EE 641 Midterm Exam October 18, Fall 2019

Name:	\mathbf{Key}	
	v	Instructions

The following is an in-class closed-book exam.

- This exam contains 3 problems worth a total of 100 points.
- You may not use any notes, textbooks, or calculators.
- You are allowed up to 55 minutes to complete the exam.

Good luck.

Problem 1. (32pt) Let $X \sim N(0, R)$ where R is a $p \times p$ symmetric positive-definite matrix. Further define the precision matrix, $B = R^{-1}$, and use the notation

$$B = \left[\begin{array}{cc} 1/\sigma^2 & A \\ A^t & C \end{array} \right] ,$$

where $A \in \mathbb{R}^{1 \times (p-1)}$ and $C \in \mathbb{R}^{(p-1) \times (p-1)}$.

- a) Calculate the marginal density of X_1 , the first component of X, given the components of the matrix R.
- b) Calculate the conditional density of X_1 given all the remaining components, $Y = [X_2, \dots, X_p]^t$.
- c) What is the conditional mean and covariance of X_1 given Y?

Solution:

Part a) Since $X \sim N(0, R)$, we know that $E[X_1] = 0$ and $E[X_1^2] = R_{1,1}$, and therefore, we have that

$$p(x_1) = \frac{1}{\sqrt{2\pi R_{1,1}}} \exp\left\{-\frac{1}{2R_{1,1}}x_1^2\right\}$$

Part b) We know that

$$p(x) = \frac{1}{z} \exp\left\{-\frac{1}{2}x^t B x\right\}$$

So then we know that

$$\log p(x_1, y) = -\frac{1}{2} \left(\frac{x_1^2}{\sigma^2} + 2x_1 Ay + y^t Cy \right) + const$$

We also know that

$$\log p(x_1|y) = \log p(x_1, y) - \log p(y)$$

So therefore, we can add any function of z(y) for now, and we will be able to calculate it in the end by normalizing the probability.

$$\log p(x_1|y) = -\frac{1}{2} \left(\frac{x_1^2}{\sigma^2} + 2x_1 A y + y^t C y \right) + z(y)$$
$$= -\frac{1}{2\sigma^2} \left(x_1 + \sigma^2 A y \right)^2 + z'(y)$$

Part c) From the solution of part b), we see that the conditional probability has the form

$$p(x_1|y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (x_1 - \mu(y))^2\right\},$$

where the conditional mean is given by $\mu(y) = -\sigma^2 Ay$ and the conditional variance is given by σ^2 .

Problem 2. (32pt) Consider the optimization problem

$$\hat{x} = \arg\min_{x \in \mathbb{R}^N} \left\{ ||y - Ax||_{\Lambda}^2 + x^t Bx \right\}$$

where A is a nonsingular $N \times N$ matrix, B is a positive-definite $N \times N$ matrix, and Λ is a diagonal and positive-definite matrix.

- a) Derive a closed form expression for the solution.
- b) Calculate an expression for the gradient descent update using step size $\mu \geq 0$.
- c) Calculate an expression for the coordinate descent update.

Solution:

Part a) Define the MAP cost function given by

$$f(x) = ||y - Ax||_{\Lambda}^2 + x^t Bx$$

The we have that

$$\nabla f(x) = -2A^t \Lambda(y - Ax) + 2Bx$$

We know that $\nabla f(\hat{x}) = 0$, so we have that

$$0 = -2A^{t}\Lambda(y - A\hat{x}) + 2B\hat{x}$$

$$0 = -A^{t}\Lambda y + (A^{t}\Lambda A + B)\hat{x}$$

$$(A^{t}\Lambda A + B)\hat{x} = A^{t}\Lambda y$$

$$\hat{x} = (A^{t}\Lambda A + B)^{-1}A^{t}\Lambda y$$

Part b) Using pseudo-code notation, we have that

$$\begin{array}{lcl} x & \leftarrow & x - \frac{\mu}{2} \nabla f(x) \\ x & \leftarrow & x + \mu \left[A^t \Lambda(y - Ax) - Bx \right] \end{array}$$

Part c) We can compute the update for the i^{th} pixel by solving for α such that

$$\left[\nabla f\left(x+\alpha\epsilon_{i}\right)\right]_{i}=0=-2A_{*,i}^{t}\Lambda(y-A[x+\alpha\epsilon_{i}])+2B[x+\alpha\epsilon_{i}]$$

where ϵ_i is a vector that is 1 for the i^{th} component, and 0 elsewhere. So this results in

$$0 = -2A_{*,i}^{t}\Lambda(y - A[x + \alpha\epsilon_{i}]) + 2B_{i,*}[x + \alpha\epsilon_{i}]$$

$$0 = -2A_{*,i}^{t}\Lambda(e + \alpha A_{*,i}) + 2B_{i,*}[x + \alpha\epsilon_{i}]$$

$$2A_{*,i}^{t}\Lambda e - 2B_{i,*}x = \alpha 2 \left(A_{*,i}^{t}\Lambda A_{*,i} + B_{i,i}\right)$$

$$\alpha = \frac{A_{*,i}^{t}\Lambda e - B_{i,*}x}{A_{*,i}^{t}\Lambda A_{*,i} + B_{i,i}}$$

So the ICD update is given by

$$x_i \leftarrow x_i + \frac{A_{*,i}^t \Lambda e - B_{i,*} x}{A_{*,i}^t \Lambda A_{*,i} + B_{i,i}}$$

where e = y - Ax.

