1 - \rho) \ .$$

Q6: Plug-and-Play Methods (25pt)

Define

$$f(x) = \frac{1}{2\sigma_y^2} ||y - Ax||^2$$

and its associated proximal map as

$$\hat{x} = F(z) = \arg\min_{x} \left\{ f(x) + \frac{1}{2\sigma^{2}} ||x - z||^{2} \right\}.$$

Let H(z) be a firmly non-expansive function so that

$$X \approx H(X+W)$$
,

where X is a typical image and $W \sim N(0, \sigma^2 I)$. Then define

$$T = (2H - I)(2F - I) .$$

Furthermore, assume that the fixed point problem $Tw^* = w^*$ has a unique solution denoted by w^* .

Q6.1:

Use the results of Appendix B, Properties B.5, B.3, and B.1 to prove that T is non-expansive.

Q6.2:

Give an algorithm for computing the solution to the fixed point problem $Tw^* = w^*$. Why do you know that this algorithm converges to w^* .

Q6.3:

Prove that there is a solution to the equilibrium equation

$$F(x^* - u^*) = x^*$$

$$H(x^* + u^*) = x^* .$$

(Hint: Reverse the argument of Section 10.3.3 page 161.)

Q6.4:

In the equilibrium equations,

$$F(x^* - u^*) = x^*$$

$$H(x^* + u^*) = x^* ,$$

give an interpretation for the quantities x^* and u^* .

Q6.5:

Explain how one might obtain an agent, H(z)?

Q6.6:

What is the advantage of this approach over more conventional MAP estimation?

Q6.1:

By B.5 we know that since F is a proximal map, F must be firmly non-expansive.

By B.3, we know that since F is firmly non-expansive, then (2F-I) must be non-expansive.

By B.3 and the fact that H is assumed to be firmly non-expansive, we know that (2H - I) must be firmly non-expansive.

By B.2 and the fact that (2F-I) and (2H-I) are firmly non-expansive, then both (2F-I) and (2H-I) must be non-expansive.

By B.1 and the fact that (2F - I) and (2H - I) are non-expansive, then we know that T = (2H - I)(2F - I) must be non-expansive.

Q6.2:

For $\rho \in (0,1)$, the Mann algorithm given by

```
initialize w Repeat {  w \leftarrow (1-\rho)w + \rho Tw  } .
```

It must converge to a fixed point w^* because T is non-expansive and a fixed point exists.

Q6.3:

Let w_1^* be a fixed point so that $Tw_1^* = w_1^*$. Then we know that

$$(2H - I)(2F - I)w_1^* = w_1^*$$

So if we define $w_2^* = (2F - I)w_1^*$, then we have that

$$(2F - I)w_1^* = w_2^*$$
$$(2H - I)w_2^* = w_1^*.$$

From this we have that

$$Fw_1^* = \frac{w_2^* + w_1^*}{2}$$

$$Hw_2^* = \frac{w_2^* + w_1^*}{2}.$$

If we define the following transformed variables as

$$x^* = \frac{w_1^* + w_2^*}{2}$$
$$u^* = \frac{w_1^* - w_2^*}{2},$$

then we have that

$$w_1^* = x^* + u^* w_2^* = x^* - u^* ,$$

so therefore we have that

$$F(x^* + u^*) = x^*$$

 $H(x^* + u^*) = x^*$.

Q6.4:

The quantity x^* is the solution to the inverse problem y = Ax + W. The quantity u^* has the interpretation of noise that is removed by the operator H.

Q6.5:

One can obtain a agent H by generating training pairs $(X^{(k)}, Z^{(k)})$ where

$$Z^{(k)} = X^{(k)} + W^{(k)} ,$$

where $X^{(k)}$ is a typical image that is expected in the application and $W^{(k)}$ is with noise with variance σ^2 .

Then the denoising agent $H_{\theta}(z)$ can be trained to minimize the loss function given by

$$L(\theta) = \sum_{k} ||Z^{(k)} - H_{\theta}(X^{(k)})||^{2}.$$

Q6.6:

The method is more general than conventional MAP estimation because H does not need to be a proximal map. This also allows for the use for more advanced agents such as deep neural networks.