EE 641 Midterm Exam October 24, Fall 2016

Name:	-		
			Instructions

The following is an in-class closed-book exam.

- This exam contains 3 problems worth a total of 100 points.
- You may not use any notes, textbooks, or calculators.
- You are allowed up to 55 minutes to complete the exam.

Good luck.

Problem 1. (30pt)

Let $\{X_i\}_{i=1}^n$ be i.i.d. random variables with distribution

$$P\{X_i = k\} = \pi_k$$

where $\sum_{k=1}^{m} \pi_k = 1$. Compute the ML estimate of the parameter vector $\theta = [\pi_1, \dots, \pi_m]$. (Hint: You may use the method of Lagrange multipliers to calculate the solution to the constrained optimization.)

Problem 2. (35pt)

Let X_s be a zero-mean GMRF on a finite general lattice $s \in S$. Let X be a vector of dimension N = |S| containing all the elements of X_s in some fixed order, and denote the inverse covariance of X as

$$B = \left(\mathbb{E}\left[XX^t\right]\right)^{-1} .$$

- a) Write an expression for p(x), the PDF of X in terms of B.
- b) If ∂s denotes the neighborhood system of the MRF, then show that if $r \notin \partial s$ and $r \neq s$, then $B_{r,s} = B_{s,r} = 0$.
- c) Show that we can define a valid (but possibly different) neighborhood system for this GMRF as

$$\partial s = \{ r \in S : B_{r,s} \neq 0 \text{ and } r \neq s \}$$
.

Problem 3. (35pt)

Consider the function

$$f(x) = |x - x_r|^{1.1} ,$$

for $x \in \mathbb{R}$.

- a) Sketch a plot of f(x) when $x_r = 1$.
- b) Sketch a good surrogate function, f(x; x'), for $x_r = 1$ and x' = 2.
- c) Determine a general expression for the surrogate function f(x; x') that works for any value of x_r and x'.
- d) Assuming the objective is to minimize the expression

$$f(x) = \sum_{r \in \partial s} |x - x_r|^{1.1} ,$$

for $x \in \mathbb{R}$, specify an iterative algorithm in terms of the surrogate function f(x; x') that will converge to the global minimum of the function.