Problem 3. (36pt) For the following problem, consider the MAP cost function given by

$$f(x) = \frac{1}{2}||y - Ax||_{\Lambda}^{2} + \sum_{\{s,r\} \in \mathcal{P}} b_{s,r}\rho(x_{s} - x_{r}) . \tag{1}$$

where $y \in \Re^N$, $x \in \Re^N$, $A \in \Re^{N \times N}$ has rank N, Λ is positive-definite, and $\rho(\Delta)$ is a positive convex function of Δ . Also, define the subevel set \mathcal{A}_{α} to be

$$\mathcal{A}_{\alpha} = \left\{ x \in \mathbb{R}^{N} : f(x) \le \alpha \right\} ,$$

and define the inverse image of a set $S \subset \Re$ to be

$$f^{-1}(S) = \{ x \in \Re^N : f(x) \in S \} .$$

For this problem you can use the following theorems:

T1: A set in \Re^N is compact if and only if it is closed and bounded.

T2: If f is a continuous function and S is closed, then the inverse images $f^{-1}(S)$ is closed.

- a) Prove that for all $\alpha \in \mathbb{R}$ the subevel set \mathcal{A}_{α} is closed.
- b) Prove that there exists an $\alpha \in \mathbb{R}$ such that the subevel set \mathcal{A}_{α} is non-empty and compact.
- c) Prove there exists a MAP estimate, \hat{x} , so that $\forall x \in \Re^N$, $f(\hat{x}) \leq f(x)$.
- d) Prove that the MAP estimate is unique.

Solution:

Part a) To prove this, notice the following three facts.

First, $A_{\alpha} = f^{-1}(S)$ where $S = (-\infty, \alpha]$. Second, $S = (-\infty, \alpha]$ is closed set. Third, since f is the sum of convex functions, it must be convex; and since all convex functions are continuous, f must be continuous.

So then using these three facts, and applying theorem T1, we see that $A_{\alpha} = f^{-1}(S)$ must be a closed set.

Part b) Since we know that \mathcal{A}_{α} is closed, we only need to show that there exists an α such that \mathcal{A}_{α} is bounded and non-empty in order to prove that it is compact.

First, select any α such that

$$\alpha > f(0)$$
,

where x = 0 denotes the vector with all elements of zero. Then $\mathcal{A}_{\alpha} \neq \emptyset$. Next notice that

$$f(x) = \frac{1}{2}||y - Ax||_{\Lambda}^2 + \sum_{\{s,r\}\in\mathcal{P}} b_{s,r}\rho(x_s - x_r)$$

$$\geq \frac{1}{2}||y - Ax||_{\Lambda}^{2}$$

$$\geq \frac{\lambda_{min}}{2}||y - Ax||^{2}$$

$$\geq \frac{\lambda_{min}}{2}\{||y - Ax||\}^{2}$$

$$\geq \frac{\lambda_{min}}{2}\{||Ax|| - ||y||\}^{2}$$

$$\geq \frac{\lambda_{min}}{2}\{\beta_{min}||x|| - ||y||\}^{2}$$

where $\lambda_{min} > 0$ is the minimum eigenvalue of Λ , and $\beta_{min} > 0$ is the smallest singular value A.

Next define the ball $B_r = \{x \in \Re^N : ||x|| \le r\}$ where

$$r = \frac{1}{\beta_{min}} \left(\sqrt{\frac{2\alpha}{c_{min}}} + ||y|| \right) .$$

Then for all $x \notin B_r$, we have that

$$f(x) \geq \frac{c_{min}}{2} \left\{ \beta_{min} ||x|| - ||y|| \right\}^{2}$$
$$\geq \frac{c_{min}}{2} \left\{ \beta_{min} r - ||y|| \right\}^{2}$$
$$= \alpha,$$

and therefore it must be that $x \notin \mathcal{A}_{\alpha}$. In other word, $\bar{B}_r \subset \bar{\mathcal{A}}_{\alpha}$, which in turn implies that $\mathcal{A}_{\alpha} \subset B_r$. Then since B_r is bounded, \mathcal{A}_{α} must also be bounded. Then since \mathcal{A}_{α} is bounded and closed, it must be compact.

Part c) Since f(x) is a continuous function on the non-empty compact set \mathcal{A}_{α} , it must take on a global minimum $x^* \in \mathcal{A}_{\alpha}$.

Pick any $x \in \mathbb{R}^N$. Then either $x \in \mathcal{A}_{\alpha}$ or $x \notin \mathcal{A}_{\alpha}$. If $x \in \mathcal{A}_{\alpha}$, then by the fact that x^* is a global minimum, we know that $f(x^*) \leq f(x) \leq \alpha$. If $x \notin \mathcal{A}_{\alpha}$, then by the fact that x^* is a global minimum, we know that $f(x^*) \leq \alpha \leq f(x)$. So therefore, x^* is a global minimum of f(x) over $x \in \mathbb{R}^N$.

Part d) We will prove this by contradiction. First notice that f(x) is strictly convex since it is the sum of a strictly convex and convex function. Assume that there exists $x' \neq x^*$ such that $f(x') = f(x^*)$. Define $\bar{x} = \frac{x' + x^*}{2}$, then since f(x) is strictly convex, we have that

$$f(\bar{x}) < \frac{f(x') + f(x^*)}{2}$$
.

But this can not be possible since $f(x^*)$ is a global minimum. So therefore, x^* must be the unique global minimum.